九年级数学 锐角三角函数的专项 培优练习题及答案

九年级数学 锐角三角函数的专项 培优练习题及答案
九年级数学 锐角三角函数的专项 培优练习题及答案

九年级数学 锐角三角函数的专项 培优练习题及答案

一、锐角三角函数

1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.

(1)求观察哨所A 与走私船所在的位置C 的距离;

(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每

小时D 处成功拦截. 【解析】 【分析】

(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】

(1)在ABC △中,180180375390ACB B BAC ?????∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =

,所以3sin 3725155

AC AB ?

=?=?=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4

sin 15125

CM AC CAM =?∠=?

=,3

cos 1595

AM AC CAM =?∠=?=.

在Rt ADM △中,tan MD

DAM AM

∠=,

所以tan 7636MD AM ?=?=.

所以24AD CD MD MC =

===-=.

设缉私艇的速度为v 海里/小时,则有2416=

,解得v =

经检验,v =.

答:当缉私艇以每小时D 处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

2.如图1,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,∠AEF=90°,AE=EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC . (1) 试判断BE 与FH 的数量关系,并说明理由; (2) 求证:∠ACF=90°;

(3) 连接AF ,过A ,E ,F 三点作圆,如图2. 若EC=4,∠CEF=15°,求

的长.

图1 图2

【答案】(1)BE="FH" ;理由见解析 (2)证明见解析 (3)

=2π

【解析】

试题分析:(1)由△ABE ≌△EHF (SAS )即可得到BE=FH

(2)由(1)可知AB=EH ,而BC=AB ,FH=EB ,从而可知△FHC 是等腰直角三角形,∠FCH 为45°,而∠ACB 也为45°,从而可证明

(3)由已知可知∠EAC=30°,AF 是直径,设圆心为O ,连接EO ,过点E 作EN ⊥AC 于点N ,则可得△ECN 为等腰直角三角形,从而可得EN 的长,进而可得AE 的长,得到半径,得到

所对圆心角的度数,从而求得弧长 试题解析:(1)BE=FH .理由如下: ∵四边形ABCD 是正方形 ∴∠B=90°,

∵FH⊥BC ∴∠FHE=90°

又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°

∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF

∴△ABE≌△EHF(SAS)

∴BE=FH

(2)∵△ABE≌△EHF

∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"

∴CH=FH

∴∠FCH=45°,∴∠FCM=45°

∵AC是正方形对角线,∴∠ACD=45°

∴∠ACF=∠FCM +∠ACD =90°

(3)∵AE=EF,∴△AEF是等腰直角三角形

△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°

过E作EN⊥AC于点N

Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=

Rt△ENA中,EN =

又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)

∴∠EAC=30°

∴AE=

Rt△AFE中,AE== EF,∴AF=8

AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°

=2π·4·(90°÷360°)=2π

考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数

3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.

(1)求证:△ABC∽△BCD;

(2)求x的值;

(3)求cos36°-cos72°的值.

【答案】(1)证明见解析;(2;(3

【解析】

试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;

(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;

(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,

设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,

∴AB BC BD CD =,即11

1x x

+=, 整理得:x 2

+x-1=0,

解得:x 1,x 2(负值,舍去),

则x=

12

-+; (3)过B 作BE ⊥AC ,交AC 于点E ,

∵BD=CD ,

∴E 为CD 中点,即

在Rt △ABE 中,cosA=cos36°

=12

AE AB +

== 在Rt △BCE 中,cosC=cos72°

=41EC BC ==

, 则cos36°-cos72°

==

=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.

4.如图,湿地景区岸边有三个观景台、

.已知

米,米,

位于点的南偏西

方向,

点位于

点的南偏东

方向.

(1)求

的面积;

(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道

.试求

间的

距离.(结果精确到米)

(参考数据:

)

【答案】(1)560000(2)565.6 【解析】

试题分析:(1)过点作交

的延长线于点

,,然后根据直角三角形的内角

和求出∠CAE ,再根据正弦的性质求出CE 的长,从而得到△ABC 的面积;

(2)连接

,过点

,垂足为

点,则

.然后根据中点的性质和余

弦值求出BE、AE的长,再根据勾股定理求解即可.

试题解析:(1)过点作交的延长线于点,

在中,,

所以米.

所以(平方米).

(2)连接,过点作,垂足为点,则.

因为是中点,

所以米,且为中点,

米,

所以米.

