八年级生活中数学知识1

合集下载

八年级上册数学一次函数知识点

八年级上册数学一次函数知识点

八年级上册数学一次函数知识点 知识是外在的照明,智慧是内在的照明。知识具有使用价值,而智慧具有它自身的价值。下面给大家分享一些关于八年级上册数学一次函数知识点,希望对大家有所帮助。 八年级上册数学一次函数知识1 知识点1 一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数. 知识点2 函数的图象 由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点. 画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可. 知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质 (1)k的正负决定直线的倾斜方向; ①k>0时,y的值随x值的增大而增大; ②k﹤O时,y的值随x值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大 ①当b>0时,直线与y轴交于正半轴上; ②当b<0时,直线与y轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k,b的符号不同,直线所经过的象限也不同; ①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图所示,当k>0,b ③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的. 八年级上册数学一次函数知识2 知识点4 正比例函数y=kx(k≠0)的性质 (1)正比例函数y=kx的图象必经过原点; (2)当k>0时,图象经过第一、三象限,y随x的增大而增大; (3)当k<0时,图象经过第二、四象限,y随x的增大而减小. 知识点5 点P(x0,y0)与直线y=kx+b的图象的关系 (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b; (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上. 例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上. 知识点6 确定正比例函数及一次函数表达式的条件 (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值. (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值. 知识点7 待定系数法 先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数. 八年级上册数学一次函数知识3 知识点8 用待定系数法 确定一次函数表达式一般步骤 (1)设函数表达式为y=kx+b; (2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 思想方法小结 (1)函数方法.(2)数形结合法. 知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. ②当k,b异号时,直线与x轴正半轴相交; 当b=0时,直线经过原点; 当k,b同号时,直线与x轴负半轴相交. ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b

八年级数学重要知识点:一元二次方程实数根

八年级数学重要知识点:一元二次方程实数根

八年级数学重要知识点:一元二次方程实数根www.5y 例1下列方程中两实数根之和为2的方程是x2+2x+3=0x2-2x+3=0x2-2x-3=0x2+2x+3=0错答:B正解:c错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程c合适。

例2若关于x的方程x2+2x+k2=0两个实数根之和大于-4,则k的取值范围是k&gt;-1k&lt;0-1&lt;k&lt;0-1≤k&lt;0错解:B正解:D错因剖析:漏掉了方程有实数根的前提是△≥0例3已知关于x的一元二次方程x2-2x-1=0有两个不相等的实根,求k的取值范围。

错解:由△=2-4=-4k+8&gt;0得k&lt;2又∵k+1≥0∴k ≥-1。

即k的取值范围是-1≤k&lt;2错因剖析:漏掉了二次项系数1-2k≠0这个前提。

事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。

正解:-1≤k&lt;2且k≠例4已知x1,x2是关于x的一元二次方程x2+x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得x1+x2=-,x1x2=m2+1,∵x12+x22=2-2x1x2=[-]2-2=2m2+4m-1又∵x12+x22=15∴2m2+4m-1=15∴m1=-4m2=2错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。

因为当m=-4时,方程为x2-7x+17=0,此时△=2-4×17×1=-19&lt;0,方程无实数根,不符合题意。

正解:m=2例5已知二次方程x2+3x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,∴△=9-4a&gt;0,则a&lt;2.25又∵a是非负数,∴a=1或a=2令a=1,则x=-3±,舍去;令a=2,则x1=-1、x2=-2∴方程的整数根是x1=-1,x2=-2错因剖析:概念模糊。

八年级数学上册第1章知识点解读:尺规作图(青岛版)

八年级数学上册第1章知识点解读:尺规作图(青岛版)

