动量守恒定律练习题
动量冲量精讲精练:验证动量守恒定律典型练习题 含解析 精品

1.某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1∶2.当两摆球均处于自由静止状态时,其侧面刚好接触.向右上方拉动B 球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角为30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?解析:设摆球A 、B 的质量分别为m A 、m B ,摆长为l ,B 球的初始高度为h 1,碰撞前B 球的速度为v B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1=l (1-cos 45°)①12m B v 2B =m B gh 1② 设碰撞前、后两摆球的总动量的大小分别为p 1、p 2.有p 1=m B v B ③联立得:p 1=m B 2gl (1-cos 45°).同理可得:p 2=(m A +m B )2gl (1-cos 30°).则有:p 2p 1=m A +m B m B 1-cos 30°1-cos 45°. 代入已知条件得:⎝ ⎛⎭⎪⎫p 2p 12=1.03 由此可以推出⎪⎪⎪⎪⎪⎪p 2-p 1p 1≤4% 所以,此实验在规定的误差范围内验证了动量守恒定律.答案:见解析2.气垫导轨是常用的一种实验仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:a .用天平分别测出滑块A 、B 的质量m A 、m B .b .调整气垫导轨,使导轨处于水平状态.c .在A 和B 间放入一个被压缩的轻弹簧,用电动卡锁锁定,静止放置在气垫导轨上.d .用刻度尺测出A 的左端至C 板的距离L 1.e .按下电钮放开卡锁,同时使分别记录滑块A 、B 运动时间的计时器开始工作.当A 、B 滑块分别碰撞C 、D 挡板时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量是________.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是__________________.(3)利用上述实验数据写出被压缩弹簧的弹性势能大小的表达式为__________________.解析:(1)A 、B 所组成的系统初动量为零,A 、B 两滑块分开后动量应大小相等,方向相反,这就需要求两滑块的速度,其中滑块A 的速度为L 1t 1,要求滑块B 的速度,还应测量B 右端到D 的距离L 2,这样滑块B 的速度就可用表达式L 2t 2来表示.(2)A 、B 开始时静止,放开卡锁后两者均做匀速直线运动,总动量为零,A 、B 运动后动量大小相等,方向相反,即m A L 1t 1=m B L 2t 2. (3)弹簧的弹性势能转化为A 、B 的动能,即E p =12⎣⎢⎡⎦⎥⎤m A ⎝ ⎛⎭⎪⎫L 1t 12+m B ⎝ ⎛⎭⎪⎫L 2t 22. 答案:(1)B 右端到D 的距离L 2(2)m A L 1t 1=m B L 2t 2(3)E p =12⎣⎢⎡⎦⎥⎤m A ⎝ ⎛⎭⎪⎫L 1t 12+m B ⎝ ⎛⎭⎪⎫L 2t 22高效演练跟踪检测1.某同学用如图所示的装置通过半径相同的A、B两球(m A>m B)的碰撞来验证动量守恒定律.对入射小球在斜槽上释放点的高低对实验影响的说法中正确的是()A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小解析:选 C.入射小球的释放点越高,入射小球碰前速度越大,相碰时内力越大,阻力的影响相对减小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,选项C正确.2.在做“验证动量守恒定律”实验时,入射球a的质量为m1,被碰球b的质量为m2,两小球的半径均为r,各小球的落地点如图所示,下列关于这个实验的说法正确的是()A.入射球与被碰球最好采用大小相同、质量相等的小球B.要验证的表达式是m1·ON=m1·OM+m2·OPC.要验证的表达式是m1·OP=m1·OM+m2·OND.要验证的表达式是m1(OP-2r)=m1(OM-2r)+m2·ON解析:选 C.在此装置中,应使入射球的质量大于被碰球的质量,防止反弹或静止,故选项A错;两球做平抛运动时都具有相同的起点,故应验证的关系式为m1·OP=m1·OM+m2·ON,选项C对,B、D错.3.某同学用如图(甲)所示装置通过半径相同的A、B两球的碰撞来验证动量守恒定律.图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次.其中O点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图(乙)所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.(1)碰撞后B球的水平射程应取为________cm.(2)在以下选项中,本次实验不需要进行的测量是________.A.水平槽上未放B球时,测量A球落点位置到O点的距离B.A球与B球碰撞后,测量A球落点位置到O点的距离C.测量A球或B球的直径D.测量A球与B球的质量(或两球质量之比)E.测量G点相对于水平槽面的高度解析:(1)用最小的圆将所有点圈在里面,圆心位置即为落点平均位置,找准平均位置,读数时应在刻度尺的最小刻度后面再估读一位.读数为64.7 cm.(2)以平抛时间为时间单位,则平抛的水平距离在数值上等于平抛初速度.设A未碰B时A球的水平位移为x A,A、B相碰后A、B两球的水平位移分别为x A′、x B′,A、B质量分别为m A、m B,则碰前A的动量可写成p1=m A x A,碰后A、B 的总动量为p2=m A x A′+m B x B′,要验证动量是否守恒,即验证p1与p2两动量是否相等.所以该实验应测量的物理量有m A、m B、x A、x A′、x B′.故选项C、E 不需测量.答案:(1)64.7(64.0~65.0均对)(2)CE4. 如图为“验证动量守恒定律”的实验装置.(1)下列说法中符合本实验要求的是________.A.入射球比靶球质量大或者小均可,但二者的直径必须相同B.在同一组实验的不同碰撞中,每次入射球必须从同一高度由静止释放C.安装轨道时,轨道末端必须水平D.需要使用的测量仪器有天平、刻度尺和秒表(2)实验中记录了轨道末端在记录纸上的竖直投影为O点,经多次释放入射球,在记录纸上找到了两球平均落点位置为M、P、N,并测得它们到O点的距离分别为OM、OP和ON.已知入射球的质量为m1,靶球的质量为m2,如果测得m1·OM+m2·ON近似等于________,则认为成功验证了碰撞中的动量守恒.