所以米,由勾股定理得,

米.

答:、间的距离为米.

考点:解直角三角形

5.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点

D,其纵坐标为,l与x轴的交点为E,经过A、T、D三点作⊙M.

(1)求二次函数的表达式;

(2)在点T的运动过程中,

①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;

②若MT=1

2

AD,求点M的坐标;

(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).

【答案】(1)y =x 2

﹣2x ﹣3(2)①在点T 的运动过程中,∠DMT 的度数是定值②(0

)(3)见解析

【解析】 【分析】

(1)把点B 的坐标代入抛物线解析式求得系数b 的值即可;

(2)①如图1,连接AD .构造Rt △AED ,由锐角三角函数的定义知,tan ∠DAE

.即∠DAE =60°,由圆周角定理推知∠DMT =2∠DAE =120°;

②如图2,由已知条件MT =

12AD ,MT =MD ,推知MD =1

2

AD ,根据△ADT 的外接圆圆心M 在AD 的中垂线上,得到:点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =

1

2

AD .根据点A 、D 的坐标求得点M 的坐标即可; (3)如图3,作MH ⊥x 于点H ,则AH =HT =1

2

AT .易得H (a ﹣1,0),T (2a ﹣1,0).由限制性条件OH≤x≤OT 、动点T 在射线EB 上运动可以得到:0≤a ﹣1≤x≤2a ﹣1.

需要分类讨论:(i )当2111(1)211a a a -??----?……

,即4

13a <…,根据抛物线的增减性求得y

的极值.

(ii )当011

2111(1)211

a a a a <-??->??--<--?

…,即4

3<a≤2时,根据抛物线的增减性求得y 的极值.

(iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值. 【详解】

解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32

+3b ﹣3=0,

解得b =﹣2,

则该二次函数的解析式为:y =x 2

﹣2x ﹣3;

(2)①∠DMT 的度数是定值.理由如下:

如图1,连接AD.

∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4.

∴抛物线的对称轴是直线x=1.

又∵点D的纵坐标为

∴D(1,

由y=x2﹣2x﹣3得到:y=(x﹣3)(x+1),∴A(﹣1,0),B(3,0).

在Rt△AED中,tan∠DAE

=DE

AE

==.

∴∠DAE=60°.

∴∠DMT=2∠DAE=120°.

∴在点T的运动过程中,∠DMT的度数是定值;

②如图2,∵MT=1

2

AD.又MT=MD,

∴MD=1

2 AD.

∵△ADT的外接圆圆心M在AD的中垂线上,

∴点M是线段AD的中点时,此时AD为⊙M的直径时,MD=1

2 AD.

∵A(﹣1,0),D(1,

∴点M的坐标是(0

(3)如图3,作MH⊥x于点H,则AH=HT=1

2 AT.

又HT=a,

∴H(a﹣1,0),T(2a﹣1,0).

∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a﹣1≤x≤2a﹣1.

∴0≤a﹣1≤2a﹣1.

∴a≥1,

∴2a﹣1≥1.

(i)当

211

1(1)211

a

a a

-

?

?

----

?

,即1

4

a

3

剟时,

当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.

(ii)当

011

211

1(1)211

a

a

a a

<-

?

?

->

?

?--<--

?

,即

4

3

<a≤2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.

(iii)当a﹣1>1,即a>2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.

【点睛】

主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.

6.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.

(1)求证:AE=CE

(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:

∠FAB+∠FBM=∠EDC.

(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=3

4

,DE=

39

4

时,N

为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.

【答案】(1)详见解析;(2)详见解析;(3)NL

【解析】

【分析】

(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.

(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.

(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=4

3

a,再由相交弦定理

得到GH?HF=BH?AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN?LF=AL?BL,进而求出LN的长.

【详解】

解:

(1)证明:如图1中,连接AD.

∵AB是直径,

∴∠ADB=∠ADC=90°,

∵EA、ED是⊙O的切线,

∴EA=ED,

∴∠EAD=∠EDA,

∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,

∴∠C=∠EDC,

∴ED=EC,

∴AE=EC.

(2)证明:如图2中,连接AD.

∵AC是切线,AB是直径,

∴∠BAC=∠ADB=90°,

∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,

∴∠BAD=∠C,

∵∠EDC=∠C,

∴∠BAD=∠EDC,

∵∠DBF=∠DAF,

∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,

∴∠FAB+∠FBM=∠EDC.