知识点解读:尺规作图“尺规作图”问题是几何学习的重要内容之一,那么如何学好“用尺规作线段和角”呢?一、理解“尺规作图”的含义1、只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.2、基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1、用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2、用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1、已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2、求作:能根据题目写出要求作出的图形及此图形应满足的条件;3、作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、典题精析例1 如图,已知线段a 和b (a>b ).求作:线段c ,使c=a -b.解析:作法:(1)作射线AM ;(2)在射线AM 上截取线段AB=a ;(3)在线段AB 上截取AC=b.则线段BC 就是所求作的线段.评注:用尺规作图,首先要弄明白所作的是什么图形,要作这个图形应从哪里入手.一些复杂的图形都是由简单的基本作图得到的.本题就是两次利用“作一条线段等于已知线段”.例2 如图,已知∠α和∠β(∠α>∠β),求作∠AOB ,使∠AOB =∠α-∠β.解析:作法:(1)作射线OA ;(2)以射线OA 为一边作∠AOC=∠α;(3)以O 为顶点,以射线OC 为一边,在∠AOC的内部作∠BOC=∠β.则∠AOB 就是所求作的角.评注:本题同样是两次运用基本图形——“作一个角等于已知角”.值得注意M B αβ A O C βα- ab α β的是作∠BOC时,应在∠AOC的内部,为什么不在∠AOC的外部呢?答案非常明显是两角的和.。

八年级数学第一章《分式》知识梳理

八年级数学第一章《分式》知识梳理

湘教版八年级数学第一章《分式》知识汇编姓名:1、分式的定义:如果f 、g 表示两个整式,并且g 中含有字母0≠g ,那么式子gf叫做分式。

2、分式有(无)意义,分式的值为0 (1)分式有意义的条件是:分母≠0; (2)分式无意义的条件是:分母=0(3)分式值为零的条件是:分子=0,且分母≠0。

3、分式的基本性质: 分式的分子与分母同时乘以或除以一个不等于0的整式,分式的值不变。

4、分式的通分和约分:关键是因式分解和(非乘勿扰)。

5、分式的运算: (1)分式乘法法则:用分子乘分子作为积的分子,分母乘分母作为积的分母。

(2)分式除法法则:除以一个数等于乘以这个数的倒数。

(3)分式乘方法则:把分子、分母分别乘方。

6、整数指数幂。

(m,n 是整数) (1)同底数幂的乘法:底数不变,指数相加。

n m n m a a a +=⋅; (2)同底数幂的除法:底数不变,指数相减:)0( ≠=÷-a a a a n m n m ;(3)幂的乘方:底数不变,指数相乘。

mnn m a a =)(; (4)积的乘方:把积里每个因式分别乘方:nn n b a ab =)(;(5)分式的乘方:把分子、分母分别乘方:)0( )(≠=b b a b a n nn7、零指数幂:任何一个不等于零的数的零次幂等于1; 即)0(10≠=a a ;8、负指数幂:当n 为正整数时,)()(0 11≠==-a aa a nn n9、分式的加减法则:(1)同分母的分式相加减,分母不变,把分子相加减。

(2)异分母的分式相加减,先通分,变为同分母分式,然后再加减。

(3)减去一个多项式一定要把这个多项式括起来10、科学记数法:把一个数表示成na 10⨯的形式的记数方法叫做科学记数法。

(1)用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n (2)用科学记数法表示绝对值小于1的小数时,其中10的指数是第一个非0 数字前面0的个数(包括小数点前面的一个0)。

沪科版八年级上册数学知识提纲1

沪科版八年级上册数学知识提纲1

沪科版八年级上册数学知识提纲想提高初中的数学成绩首先我们需要仔细学习,且仔细完成老师每节课布置的作业,这样子才能跟上学习进度。

下面给大家分享一些沪科版(八班级)上册数学提纲,希望能够帮助大家,欢迎阅读!沪科版八班级上册数学知识提纲1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°30、多边形内角和定理n边形的内角的和等于(n-2)×180°31、推论任意多边的外角和等于360°32、平行四边形性质定理1平行四边形的对角相等33、平行四边形性质定理2平行四边形的对边相等34、推论夹在两条平行线间的平行线段相等35、平行四边形性质定理3平行四边形的对角线互相平分36、平行四边形判定定理1两组对角分别相等的四边形是平行四边形37、平行四边形判定定理2两组对边分别相等的四边形是平行四边形38、平行四边形判定定理3对角线互相平分的四边形是平行四边形39、平行四边形判定定理4一组对边平行相等的四边形是平行四边形40、矩形性质定理1矩形的四个角都是直角提高数学成绩的(方法)重视构建知识网络要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。