解析:(1)入射球应比靶球质量大,A错;本题用小球水平位移代替速度,所以不用求出具体时间,所以不需要秒表,D错.(2)若动量守恒,碰撞后两球的总动量应该等于不放靶球而让入射球单独下落时的动量,入射球单独下落时的动量可用m1·OP表示.答案:(1)BC(2)m1·OP5.气垫导轨上有A、B两个滑块,开始时两个滑块静止,它们之间有一根被压缩的轻质弹簧,滑块间用绳子连接(如图甲所示),绳子烧断后,两个滑块向相反方向运动,图乙为它们运动过程的频闪照片,频闪的频率为10 Hz,由图可知:(1)A、B离开弹簧后,应该做________运动,已知滑块A、B的质量分别为200 g、300 g,根据照片记录的信息,从图中可以看出闪光照片有明显与事实不相符合的地方是________________________________________________ ________________________________________________.(2)若不计此失误,分开后,A的动量大小为________kg·m/s,B的动量大小为________kg·m/s.本实验中得出“在实验误差允许范围内,两滑块组成的系统动量守恒”这一结论的依据是_______________________.解析:(1)A、B离开弹簧后因水平方向不再受外力作用,所以均做匀速直线运动,在离开弹簧前A、B均做加速运动,A、B两滑块的第一个间隔都应该比后面匀速时相邻间隔的长度小.(2)周期T=1f=0.1 s,v=xt,由题图知A、B匀速时速度分别为v A=0.09 m/s,v B=0.06 m/s,分开后A、B的动量大小均为p=0.018 kg·m/s,方向相反,满足动量守恒,系统的总动量为0.答案:(1)匀速直线A、B两滑块的第一个间隔(2)0.0180.018A、B两滑块作用前后总动量不变,均为06.某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速直线运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速直线运动.他设计的装置如图甲所示.在小车A后连着纸带,电磁打点计时器所用电源频率为50 Hz,长木板下垫着薄木片以平衡摩擦力.(1)若已测得打点纸带如图乙所示,并测得各计数点间距(已标在图上).A 为运动的起点,则应选________段来计算A 碰前的速度.应选________段来计算A 和B 碰后的共同速度(以上两空选填“AB ”或“BC ”或“CD ”或“DE ”).(2)已测得小车A 的质量m 1=0.4 kg ,小车B 的质量为m 2=0.2 kg ,则碰前两小车的总动量为________kg·m/s ,碰后两小车的总动量为________kg·m/s.解析:(1)从分析纸带上打点的情况看,BC 段既表示小车做匀速运动,又表示小车有较大速度,因此BC 段能较准确地描述小车A 在碰撞前的运动情况,应选用BC 段计算小车A 碰前的速度.从CD 段打点的情况看,小车的运动情况还没稳定,而在DE 段内小车运动稳定,故应选用DE 段计算A 和B 碰后的共同速度.(2)小车A 在碰撞前速度v 0=BC 5T =10.50×10-25×0.02m/s =1.050 m/s 小车A 在碰撞前的动量p 0=m 1v 0=0.4×1.050 kg·m/s =0.420 kg·m/s碰撞后A 、B 的共同速度v =DE 5T =6.95×10-25×0.02m/s =0.695 m/s 碰撞后A 、B 的总动量p =(m 1+m 2)v =(0.2+0.4)×0.695 kg·m/s =0.417 kg·m/s 答案:(1)BC DE (2)0.420 0.4177.为了验证动量守恒定律(探究碰撞中的不变量),某同学选取了两个材质相同,体积不等的立方体滑块A 和B ,按下述步骤进行实验:步骤1:在A 、B 的相撞面分别装上尼龙拉扣,以便二者相撞以后能够立刻结为整体;步骤2:安装好实验装置如图,铝质轨道槽的左端是倾斜槽,右端是长直水平槽,倾斜槽和水平槽由一小段弧连接,轨道槽被固定在水平桌面上,在轨道槽的侧面与轨道等高且适当远处装一台数码频闪照相机;步骤3:让滑块B 静置于水平槽的某处,滑块A 从斜槽某处由静止释放,同时开始频闪拍摄,直到A 、B 停止运动,得到一幅多次曝光的数码照片;步骤4:多次重复步骤3,得到多幅照片,挑出其中最理想的一幅,打印出来,将刻度尺紧靠照片放置,如图所示.(1)由图分析可知,滑块A 与滑块B 碰撞发生的位置________.①在P 5、P 6之间②在P 6处③在P 6、P 7之间(2)为了探究碰撞中动量是否守恒,需要直接测量或读取的物理量是________.①A 、B 两个滑块的质量m 1和m 2②滑块A 释放时距桌面的高度③频闪照相的周期④照片尺寸和实际尺寸的比例⑤照片上测得的s 45、s 56和s 67、s 78⑥照片上测得的s 34、s 45、s 56和s 67、s 78、s 89⑦滑块与桌面间的动摩擦因数写出验证动量守恒的表达式________.(3)请你写出一条有利于提高实验准确度或改进实验原理的建议:________________________________________.解析:(1)由图可得s 12=3.00 cm ,s 23=2.80 cm ,s 34=2.60 cm ,s 45=2.40 cm ,s 56=2.20 cm ,s 67=1.60 cm ,s 78=1.40 cm ,s 89=1.20 cm.根据匀变速直线运动的特点可知A 、B 相撞的位置在P 6处.(2)为了探究A 、B 相撞前后动量是否守恒,就要得到碰撞前后的动量,所以要测量A 、B 两个滑块的质量m 1、m 2和碰撞前后的速度.设照相机拍摄时间间隔为T ,则P 4处的速度为v 4=s 34+s 452T ,P 5处的速度为v 5=s 45+s 562T ,因为v 5=v 4+v 62,所以A 、B 碰撞前在P 6处的速度为v 6=s 45+2s 56-s 342T;同理可得碰撞后AB 在P 6处的速度为v 6′=2s 67+s 78-s 892T.若动量守恒则有m 1v 6=(m 1+m 2)v 6′,整理得m1(s45+2s56-s34)=(m1+m2)(2s67+s78-s89).因此需要测量或读取的物理量是①⑥.(3)若碰撞前后都做匀速运动则可提高实验的精确度.答案:(1)②(2)①⑥;m1(s45+2s56-s34)=(m1+m2)(2s67+s78-s89)(3)将轨道的一端垫起少许,平衡摩擦力,使得滑块碰撞前后都做匀速运动(其他合理答案也可)。
【单元练】北京师范大学第二附属中学高中物理选修1第一章【动量守恒定律】经典练习题(培优)

一、选择题1.盆景是中华民族独有的,具有浓厚的中国文化特色。