(3)解:如图3中,

由(1)可知,DE=AE=EC,∵DE=39

4

∴AC=39

2

∵tan∠ABC=3

4

AC

AB

39 32 4AB ,

∴AB=26,

∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=4

3 a,

∵GH?HF=BH?AH,

∴4a2=4

3

a(26﹣

4

3

a),

∴a=6,

∴FH=12,BH=8,AH=18,∵GH=HF,

∴AB⊥GF,

∴∠AHG=90°,

∵∠NFH+∠CAF=∠AHG,

∴∠NFH+∠CAF=90°,

∵∠NFH+∠HLF=90°,

∴∠HLF=∠CAF,

∵AC∥FG,

∴∠CAF=∠AFH,

∴∠HLF=∠AFH,

∵∠FHL=∠AHF,

∴△HFL∽△HAF,

∴FH2=HL?HA,

∴122=HL?18,

∴HL=8,

∴AL =10,BL =16,FL = ∵LN ?LF =AL ?BL ,

∴LN =10?16,

∴LN 【点睛】

本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.

7.如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,连接BD ,将△ABD 绕B 点作顺时针方向旋转得到△A ′B ′D ′(B ′与B 重合),且点D ′刚好落在BC 的延长上,A ′D ′与CD 相交于点E . (1)求矩形ABCD 与△A ′B ′D ′重叠部分(如图1中阴影部分A ′B ′CE )的面积;

(2)将△A ′B ′D ′以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.

【答案】(1)45

2

;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0

秒、

32 秒、95

- . 【解析】 【分析】

(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=

'''''

=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤

115时和当11

5

<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】

解:(1)∵AB =6cm ,AD =8cm ,

∴BD =10cm ,

根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''

=A B CE

A D CD ∴

682

=CE ∴CE =

3

2

cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222

?-?÷=(cm 2

); (2)①当0≤x <115时,CD ′=2x +2,CE =3

2

(x +1), ∴S △CD ′E =32x 2+3x +32

, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当

115≤x ≤4时,B ′C =8﹣2x ,CE =4

3

(8﹣2x ) ∴()2

14y 8223x =

?-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;

②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245

, ∵AN 2+A ′N 2=36, ∴(6﹣

245)2+(2x +185

)2

=36,

解得:x x (舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24

5

, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +185

)2

解得:x =

32

综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、

32

【点睛】

本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.

8.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,

40),直线AB:y=1

3

x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作

EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.

(1)求边EF的长;

(2)将正方形EFGH沿射线FB个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).

①当点F1移动到点B时,求t的值;

②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.

【答案】(1)EF=15;(2)①10;②120;

【解析】

【分析】

(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4

3

x+40,可

求出P点坐标,进而求出F点坐标即可;

(2)①易求B(0,5),当点F1移动到点B时,

=10;

②F点移动到F'

t,F垂直x轴方向移动的距离是t,当点H运动到直线DE

上时,在Rt△F'NF中,NF

NF'

=

1

3

,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,

4

3

MH

EM

'

=,

t=4,S=1

2

×(12+

45

4

)×11=

1023

8

;当点G运动到直线DE上时,在Rt△F'PK中,

PK

F K'

=

1

3

PK=t-3,F'K=3t-9,在Rt△PKG'中,PK

KG'

3

1539

t

t

-

-+

4

3

,t=7,S=15×(15-7)=120.

【详解】

(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),

300

40

k b

b

+=

?

?

=

?

4

3

40

k

b

?

=-

?

?

?=

?

∴y=﹣4

3

x+40,

直线AB与直线DE的交点P(21,12),由题意知F(30,15),

∴EF=15;

(2)①易求B(0,5),

∴BF=

∴当点F1移动到点B时,t=

=10;

②当点H运动到直线DE上时,

F点移动到F'

在Rt △F'NF 中,

NF NF '=1

3

, ∴FN =t ,F'N =3t , ∵MH'=FN =t ,

EM =NG'=15﹣F'N =15﹣3t , 在Rt △DMH'中,

4

3

MH EM '=, ∴

4

1533t t =-, ∴t =4,

∴EM =3,MH'=4,

∴S =

1451023(12)11248?+?=; 当点G 运动到直线DE 上时,

F 点移动到F',

∵PF =

∴PF't ﹣, 在Rt △F'PK 中,

1

3

PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9, 在Rt △PKG'中,PK KG '=31539t t --+=4

3

, ∴t =7,

∴S =15×(15﹣7)=120. 【点睛】

本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.