人教版数学八年级下册知识点总结1

人教版数学八年级下册知识点总结1

八年级数学下册知识点总结第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零.2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=-6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法:n m n m a a a +=⋅; (2)幂的乘方:mn n m a a =)(; (3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)(;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n n n b a b a =)(C B C A B A ⋅⋅=C B C A B A ÷÷=()0≠C ()0≠a程转化为整式方程。

数学八年级上册知识点总结

新苏科版八年级数学上知识点总结第一章 三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全.等.; ③三角形全等不因位置发生变化而改变;2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等;理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角;⑵全等三角形的周长相等、面积相等;⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等;3、全等三角形的判定:①边角边公理SAS 有两边和它们的夹角对应相等的两个三角形全等;②角边角公理ASA 有两角和它们的夹边对应相等的两个三角形全等;③推论AAS 有两角和其中一角的对边对应相等的两个三角形全等;④边边边公理SSS 有三边对应相等的两个三角形全等;⑤斜边、直角边公理HL 有斜边和一条直角边对应相等的两个直角三角形全等;4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边SSS ;②找夹角SAS ;③找是否有直角HL.⑵已知一边一角:①找一角AAS 或ASA ;②找夹边SAS.⑶已知两角:①找夹边ASA ;②找其它边AAS.第二章 轴对称1、 轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言;2、 轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等;②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上;拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等;②判定定理:到角两个边距离相等的点在这个角的角平分线上;拓展:三角形三个角的角平分线的交点到三条边...的距离相等;5、等腰三角形:①性质定理:⑴等腰三角形的两个底角相等;等边对等角⑵等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;三线合一 ②判断定理:一个三角形的两个相等的角所对的边也相等;等角对等边6、等边三角形:①性质定理:⑴等边三角形的三条边都相等;⑵等边三角形的三个内角都相等,都等于60°;拓展:等边三角形每条边都能运用三线合一....这性质;②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形;7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半;⑵直角三角形中,斜边上的中线等于斜边的一半;拓展:直角三角形常用面积法...求斜边上的高;第三章勾股定理勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2;2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形;3、勾股数:满足a2+b2=c2的三个正整数,称为勾股数;常见勾股数:3,4,5;6,8,10; 9,12,15;5,12,13;4、简单运用:⑴勾股定理——常用于求边长、周长、面积;理解:①已知直角三角形的两边求第三边,并能求出周长、面积;②用于证明线段平方关系的问题;③利用勾股定理,作出长为n的线段⑵勾股定理的逆定理——常用于判断三角形的形状;理解:①确定最大边不妨设为c;②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形其中c为最大边;若a2+b2>c2,则此三角形为锐角三角形其中c为最大边⑶难点:运用勾股定理立方程解决问题;第四章实数1、平方根:⑴定义:一般地,如果x2=a a≥0,那么这个数x就叫做a的平方根或二次方根;⑵表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”;⑶性质:①一个正数有两个平方根,它们互为相反数;②零的平方根是零;③负数没有平方根;2、开平方:求一个数a 的平方根的运算,叫做开平方;3、算术平方根:⑴定义:一般地,如果x 2=a a ≥0,那么这个正数x 就叫做a 的算术平方根;特别地,0的算术平方根是0;⑵表示方法:记作“a ”,读作“根号a ”;⑶性质:①一个正数只有一个算术平方根;②零的算术平方根是零;③负数没有算术平方根; ⑷注意a 的双重非负性:.0,0≥≥a a ⑸()()()()0,0,0222≤-=≥=≥=a a a a a a a a a4、立方根:⑴定义:一般地,如果x 3=a 那么这个数x 就叫做a 的立方根或三次方根; ⑵表示方法:记作“3a ”,读作“三次根号a ”;⑶性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③零的立方根是零; ⑷注意:33a a -=-,这说明三次根号内的负号可以移到根号外面; ⑸()a a a ==33235、开立方:求一个数a 的立方根的运算,叫做开立方;6、实数定义与分类:⑴无理数:无限不循环小数叫做无理数;理解:常见类型有三类: ①开方开不尽的数:如7,39等;②有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等;③有特定结构的数:如等;注意省略号⑵实数:有理数和无理数统称为实数;⑶实数的分类:①按定义来分 ②按符号性质来分 整数含0 正有理数 