如图所示,一“黄山松”盆景放在水平桌面上,下列关于桌子对盆景作用力的说法正确的是()A.方向竖直向上,大小等于盆景的重力B.方向斜向左上方,大小大于盆景的重力C.方向斜向右上方,大小大于盆景的重力D.无论时间长短,该力的冲量始终为0A解析:AABC.盆景放在水平桌面上,处于静止状态,根据二力平衡,则桌子对盆景作用力大小等于重力,方向竖直向上,BC错误A正确;D.根据I Ft只要作用时间,无论长短,该力的冲量不为零,D错误。
故选A。
2.一弹簧枪对准以6m/s的速度沿光滑桌面迎面滑来的木块,发射一颗速度为12m/s的铅弹,铅弹射入木块后未穿出,木块继续向前运动,速度变为4m/s,如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为()A.3颗B.4颗C.5颗D.6颗A解析:A以木块的初速度方向为正方向,设木块的初速度为v,子弹的初速度为v0,第一颗铅弹打入木块后,铅弹和木块的共同速度为v1,铅弹和木块的质量分别为m1和m2,由动量守恒定律可得m2v−m1v0=(m1+m2)v16m2−12m1=4(m1+m2)解得m2=8m1设要使木块停下,总共至少打入n颗铅弹,以木块与铅弹组成的系统为研究对象,由动量守恒定律得m2v−nm1v0=0解得n=4要使木块停下,总共至少打入4颗铅弹,还需要再打入3颗铅弹,A 正确,BCD 错误。
故选A 。
3.2020年5月5日,我国在海南文昌航天发射场使用“长征五号B”运载火箭,发射新一代载人飞船试验船。
假如有一宇宙飞船,它的正面面积为21m S =,以3710m /s v =⨯的速度进入宇宙微粒尘区,尘区每31m 空间有一微粒,每一微粒平均质量5210g m -=⨯,飞船经过区域的微粒都附着在飞船上,若要使飞船速度保持不变,飞船的推力应增加( ) A .0.49N B .0.98NC .490ND .980N B解析:B选在时间t ∆内与飞船碰撞的微粒为研究对象,其质量应等于底面积为S ,高为v t ∆的圆柱体内微粒的质量。
动量守恒定律题集

动量守恒定律题集一、两个小球在光滑水平面上发生碰撞,碰撞前两球动量大小相等,方向相反。
碰撞后,两球的动量可能的情况是:A. 两球动量大小相等,方向相反B. 两球动量大小不等,方向相同C. 两球动量都为零D. 一个球动量为零,另一个球动量不为零(答案)A、B、C(解析)根据动量守恒定律,碰撞前后系统总动量保持不变。
由于碰撞前两球动量大小相等、方向相反,所以系统总动量为零。
碰撞后,两球动量之和仍应为零,因此可能出现两球动量大小相等、方向相反,或者两球动量大小不等但方向相同(只要保证动量之和为零),或者两球动量都为零的情况。
而一个球动量为零,另一个球动量不为零的情况则不可能出现,因为这会导致系统总动量不为零,违反动量守恒定律。
二、一质量为m的物体在光滑水平面上以速度v碰撞一静止的、质量为2m的物体。
碰撞后,两物体的动量可能的情况是:A. 质量为m的物体动量大小为mv/3,质量为2m的物体动量大小为2mv/3B. 质量为m的物体动量大小为2mv/3,质量为2m的物体动量大小为mv/3C. 两物体动量大小均为mvD. 两物体动量大小均为零(答案)A、D(解析)根据动量守恒定律,碰撞前后系统总动量应保持不变,即mv。
选项A中,两物体动量之和为mv/3 + 2mv/3 = mv,满足动量守恒。
选项D中,两物体动量均为零,也满足动量守恒。
而选项B中,两物体动量之和为2mv/3 + mv/3 = mv,虽然动量守恒,但考虑到碰撞前只有质量为m的物体有动量,且碰撞过程中动量应发生转移,故B选项不可能。
选项C 中,两物体动量之和为2mv,不满足动量守恒定律。
三、一质量为M的滑块在光滑水平面上以速度v滑行,与一静止的、质量为2M的滑块发生碰撞。
碰撞后,两滑块的速度可能为:A. v/3和v/3B. v/2和v/2C. -v/3和2v/3D. 2v和-v(答案)A、C(解析)根据动量守恒定律,碰撞前后系统总动量应保持不变,即Mv。
3.人船模型 专题练习-2020-2021学年高二物理人教版选修3-5《动量守恒定律》

人船模型1.人船模型两个原来静止的物体发生相互作用时,若所受外力的矢量和为0,则系统动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
2.模型分析【问题】如图所示,长为L ,质量为m 船的小船停在静水中,一个质量为m 人的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少? 【分析】由动量守恒定律,得 0=-人人船船v m v m由于在全过程动量都守恒,所以有0=-人人船船v m v m 同乘以时间t ,得 0=-t v m t v m 人人船船 即 由图知解得两物体位移分别为 ,3.模型特点(1)“人船模型”适用于由两物体组成的系统,当满足动量守恒条件(含某一方向动量守恒)时,若其中一个物体向某一方向运动,则另一物体在其作用力的作用下向相反方向运动。
)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人停船停,人快船快,人慢船慢;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
解题时要画出两物体的位移关系草图,找出各位移间的关系。
注意,公式v 1、v 2和x 一般都是相对地面的速度。
4.真题示例【2019·江苏卷】质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为( ) A .B .C .D .【答案】B【解析】设滑板的速度为,小孩和滑板动量守恒得:0mu Mv =-,解得:,故B 正5.例题精选【例题1】如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( ) A .mh M +m B .Mh M +mC .D . 【答案】C【解析】此题属“人船模型”问题。
高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄①1.系统:相互作用的两个(或多个)物体组成的一个整体。
2.内力:系统内部物体间的相互作用力。
3.外力:系统以外的物体对系统内部的物体的作用力。
[说明]1.系统是由相互作用、相互关联的多个物体组成的整体。
2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。
①[填一填]如图,马路上有三辆车发生了追尾事故,假如把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最终一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。