9.阅读下面材料:

观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD

b

,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即

sin sin b c B C = .同理有:sin sin c a

C A

=,sin sin a b A B

=,所以sin sin sin a b c

A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.

(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;

(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . (3)在(2)的条件下,试求75°的正弦值.(结果保留根号)

【答案】(1);(2)海里;(3 【解析】 【分析】

(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.

(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;

(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值. 【详解】

解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°, ∵

AB sinC =sin BC

A

45AB sin =60

sin60

解得:

. (2)如图,

依题意:BC=60×0.5=30(海里) ∵CD ∥BE , ∴∠DCB+∠CBE=180° ∵∠DCB=30°, ∴∠CBE=150° ∵∠ABE=75°. ∴∠ABC=75°, ∴∠A=45°,

在△ABC 中,

sin AB ACB ∠=BC sin A ∠ 即60?AB

sin =3045?

sin , 解之得:

答:货轮距灯塔的距离

海里. (3)过点B 作AC 的垂线BM ,垂足为M.

在直角三角形ABM 中,∠A=45°,,

所以BDC 中,∠BCM=60°,BC=30°,可求得CM=15,

所以,

由题意得,1575

sin =60sin ,sin75°=4 . 【点睛】

本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.

10.

如图,△ABC 中,AC =BC =10,cosC =

3

5

,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.

(2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.

(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学锐角三角函数(大题培优)及详细答案

中考数学锐角三角函数(大题培优)及详细答案 一、锐角三角函数 1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).备用数据:, 【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】 试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解. 试题解析:延长PQ交直线AB于点E, (1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE中,33 米, ∵AB=AE-BE=6米, 则3 , 解得:3

则BE=(33+3)米. 在直角△BEQ中,QE= 3 3 BE= 3 3 (33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米). 答:电线杆PQ的高度约9米. 考点:解直角三角形的应用-仰角俯角问题. 2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7). 【答案】32.4米. 【解析】 试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解. 试题解析:如图,过点B作BE⊥CD于点E, 根据题意,∠DBE=45°,∠CBE=30°. ∵AB⊥AC,CD⊥AC, ∴四边形ABEC为矩形, ∴CE=AB=12m, 在Rt△CBE中,cot∠CBE=BE CE , ∴33 在Rt△BDE中,由∠DBE=45°,得3 ∴CD=CE+DE=123)≈32.4.答:楼房CD的高度约为32.4m.

锐角三角函数学而思培优

第九讲 锐角三角函数 板块一 锐角三角函数 【例1】⑴(2010年人大附统练)如图,在ABC △中,AB AC =,45A =?∠,AC 的垂直平分线分别交AB 、 AC 于D 、E 两点,连接CD ,如果1AD =,那么tan BCD =∠ 。 ⑵(2007海淀二模)如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形。已知 ∠ACB =α,∠A 1CB 1=α1,…,∠A 5CB 5=α5。则tanα·tanα1+tanα1·tanα2+…+tanα4·tanα5的值 为( ) A .1 B .5 C .45 D .56 ⑶(2010年济宁市)如图,是一张宽m 的矩形台球桌ABCD ,一 球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点。如果MC n =,CMN α∠=。那么P 点与B 点的距离为 。 【例2】⑴(2010年人大附统练)已知ABC △,90C =?∠,设sin A m =,当A ∠是最小的内角时,m 的 取值范围是( ) A .1 02 m << B .02m << C .0m < D .0m << B 5 B 4 B 3 B 2B 1 A 5A 4A 3A 2A 1B A C D E D C B A B N

12?5? D C B A ⑵(十一学校2009年初三数学学习能力测试)已知1 sin cos 8 αα?=,且4590α<<°°,则 cos sin αα-的值是( ) A B . C . 34 D . ⑶(北京二中分校2009学年度第一学期初三质量检测)因为1sin 302= °,1 sin 2102 =-°,所以 ()sin 210sin 18030sin 30=+=-°°°° ;因为sin 452= ° ,sin 2252 =°,所以 ()sin 225sin 18045sin 45=+=-°°°°;由此猜想并推理知:一般地,当α为锐角时,有()sin 180sin αα+=-°。由此可知sin 240=°( ) A .1 2 - B . C . D . 板块二 解直角三角形及应用 【例3】(2009浙江台州)如图,有一段斜坡BC 长为10米,坡角 12CBD ∠=?,为方便残疾人的轮椅车通行,现准备把 坡角降为5?。 ⑴求坡高CD ; ⑵求斜坡新起点A 与原起点B 的距离(精确到0.1米) (参考数据:sin120.21cos120.98tan50.09?≈?≈?≈,,) 【例4】面积专题: 题源:(2010年人大附统练)如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为 α,则它们重叠部分(图中阴影部分)的面积为( ) A . 1sin α B .1 cos α C .sin α D .1