有理数 分数 正实数 正无理数 实数 实数 0无理数 负实数 负有理数 负无理数7、实数比较大小法:理解:⑴正数大于零,负数小于零,正数大于一切负数;⑵数轴比较:数轴上的两个点所表示的数,右边的总比左边的大;⑶绝对值比较法:两个负数,绝对值大的反而小;⑷平方法:a 、b 是两负实数,若a 2>b 2,则a <b ;8、实数的运算:①六种运算:加、减、乘、除、乘方、开方②实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的; ③实数的运算律:加法交换律、加法结合律 、乘法交换律、乘法结合律 、乘法对加法的分配律;9、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数;取近似值的方法——四舍五入法;10、科学记数法:把一个数记为n a 10 其中1≤a <1,n 是整数的形式,就叫科学计数法;11、实数和数轴:每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数;实数与数轴上的点是一一对应的关系;第五章平面直角坐标系1、在平面内,确定物体的位置一般需要两个数据;2、平面直角坐标系及有关概念:⑴平面直角坐标系:定义:在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系;其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴;它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面;⑵象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限;注意:x轴和y轴上的点坐标轴上的点,不属于任何一个象限;⑶点的坐标的概念:①对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对a,b叫做点P的坐标;②点的坐标用a,b表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒;③平面内点的坐标是有序实数对,当a≠b时,a,b和b,a是两个不同点的坐标;④平面内点的与有序实数对坐标是一一对应的关系;⑷不同位置的点的坐标的特征:①各象限内点的坐标的特征:点Px,y在第一象限:x>0,y>0;点Px,y在第二象限:x<0,y>0;点Px,y在第三象限:x<0,y<0;点Px,y在第四象限:x>0,y<0;②坐标轴上的点的特征:点Px,y在x轴上:y=0,x为任意实数;点Px,y在y轴上:x=0,y为任意实数;点Px,y既在x轴上,又在y轴上:即是原点坐标为0,0;③两条坐标轴夹角平分线上点的坐标的特征:点Px,y在第一、三象限夹角平分线直线y=x上:x与y相等;点Px,y在第二、四象限夹角平分线直线y=-x上:x与y互为相反数;④和坐标轴平行的直线上点的坐标的特征:位于平行于x 轴的直线上的各点的纵坐标相同;位于平行于y 轴的直线上的各点的横坐标相同;⑤关于x 轴、y 轴或原点对称的点的坐标的特征:点P 与点p ’关于x 轴对称:横坐标相等,纵坐标互为相反数,即点Px,y 关于x 轴的对称点为P ’x,-y点P 与点p ’关于y 轴对称:纵坐标相等,横坐标互为相反数,即点Px,y 关于y 轴的对称点为P ’-x,y点P 与点p ’关于原点对称:横、纵坐标均互为相反数,即点Px,y 关于原点的对称点为P ’-x,-y⑥点Px,y 到坐标轴及原点的距离:点Px,y 到x 轴的距离等于|y|;点Px,y 到y 轴的距离等于|x|;点Px,y 到原点的距离等于22y x ;第六章一次函数1、函数:一般地,在某一变化过程中有两个变量x 与y,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量;2、自变量取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围;一般从整式取全体实数,分式分母不为0、二次根式被开方数为非负数、实际意义几方面考虑;3、函数的三种表示法:⑴关系式解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式解析法;⑵列表法:把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法;⑶图象法:用图象表示函数关系的方法叫做图象法;4、由函数关系式画其图像的一般步骤:①列表:列表给出自变量与函数的一些对应值②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来;5、正比例函数和一次函数概念与性质:⑴正比例函数和一次函数的概念:①一般地,若两个变量x,y 间的关系可以表示成b kx y +=k,b 为常数,k ≠0的形式,则称y 是x 的一次函数x 为自变量,y 为因变量;②特别地,当一次函数b kx y +=中的b=0时即kx y =k 为常数,k ≠0,称y 是x 的正比例函数;③正比例函数是特殊的一次函数;⑵一次函数的图像: 所有一次函数的图像都是一条直线⑶一次函数、正比例函数图像的主要特征:①一次函数b kx y +=的图像是经过点0,b 的直线;②正比例函数kx y =的图像是经过原点0,0的直线;⑷正比例函数的性质:一般地,正比例函数kx y =有下列性质:①当k>0时,图像经过第一、三象限,y 随x 的增大而增大;②当k<0时,图像经过第二、四象限,y 随x 的增大而减小;⑸一次函数的性质:一般地,一次函数b kx y +=有下列性质:①当k>0时,y 随x 的增大而增大②当k<0时,y 随x 的增大而减小6、正比例函数和一次函数解析式的确定:理解:⑴确定一个正比例函数,就是要确定正比例函数y=kxk ≠0中的常数k;⑵确定一个一次函数,需要确定一次函数y=kx+bk ≠0中的常数k 和b;⑶解这类问题的一般方法是待定系数法;具体法方:过点必代,交点必联;7、一次函数与一元一次方程的关系:理解:①任何一个一元一次方程都可转化为:kx+b=0k、b为常数,k≠0的形式.而一次函数解析式形式正是y=kx+bk、b为常数,k≠0.当函数y值为0时,•即kx+b=0就与一元一次方程完全相同.②由于任何一元一次方程都可转化为kx+b=0k、b为常数,k≠0的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.③从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.。