答案:内力外力二、动量守恒定律┄┄┄┄┄┄┄┄②1.内容:假如一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.表达式:对两个物体组成的系统,常写成:p1+p2=或m1v1+m2v2=。
3.适用条件:系统不受外力或者所受外力的矢量和为0。
4.动量守恒定律的普适性动量守恒定律是一个独立的试验规律,它适用于目前为止物理学探讨的一切领域。
[留意]1.系统动量是否守恒要看探讨的系统是否受外力的作用。
2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。
②[判一判]1.一个系统初、末状态动量大小相等,即动量守恒(×)2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√)3.系统动量守恒也就是系统的动量变更量为零(√)1.对动量守恒定律条件的理解(1)系统不受外力作用,这是一种志向化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。
(2)系统受外力作用,但所受合外力为零。
像光滑水平面上两物体的碰撞就是这种情形。
(3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。
例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽视不计,系统的动量近似守恒。
动量守恒测试题及答案高中

动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
动量守恒能量守恒练习题
动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
高考物理《实验:验证动量守恒定律》真题练习含答案
高考物理《实验:验证动量守恒定律》真题练习含答案1.[2024·新课标卷]某同学用如图所示的装置验证动量守恒定律,将斜槽轨道固定在水平桌面上,轨道末段水平,右侧端点在水平木板上的垂直投影为O,木板上叠放着白纸和复写纸.实验时先将小球a从斜槽轨道上Q处由静止释放,a从轨道右端水平飞出后落在木板上;重复多次,测出落点的平均位置P与O点的距离x P.将与a半径相等的小球b置于轨道右侧端点,再将小球a从Q处由静止释放,两球碰撞后均落在木板上;重复多次,分别测出a、b两球落点的平均位置M、N与O点的距离x M、x N.完成下列填空:(1)记a、b两球的质量分别为m a、m b,实验中须满足条件m a________m b(填“>”或“<”);(2)如果测得的x P、x M、x N,m a和m b在实验误差范围内满足关系式________________,则验证了两小球在碰撞中满足动量守恒定律.实验中,用小球落点与O点的距离来代替小球水平飞出时的速度.依据是__________________________________.答案:(1)>(2)m a x P=m a x M+m b x N小球从轨道右端飞出后做平抛运动.且小球落点与轨道右端的竖直高度相同.结合平抛运动规律可知小球从轨道右端飞出后在空中运动的时间相等(合理即可)解析:(1)由于实验中须保证向右运动的小球a与静止的小球b碰撞后两球均向右运动,则实验中小球a的质量应大于小球b的质量,即m a>m b;(2)对两小球的碰撞过程由动量守恒定律有m a v=m a v a+m b v b,由于小球从轨道右端飞出后做平抛运动,且小球落点与轨道右端的竖直高度相同,则结合平抛运动规律可知小球从轨道右端飞出后在空中运动的时间相等,设此时间为t,则m a v t=m a v a t+m b v b t,即m a x P=m a x M=m b x N.2.[2024·河南省学业质量监测]某同学用如图甲所示的装置通过两球相碰来验证碰撞中的动量守恒.图中AB是斜槽,BC是水平槽,斜槽与水平槽平滑相接,先将小球1从斜槽轨道上某固定点处由静止释放,落在水平面上的记录纸上留下印迹,重复上述操作多次,根据小球1落在记录纸上的印迹确定小球1在记录纸上的平均位置P.再把小球2放在水平槽的最右端处,让小球1从斜槽轨道上原来的固定点由静止释放,与小球2碰后两小球分别落在记录纸上留下落点印迹,重复上述操作多次,确定两小球在记录纸上落点的平均位置M、N.(1)实验中小球1的质量为m 1,半径为r 1;小球2的质量为m 2,半径为r 2,则小球的质量和半径需要满足________.A .m 1>m 2,r 1>r 2B .m 1>m 2,r 1<r 2C .m 1>m 2,r 1=r 2D .m 1<m 2,r 1=r 2(2)图甲中M 点为相撞后小球________(填“1”或“2”)的落点平均位置.正确操作实验后,测量得出的落点距O 点的水平距离,如图乙所示,则在实验误差允许的范围内,m 1m 2=________(填具体数值),则相撞中的动量守恒得到验证.答案:(1)C (2)1 32解析:(1)为使两球正碰且碰撞后都做平抛运动,小球1的质量应大于小球2的质量,且半径相同,即m 1>m 2,r 1=r 2,C 正确.(2)M 点水平位移最小,是碰撞后小球1的落点平均位置.根据动量守恒定律m 1OPt =m 1OM t +m 2ON t ,代入数据得m 1m 2 =32.3.[2023·辽宁卷]某同学为了验证对心碰撞过程中的动量守恒定律,设计了如下实验:用纸板搭建如图所示的滑道,使硬币可以平滑地从斜面滑到水平面上,其中OA 为水平段.选择相同材质的一元硬币和一角硬币进行实验.测量硬币的质量,得到一元和一角硬币的质量分别为m 1和m 2(m 1>m 2).将硬币甲放置在斜面某一位置,标记此位置为B .由静止释放甲,当甲停在水平面上某处时,测量甲从O 点到停止处的滑行距离OP .将硬币乙放置在O 处,左侧与O 点重合,将甲放置于B 点由静止释放.当两枚硬币发生碰撞后,分别测量甲乙从O 点到停止处的滑行距离OM 和ON .保持释放位置不变,重复实验若干次,得到OP 、OM 、ON 的平均值分别为s 0、s 1、s 2.(1)在本实验中,甲选用的是________(填“一元”或“一角”)硬币;(2)碰撞前,甲到O 点时速度的大小可表示为________(设硬币与纸板间的动摩擦因数为μ,重力加速度为g );(3)若甲、乙碰撞过程中动量守恒,则s 0-s 1s 2=________(用m 1和m 2表示),然后通过测得的具体数据验证硬币对心碰撞过程中动量是否守恒;(4)由于存在某种系统或偶然误差,计算得到碰撞前后甲动量变化量大小与乙动量变化量大小的比值不是1,写出一条产生这种误差可能的原因________________________________________________________________________ ________________________________________________________________________.