锐角三角函数培优题型分类(答案版)

锐角三角函数培优-题型分类 【考点】待定系数法求一次函数解析式;锐角三角函数的定义.1.(2009?牡丹江二模)直线y=kx﹣4与y轴相交所成锐角的正切值为,则k 的值为() A.B.2 C.±2 D. 【分析】首先确定直线y=kx﹣4与y轴和x轴的交点,然后利用直线y=kx﹣4与y轴相交所成锐角的正切值为这一条件求出k的值. 【解答】解:由直线的解析式可知直线与y轴的交点为(0,﹣4),即直线y=kx ﹣4与y轴相交所成锐角的邻边为|﹣4|=4,与x轴的交点为y=0时,x=, ∵直线y=kx﹣4与y轴相交所成锐角的正切值为, 即||=4×,k=±2. 故选C. 【考点】锐角三角函数的定义;三角形中位线定理. 2.(1998?台州)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=() A.B.1 C.D. 【分析】若想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC的中位线,可分别得到所求的角的正切值相关的线段的比. 【解答】解:过B作BE∥AC交CD于E. ∵AB=BD, ∴E是CD中点, ∴AC=2BE, ∵AC⊥BC,

∴BE⊥BC,∠CBE=90°. ∴BE∥AC. 又∵cot∠BCD=3,设BE=x,则BC=3x,AC=2x, ∴tanA===,故选A. 【考点3】锐角三角函数的定义. 3.将一副直角三角板中的两块按如图摆放,连接AC,则tan∠DAC的值为() A.B.C.D. 【分析】欲求∠DAC的正切值,需将此角构造到一个直角三角形中. 过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的值,进而可在Rt△ACE中,求得∠DAC的正切值. 【解答】解:如图,过C作CE⊥AD于E. ∵∠BDC=90°,∠DBC=∠DCB=45°, ∴BD=DC, 设CD=BD=1, 在Rt△ABD中,∠BAD=30°,则AD=2. 在Rt△EDC中,∠CDE=∠BAD=30°,CD=1, 则CE=,DE=. ∴tan∠DAC===.

锐角三角函数培优讲义

讲义编号:组长签字:签字日期:

2、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。 3、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 4、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 、 5 5 B 、 25 5 C 、12 D 、2 5、如图(3),在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =, 32AB =,则tan BCD ∠的值为( ) A 、2 B 、 2 2 C 、 63 D 、33 6、如图(5),A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为( ) A 、1 2 B 、13 C 、14 D 、 24

7、如图(6),菱形ABCD的边长为10cm,DE⊥AB,3 A ,则这个菱 sin 5 形的面积= cm2。 8、如图,在Rt△ABC中,∠C=90°,sinB=3 ,点D在BC边上,且 5 ∠ADC=45°,DC=6,求∠BAD的正切值。 9、如图,在正方形ABCD中,M为AD的中点,E为AB上一点,且BE=3AE,求sin∠ECM。 10、如图,在梯形ABCD中,AB∥DC,∠BCD=90°,AB=1,BC=2, tan∠ADC=2。 (1)求证:DC=BC (2)E是梯形ABCD内一点,F是梯形ABCD外一点,且∠EDC=∠FBC,DE=BF,是判断△ECF的形状,并证明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE 的值。 考点三:利用特殊角的三角函数值进行计算 1、计算: (1)019(π4)sin 302 --+-- (2)201()(32)2sin 3032 ---+?+- (3)1 0182sin 45(2)3-?? -+-π- ??? (4)2sin45°+3cos30°-2 3 2、∠B 是Rt△ABC 中的一个内角,且sinB=23,则cos 2 B =( ) A 、2 1 B 、 23 C 、22 D 、2 1 3、在△ABC 中,a =3,b =4,∠C=60°,则△ABC 的面积为________。 4、Rt△ABC 中,∠C=90°,c =12,tanB=3 3 ,则△ABC 的面积为( ) A 、363 B 、183 C 、16 D 、18