绳子之迷一隐藏在日常生活中的数学的知识点

绳子之迷一隐藏在日常生活中的数学的知识

绳子之迷是一道数学谜题,它隐匿在我们的日常生活中。

这道题目通常描述为:有两条长度相等的绳子,每条绳子需要烧烤的时间为1个小时。

现在需要用这两条绳子来测量15分钟的时间。

那么,如何才能测量出15分钟的时间呢?
其实,这道谜题中隐藏着一个重要的数学知识点——比例。

我们可以将两条绳子分别切成3段,得到6段长度相等的小绳子。

然后,将3条小绳子折成一个三角形,再将另外3条小绳子也折成一个三角形。

这样,我们就得到了两个三角形,每个三角形的底边长度为1个小时,高度为15分钟。

此时,我们需要测量的是15分钟,也就是一个四分之一小时。

因此,我们只需要选择两个小三角形,将它们的高度顶在一起,然后用一根未被折叠的小绳子将它们的底边固定住,使两个小三角形的高度和等于 "1/4"。

然后,我们再用一条小绳子测量这个新的三角形的底边长度,这个长度就是 "1/4" 小时,也就是 15 分钟。

通过这个谜题,我们可以学到比例的概念,以及在实际生活中如何运用比例来解决问题。

同时,它也启示我们,在日常生活中要多加思考和动脑筋,才能发现生活中隐藏的数学智慧。

北师版八年级数学上册中考数学复习专题1:实数的有关概念及运算

专题01 实数的有关概念及运算☞解读考点 知 识 点名师点晴实数的分类1.有理数 会根据有限小数和无限循环小数判定一个数是有理数2.无理数会识别无理数,并在数轴上表示一个无理数 实数的有关概念1.相反数、倒数、绝对值会求一个实数的相反数、倒数和绝对值 2.科学计数法、近似数 掌握用科学计数法表示一个较大的数和较小的数 3.实数的非负性利用实数的非负性解决一些实际问题 实数的运算和大小比较1.实数的估算 求一个无理数的范围2.实数的大小比较 理解实数的大小比较的方法3.实数的运算掌握实数的混合运算☞2年中考【2015年题组】1.(2015南京)估计512 介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间【答案】C .考点:估算无理数的大小.2.(2015常州)已知a=22,b=33,c=55,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 【答案】A .考点:实数大小比较.3.(2015泰州)下列4个数:9,227,π,()03,其中无理数是( )A .9B .227 C .π D .()03【答案】C . 【解析】试题分析:π是无理数,故选C . 考点:1.无理数;2.零指数幂.4.(2015资阳)如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、1、2、3,则表示数35-的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上 【答案】B . 【解析】试题分析:∵2<5<3,∴0<35-<1,故表示数35-的点P 应落在线段OB 上.故选B .考点:1.估算无理数的大小;2.实数与数轴.5.(2015广元)当01x <<时,x 、1x 、2x 的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x xx <<【答案】C .【解析】试题分析:∵01x <<,令12x =,那么214x =,14x =,∴21x x x <<.故选C . 考点:实数大小比较. 6.(2015绵阳)若5210a b a b +++-+=,则()2015b a -=( )A .﹣1B .1C .20155 D .20155-【答案】A . 【解析】试题分析:∵5210a b a b +++-+=,∴⎩⎨⎧=+-=++01205b a b a ,解得:⎩⎨⎧-=-=32b a ,则()20152015321b a -=-+=-().故选A .考点:1.解二元一次方程组;2.非负数的性质.7.(2015武汉)在实数﹣3,0,5,3中,最小的实数是( ) A .﹣3 B .0 C .5 D .3 【答案】A .考点:实数大小比较. 8.(2015荆门)64的立方根是( ) A .4 B .±4 C .8 D .±8 【答案】A . 【解析】试题分析:∵4的立方等于64,∴64的立方根等于4.故选A . 考点:立方根. 9.(2015北京市)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d 【答案】A . 【解析】试题分析:根据图示,可得:3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a .故选A . 考点:实数大小比较.10.(2015河北省)在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C .考点:1.估算无理数的大小;2.实数与数轴.11.(2015六盘水)如图,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【解析】试题分析:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D 两个字母之间.故选A.考点:1.