答案:(1)一元 (2)2μgs 0 (3)m 2m 1(4)见解析解析:(1)根据题意可知,甲与乙碰撞后没有反弹,可知甲的质量大于乙的质量,甲选用的是一元硬币;(2)甲从O 点到P 点,根据动能定理 -μm 1gs 0=0-12m v 20 解得碰撞前,甲到O 点时速度的大小 v 0=2μgs 0(3)同理可得,碰撞后甲的速度和乙的速度分别为 v 1=2μgs 1 v 2=2μgs 2若动量守恒,则满足m 1v 0=m 1v 1+m 2v 2整理可得s 0-s 1s 2=m 2m 1(4)误差可能的原因有:①系统误差,因为无论是再精良的仪器总是会有误差的,不可能做到绝对准确;②碰撞过程中,我们认为内力远大于外力,动量守恒,实际上碰撞过程中,两个硬币组成的系统合外力不为零.4.某同学利用气垫导轨上滑块间的碰撞来验证动量守恒定律,滑块1上安装遮光片,光电计时器可以测出遮光片经过光电门的遮光时间,滑块质量可以通过天平测出,实验装置如图甲所示.(1)游标卡尺测量遮光片宽度如图乙所示,其宽度d=________ cm.(2)打开气泵,待气流稳定后,将滑块1轻轻从左侧推出,发现其经过光电门1的时间比光电门2的时间短,应该调高气垫导轨的________端(填“左”或“右”),直到通过两个光电门的时间相等,即轨道调节水平.(3)在滑块上安装配套的粘扣.滑块2(未安装遮光片,质量m2=120.3 g)静止在导轨上,轻推滑块1(安装遮光片,质量m1=174.5 g),使其与滑块2碰撞,记录碰撞前滑块1经过光电门1的时间Δt1,以及碰撞后两滑块经过光电门2的时间Δt2.重复上述操作,多次测量得出多组数据如下表:根据表中数据在方格纸上作出1Δt21Δt1图线.若根据图线得到的直线斜率为k1,而从理论计算可得直线斜率表达示为k2=________.(用m1、m2表示)若k1=k2,即可验证动量守恒定律.(4)多次试验,发现k1总大于k2,产生这一误差的原因可能是________.A.滑块2的质量测量值偏大B.滑块1的质量测量值偏大C.滑块2未碰时有向右的初速度D.滑块2未碰时有向左的初速度答案:(1)2.850(2)左(3)图见解析m1m1+m2(4)AC解析:(1)游标卡尺的读数为28mm+10×0.05 mm=28.50 mm=2.850 cm.(2)滑块经过光电门1的时间比光电门2的时间短,说明滑块做减速运动,是由于气垫导轨左侧低造成的,应将左端调高.(3)作出1Δt2-1Δt1图线如图所示若满足动量守恒,则有m1v1=(m1+m2)v2,且v1=dΔt1,v2=dΔt2,整理得1Δt2=m1m1+m2·1Δt1,k2=m1m1+m2.(4)若滑块2的质量测量值偏大,则计算值k2偏小,则有k1>k2,A正确;若滑块1的质量测量值偏大,则计算值k2偏大,则有k1<k2,B错误;若滑块2未碰时有向右的初速度,则碰后动量值偏大,即1Δt2偏大,则k1偏大,k1>k2,C正确;若滑块2未碰时有向左的初速度,则碰后动量值偏小,即1Δt2偏小,则k1偏小,k1<k2,D错误.。
高中物理动量守恒定律解题技巧及练习题(含答案)
高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽局部嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m ,导体棒的电阻R=1 Q,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.⑴求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)假设导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.9 _【答案】(1) v 2、10m/s (2)25J (3)P - W4【解析】【详解】解:⑴根据机械能守恒定律,可得:mgh - mv2 2解得导体棒刚进入凹槽时的速度大小:v 2g0m / s(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据水平守恒可知,整个过程中系统产生的热量:Q mg(h r) 25J(3)设导体棒第一次通过最低点时速度大小为V I ,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1 Mv?1 2 1 2由能重寸恒可得:一mv1 mv2 mg(h r) Q12 2导体棒第一次通过最低点时感应电动势: E BLv1 BLv2E2回路电功率:P. ........ . 9联立解得:P -W42.如图,两块相同平板P i、P2置于光滑水平面上,质量均为m = 0.1kg. P2的右端固定一轻质弹簧,物体P置于P i的最右端,质量为M = 0.2kg且可看作质点.P i与P以共同速度vo= 4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P i与P2粘连在一起,压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P i的长度L=1m , P与P i之间的动摩擦因数为科=0.2, P2上外表光滑.求:-厂। A B vWm(i)P i、P2刚碰完时的共同速度v i;(2)此过程中弹簧的最大弹性势能E P.(3)通过计算判断最终P能否从P i上滑下,并求出P的最终速度V2.【答案】(i) v i=2m/s (2)E P=0.2J (3)v2=3m/s【解析】【分析】【详解】(i) P i、P2碰撞过程,由动量守恒定律mV. 2mM解得V i v°- 2m / s,方向水平向右;2(2)对P i、P2、P系统,由动量守恒定律2mv i Mv o (2m M )V2…3斛得v2 -v0 3m/s,方向水平向右,4i o i o i o此过程中弹簧的最大弹性势能E P -?2mv i2 + -Mv2 — (2m M )v22 0.2J -2 2 2(3)对P i、F2、P系统,由动量守恒定律2mv i Mv o 2mv3 Mv?i o i o i c 1c由能重寸恒TH律得一2mv〔+ Mv 02mv3Mv2 + Mg L2 2 2 2解得P的最终速度v2 3m/s 0,即P能从P i上滑下,P的最终速度v2 3m/s3.光滑水平面上质量为ikg的小球A, 量为2kg的大小相同的小球B发生正碰I~~H J I,,,,,.Cbr,〞(i)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能. 以2.0m/s的速度与同向运动的速度为i.0m/s、质,碰撞后小球B以i.5m/s的速度运动.求:【答案】v A i.