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>co sα;(3)若co sα>,则α<60°;(4)。正确得有( )A 、(1) (2) (3)(4) B 、(2)(3)(4) C 、(1)(3)(4) D 、(1)(2)(3) 变式: 1、下列各式中,不正确得就就是( ) A. B 、 C 、 D 、tan 45°>sin 45° 2、已知∠A满足等式,那么∠A 得取值范围就就是( ) A 、0°<∠A ≤90° B 、90°<∠A<180° C 、0°≤∠A <90° D、0°≤∠A ≤90° 3、α就就是锐角,若sin α=cos150,则α= 4。若sin53018\=0、8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α=,且45°<α<90°,则COS α-si nα得值为( ) A 、 B、 C、 D、 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确得就就是( ) A.sinA +c osB=s inC B 、si nA +sinB=sinC C 、 D 、 2、已知si nα+cos α=m ,sin α×cos α=n,则m ,n 得关系式( ) A.m=n B、m=2n+1 C 、 D 、 题型:求三角函数值 例:如图,菱形得边长为5,AC 、BD 相交于点O,AC=6,若,则下列式子正确得就就是( ) A.sin α= B 、cos α= C 、t an α= D 、cot α= 变式:1、设0°<α<45°,sin αco sα=,则s in α= 2、已知si nα-co sα=,0°<α<180°,则tan α得值就就是( ) B 、 C 、 D、 3、如图,在正方形ABCD 中,M为AD 得中点,E 为AB 上一点,且BE=3A E,求sin ∠ECM 。 4、如图,在矩形中,就就是边上得点,,,垂足为,连接。 (1)求证:;(2)如果,求得值。 题型:三角函数值得计算(1) 例:计算:= 变式:1、计算:= 2、计算:0000002000027tan 63tan 60cot 360 sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值得计算(2) 例:化简根式:= 变式:1、若,化简下式: αααααα αsin )90sin()90cos(21tan tan 21sin cos 21002+----+--= 2、已知tanA=3,且∠A 为锐角,则cotA -= 3、已知为锐角,,求得值。 题型:三角函数与一元二次方程得综合题(1) 例:在Rt △ABC 中,∠C=90°,斜边=5,两直角边得长a,b 就就是关于x 得一元二次方程得两个实数根,求Rt △ABC 中较小锐角得正弦值。 变式:1、若就就是得三边,,且方程有两个相等得实数根,求得值。 2、已知a,b,c 为△A BC 中三个内角∠A,∠B,∠C 得对边。当m >0时,关于x 得方程有两个相等得实数根,且。试判断△ABC 得形状、

锐角三角函数培优题目

1锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin2α+cos2α=1; 商数关系:tgα=??cossin,ctgα=??sincos; 倒数关系:tgαctgα=1. 【例题求解】 【例1】已知在△ABC中,∠A、∠B是锐角,且sinA=135,tanB=2,AB=29cm,则S△ABC = 思路点拨过C作CD⊥AB于D,这样由三角函数定义得到线段的比, sinA=135?ACCD,tanB=2?BDCD,设CD=5m,AC=13m,CD=2n,BD=n,解题的关键是求出m、n的值. 注:设△ABC中,a、b、c为∠A、∠B、∠C的对边,R为△ABC外接圆的半径, 不难证明:与锐角三角函数相关的几个重要结论: (1) S△ABC=CabBacAbcsin21sin21sin21??; (2)RCcBbAa2sinsinsin???.

【例2】在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=( ) A 32? B32? C.0.3 D23? 思路点拨由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 2【例3】如图,已知△ABC是等腰直角三角形,∠ACB=90°,过BC的中点D 作DE⊥AB于E,连结CE,求sin∠ACE的值. 思路点拨作垂线把∠ACE变成直角三角形的一个锐角,将问题转化成求线段的比.

初三数学锐角三角函数的专项培优练习题及答案

初三数学锐角三角函数的专项培优练习题及答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数. (2)显示屏的顶部B'比原来升高了多少? (3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度? 【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】 试题分析:(1)通过解直角三角形即可得到结果; (2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得 BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°. 试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=, ∴∠CAO′=30°; (2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

相关文档
最新文档