估算无理数的大小;2.实数与数轴.12.(2015通辽)实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【答案】D.【解析】试题分析:在实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:35π-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.考点:无理数.13.(2015淄博)已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.±2 B .2C .2±D.2 【答案】A.考点:1.二元一次方程组的解;2.平方根;3.综合题.14.(2015成都)比较大小:512-____58(填“>”、“<”或“=”).【答案】<. 【解析】试题分析:512-为黄金数,约等于0.618,50.6258=,显然前者小于后者.或者作差法:515459808102888----==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.15.(2015资阳)已知:22(6)230a b b ++--=,则224b b a --的值为 . 【答案】12.【解析】试题分析:∵22(6)230a b b ++--=,∴60a +=,2230b b --=,解得,6a =-,223b b -=,可得2246b b -=,则224b b a --=6(6)--=12,故答案为:12.考点:1.非负数的性质:算术平方根;2.非负数的性质:偶次方. 16.(2015自贡)若两个连续整数x 、y 满足y x <+<15,则x+y 的值是 .【答案】7.【解析】试题分析:∵2<5<3,∴3<51+<4,∴x=3,y=4,∴x+y=7,故答案为:7. 考点:估算无理数的大小.17.(2015巴中)计算:01123(2015)2sin 60()3π----++. 【答案】4.【解析】试题分析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.试题解析:原式=3231232--+⨯+=1+3=4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.(2015龙岩)计算:0312201522sin 30893-+-+-⨯.【答案】0.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值. 19.(2015临沂)计算:(321)(321)+--+. 【答案】22.【解析】试题分析:先根据平方差公式展开后,再根据完全平方公式展开后合并即可.试题解析:解:原式=[3(21)+-][3(21)--]=22(3)(21)--3(2221)=--+32221=-+-22=.考点:实数的运算.【2014年题组】 1.(2014年福建福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学计数法表示为( )A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 【答案】B .考点:科学计数法.2.(2014年福建三明中考)13-的相反数是( )A. 13 B.13-C. 3D. 3-【答案】A.试题分析:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,13-的相反数是13. 故选A.考点:相反数.3.(2014年黑龙江大庆中考)下列式子中成立的是()A. ﹣|﹣5|>4B. ﹣3<|﹣3|C. ﹣|﹣4|=4D. |﹣5.5|<5【答案】B.【解析】试题分析:先对每一个选项应用绝对值的性质化简,再进行比较即可:A.﹣|﹣5|=﹣5<4,故A选项错误;B.|﹣3|=3>﹣3,故B选项正确;C.﹣|﹣4|=﹣4≠4,故C选项错误;D.|﹣5.5|=5.5>5,故D选项错误.故选B.考点:1.绝对值;2.有理数的大小比较.4.(2014年湖北宜昌中考)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A. m+n<0B. -m<-nC. m|-|n|>0D. 2+m<2+n【答案】D.考点:1.数轴;2.不等式的性质.5.(2014年贵州黔南中考)计算()20123-+--的值等于()A. 1-B. 0C. 1D. 5【答案】A.【解析】试题分析:针对有理数的乘方,零指数幂,绝对值3个考点分1.别进行计算,然后根据实数的运算法则求得计算结果: ;2.故选A.考点:实数的运算.6.(2014年黑龙江大庆中考)若x y y20-+-=,则y3x-的值为.【答案】12.【解析】试题分析:∵x y y 20-+-=,∴x y 0x 2y 20y 2-==⎧⎧⇒⎨⎨-==⎩⎩.∴y 32311x 222---===. 考点:1.实数的非负性;2.负整数指数幂.7.(2014年吉林省中考)若a <13<b ,且a ,b 为连续正整数,则b2﹣a2= . 【答案】7.【解析】试题分析:∵32<13<42,∴3<13<4,即a=3,b=4.∴b2﹣a2=42﹣32=7.考点:无理数的估算. 