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:甘-1 2 1 2 _1 / 2 _1 」E损-彳与口『 A彳叫.B代入数据解得:E损=0.25J答:①碰后A球的速度为1.0m/s;②碰撞过程中A、B系统损失的机械能为0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的屡次碰撞.如下图,一块外表水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L= 0.08 m.现有一小物块以初速度vo = 2 m/s从左端滑上木板,木板和小物块的质量均为 1 kg,小物块与木板之间的动摩擦因数-0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触, 木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g=10 m/s2.求:可________________ 「J(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者到达共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板到达共同速度时 ,木板右端与墙之间的距离.【答案】(1) 0.4 s 0.4 m/s (2) 1.8 s. (3) 0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a,经历时间T后与墙第一次碰撞,碰撞时的速度为V I那么mg ma,解得a g 1m/s2①,1 , 2 LL - at ②,v1 at ③ 2联立①②③ 解得t 0.4s, v1 0.4m/s④(2)在物块与木板两者到达共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T.设在物块与木板两者到达共同速度v前木板共经历n次碰撞,那么有:v V O 2nT t a a t ⑤式中At是碰撞n次后木板从起始位置至到达共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤ 式可改写为2v V o 2nTa⑥由于木板的速率只能处于 .到v1之间,故有0 v02nTa 2v1⑦求解上式得1.5 n 2.5由于n是整数,故有n=2®由①⑤⑧ 得:t 0.2s⑨;v 0.2m/s⑩从开始到物块与木板两者到达共同速度所用的时间为:t 4T t 1.8s (11)即从物块滑上木板到两者到达共同速度时,木板与墙共发生三次碰撞,所用的时间为1. 8s.............. 一…,……、、,,一 1 2(3)物块与木板到达共同速度时,木板与墙之间的距离为s L — a t2 (12)2联立①与(12)式,并代入数据得s 0.06m即到达共同速度时木板右端与墙之间的距离为0. 06m.考点:考查了牛顿第二定律,运动学公式【名师点睛】此题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动, 一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如下图,固定的光滑圆弧面与质量为6kg的小车C的上外表平滑相接,在圆弧面上有一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上外表高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.滑块A、B与小车C的动摩擦因数均为斤0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2.求:(1)滑块A与B弹性碰撞后瞬间的共同速度的大小;【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上外表的最短长度.(1)设滑块A滑到圆弧末端时的速度大小为v i,由机械能守恒定律有:m A gh — m A V i2代入数据解得v i ,2gh 5m/s .设A、B碰后瞬间的共同速度为V2,滑块A与B碰撞瞬间与小车C无关,滑块A与B组成的系统动量守恒, m A V i m A m B V2代入数据解得V2 2.5m/s .(2)设小车C的最短长度为L,滑块A与B最终没有从小车C上滑出,三者最终速度相同设为V3,根据动量守恒定律有:m A m B v2m A m B m C v31 2 1 2根据能重寸恒TH律有:m A m B gL= m A m B v2m A m B m C v;2 2联立以上两代入数据解得L 0.375m【点睛】此题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.(1)滑块A与滑块B碰撞结束瞬间的速度V;(2)被压缩弹簧的最大弹性势能E pmax;(3)滑块C落地点与桌面边缘的水平距离s.【答案】(1) v 1V l I J2gh (2) mg" (3)—VHh 3 3 6 3【解析】【详解】解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的1 2速度为v1,由机械能守恒定律有:m A gh —m A%解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有: m A v 1 m A m B v1 1 ----- 斛之信:vV i — 2gh 3 3 ,(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 V 2 由动量守恒定律有:m A v 1 m A m B m C v 2122由机械能寸恒TH 律有: E Pmax (m A m B )v m A m B m C v 221解得被压缩弹簧的最大弹性势能:E Pmax -mgh Pmax6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:121 21 2-m A m B v m A m B v -m e v^ 2221 -------解之得:v 3 0, v 4 -42gh3 . 滑块C 从桌面边缘飞出后做平抛运动:s v 4t12H2g t2解之得滑块C 落地点与桌面边缘的水平距离:s — JHh3R= 0.4 m 的四分之一圆弧轨道 AB 在最低点B 与光滑水平轨道BC 相切.质量m 2 = 0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另 一质量m 〔 = 0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点 B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度(1)小球a 由A 点运动到B 点的过程中,摩擦力做功 W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能 E p ; (3)小球a 通过弹簧与小球 b 相互作用的整个过程中,弹簧对小球 b 的冲量I .【答案】(1)四:(2) E P =0.2J ⑶ I=0.4N?sm A m B v m A m B v m C v 47.如下图,内壁粗糙、半径g= 10 m/s 2.求:【解析】(1)小球由静止释放到最低点B的过程中,据动能定理得小球在最低点B时: 据题意可知乐=2四乱联立可得悭f=-0网(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得::,1 1=4mi + m* 超 + & 由机械能守恒定律得2 2户弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中, a球最终速度为由动量守恒定律啊也=mi0 + m*4由能量守恒定律: 根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N s8.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平土阻力为f=80N .假设爆竹的火药质量以及空气阻力可忽略不计, g取10m/s2,求爆竹能上升的最大高度.【答案】h 60m【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得1 2 ,、(mg f )h 0 Mv1 (1)2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2 Mv i (2)爆竹完后,爆竹做竖直上抛运动,故有v2 2gh(3)联立三式可得:h 600m考点:考查了动量守恒定律,动能定理的应用点评:根底题,比拟简单,此题容易错误的地方为在A下降过程中容易将重力丢掉9.在竖直平面内有一个半圆形轨道ABC,半彳空为R,如下图,A、C两点的连线水平,B点为轨道最低点.其中AB局部是光滑的,BC局部是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角0 60°甲、乙两物体可以看作质点,重力加速度为g,求:(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.【答案】⑴—mj2gR ,方向水平向右.(2)压力大小为:一mg ,方向竖直向3 31下.(3)W f= - mgR .【解析】【分析】(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.【详解】1甲物体从A点下滑到B点的过程,1 2根据机械能守恒定律得:2mgR — 2mv2,2解得:v0"2gR,甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:2mv o m 2m mv ,解得:v —J2gR ,甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv 2mv0 2 m,2gR ,方向:水平向右;2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,2由牛顿第二定律得:F m 2mg m 2m —R (17)斛得:F —mg,根据牛顿第三定律,对轨道的压力F' F ——mg 方向:竖直向下;3o _ _ 1 _ 23对整体,从B到D过程,由动能定理得:3mgR 1 cos60 W f 0 — 3mv2一... ... ...................... 1 _解得,摩擦力对整体做的功为:W f -mgR ;6【点睛】解决此题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的根本规律是动量守恒定律 .摩擦力是阻力,运用动能定理是求变力做功常用的方法.10.如下图,一质量为m=1 5kg的滑块从倾角为 .=37.的斜面上自静止开始滑下,斜面末端水平(水平局部光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.斜面长s=10m,小车质量为M=3 5kg,滑块与斜面及小车外表的动摩擦因数科=0. 35,小车与地面光滑且足够长,取g=10m/s2.求:(1)滑块滑到斜面末端时的速度(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1) 8 m/s (2) 6. 4m【解析】试题分析:(1)设滑块在斜面上的滑行加速度a,由牛顿第二定律,有mg (sin 0 -cos 0 ) =ma代入数据得:a=3. 2m/s2又:s= — at22解得t=2 . 5s到达斜面末端的速度大小v 0=at=8 m/s(2)小车与滑块到达共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,那么:mv= (m+M v代入数据得:v=2 . 4m/s滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:mgL= 1 mv o2- 1 〔m+M v2 2 2代入数据得:L=6. 4m考点:牛顿第二定律;动量守恒定律;能量守恒定律【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择适宜的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题.11.如下图,小球A质量为m,系在细线的一端,线的另一端固定在.点,.点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于.点正下方,物块与水平面间的动摩擦因数为也现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰〔碰撞时间极短〕,反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程物块获得的冲16量及物块在地面上滑行的距离.气—一1 : hI**+ 'pl Ih【答案】——16【解析】【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v i,取小球运动到最低点时的重力势能为零,根据机械能守,值定律有:mgh=1mv i22解得:v i= 2ghh 1 ’2设碰撞后小球反弹的速度大小为V1,同理有:mg —— mv i16 2解得:〃1 =,设碰撞后物块的速度大小为V2,取水平向右为正方向,由动量守恒定律有:mv1=-mv' 1+5mv2解得:V2= 'g h由动量定理可得,碰撞过程滑块获得的冲量为I=5mv2=l m,2gh物块在水平面上滑行所受摩擦力的大小为F=5科mg设物块在水平面上滑行的时间为t,由动能定理有:1 2Fs 0 5mv22…口h解得:s16【点睛】此题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择适宜的物理规律求解.12.如下图,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B. A和B的质量均为m, A和B间的滑动摩擦力为f,且fvmg.用手限制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:假设A再次着地前B不脱离A, A的长度应满足什么条件?y.8m好〞---------q【答案](mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么即寸期木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mgwi=z:-解得:m,方向竖直向下对环:・mg 7G2 = ---------解得瓶方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变木棒在空中运动的时间为在这段时间内,环运动的位移为-- ■-要使环不碰地面,那么要求木棒长度不小于X,即12弁8叫?〞LW解得:Op +「考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
动量守恒定律 典型例题及练习题
动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。
它们的下底面光滑,但上表面粗糙。
另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。
M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。
m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。
﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。
重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。
现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。
已知A 滑到C 的右端而未掉下。
试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。
两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。
每次推出,A 车相对于地面的速度都是v ,方向向左。
则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律
1.(12分)如图8所示,一质量为M的物块静止在水平桌面边缘,桌面离水平地面的高
度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出.重力加速
度为g.求:
(1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离.
2.(12分)如图9所示,在光滑水平面上有两个木块A、B,木块B静止,且其上表面左
端放置着一小物块C.已知mA=mB=,mC=,现使木块A以初速度v=2m/s
沿水平方向向右滑动,木块A与B相碰后具有共同速度(但不粘连),C与A、B间均有
摩擦.求:
(1)木块A与B相碰瞬间木块A的速度及小物块C的速度大小;
(2)设木块A足够长,求小物块C的最终速度.
3.如图所示,甲车的质量是m甲=,静止在光滑水平面上,上表面光滑,右端放一个质量为m=可视为质点
的小物体,乙车质量为m乙=,以v乙=s的速度向左运动,与甲车碰撞以后甲车获得v甲′=s的速度,物体滑到乙车
上,若乙车上表面与物体的动摩擦因数为,则乙车至少多长才能保证物体不从乙车上滑下(g取10m/s2)
4.(12分)如图所示,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹
簧的两端与木块接触而不固连。将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C
可视为一个整体。现A以初速v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起。以后细线突然断开,弹簧
伸展,从而使C与A、B分离。已知C离开弹簧后的速度为v0。求弹簧释放的势能。
5.(10分)用绳悬挂一个1kg的木块,由木块重心到悬点的距离为1m,质量为10g的子弹以500m/s的速度水平射
入木块并以100 m/s的速度水平穿出,求:
(1)子弹射穿木块的瞬间,绳的张力多大;
(2)木块能摆到多高.(g取10m/s2)
6.(10分)质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质
量为mA=2 kg的物体A(可视为质点),如图5所示,一颗质量为mB=20 g的子弹以600 m/s的水
平速度射穿A后,速度变为100 m/s,最后物体A仍在车上,若物体A与
小车间的动摩擦因数μ=,取g=10 m/s2,求平板车最后的速度是多大
7.(2012·德州高二检测)(12分)如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该
整体静止放在离地面高为H=5 m的光滑水平桌面上。现有一滑块A从光滑曲面上离桌面h= m高处由静止开始滑下,
与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀
速运动一段时间后从桌面边缘飞出。已知mA=
1 kg,mB=2 kg,mC=3 kg,g=10 m/s2,求:
(1)滑块A与滑块B碰撞结束瞬间的速度;
(2)被压缩弹簧的最大弹性势能;
(3)滑块C落地点与桌面边缘的水平距离。
8.(14分)如图所示,质量m1= kg的小车静止在光滑的水平面上,车长L= m,现有质量m2= kg可视为质点的物
块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩
擦因数μ=,取g=10 m/s2。
(1)求物块在车面上滑行的时间t。
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少