8.(2014年新疆区兵团中考)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.31⎡⎤=⎣⎦,按此规定,131⎡⎤-⎣⎦=_____________ 【答案】2.【解析】试题分析:∵9<13<16,∴3<13<4.∴2<131-<3,∴131⎡⎤-⎣⎦=2. 考点:1.新定义;2.无理数的估算.9.(2014年甘肃兰州中考)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.【答案】2015312-. 考点:1.有理数的运算;2.阅读理解型问题.10.(2014年内蒙古赤峰中考)计算:()1013328sin 454π-⎛⎫-+-- ⎪⎝⎭【答案】-3.【解析】 试题分析:()1123328sin 451428434242342π-⎛⎫-+--=+-⨯-=---=- ⎪⎝⎭.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;【例1】在实数313,,,8,0,tan 453π︒中,其中无理数的个数是( )A.2B.3C.4D.5【答案】A .考点:无理数.归纳 2:实数的有关概念 基础知识归纳: 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称 2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立;零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若实数x ,y 满足2270x x y ++-+=,则x y = .【答案】19.考点:非负数.归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较.【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______ 【答案】2102)3()61()2(2-<<-<--.【解析】试题分析:先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较.∵6)61(1=-,1)2(0=-,9)3(2=-,422-=- ∴2102)3()61()2(2-<<-<--.考点:实数的大小比较.归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例4】据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为 A .5.475×1011 B .5.475×1010 C .0.5475×1011 D .5475×108 【答案】B .考点:科学计数法. 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例5】计算:()114sin451282-⎛⎫-︒--+ ⎪⎝⎭【答案】1.【解析】针对负整数指数幂,特殊角的三角函数值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果:()1124sin4512824122122-⎛⎫-︒--+=-⨯-+= ⎪⎝⎭考点:实数的运算.☞1年模拟1.(2015届山东省日照市中考一模)4的算术平方根是( ) A .2 B .±2 C .2 D .±2 【答案】C .【解析】试题分析:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选C .考点:算术平方根.2.(2015届山东省潍坊市昌乐县中考一模)在实数π、13、2、tan60°中,无理数的个A .1B .2C .3D .4 【答案】C . 【解析】试题分析:∵tan60°=3,∴在实数π、13、2、tan60°中,无理数有: ,2和tan60°.故选C .考点:1.无理数;2.特殊角三角函数值.3.(2015届广东省佛山市初中毕业班综合测试)14的算术平方根是( ) A .-12 B .12 C .±12 D .116【答案】B .考点:算术平方根. 4.(2015届江苏省南京市建邺区中考一模)下列计算结果是负数的是( ) A .3-2 B .3×(-2) C .3-2 D .3 【答案】B . 【解析】试题分析:A :3-2=1,计算结果是正数,据此判断即可. B :3×(-2)=-6,计算结果是负数,据此判断即可.C :3-2=19,计算结果是正数,据此判断即可.D :3是一个正数,据此判断即可.试题解析:∵3-2=1,计算结果是正数,∴选项A 不正确; ∵3×(-2)=-6,计算结果是负数,∴选项B 正确;∵3-2=19,计算结果是正数,∴选项C 不正确;∵3是一个正数,∴选项D 不正确.故选B .考点:实数的运算. 5.(2015届江苏省南京市建邺区中考一模)面积为10m2的正方形地毯,它的边长介于( ) A .2m 与3m 之间 B .3m 与4m 之间 C .4m 与5m 之间 D .5m 与6m 之间【解析】试题分析:正方形的边长为10,∵9<10<16,∴3<10<4,∴其边长在3m 与4m之间.故选B.考点:估算无理数的大小.6.(2015届河北省中考模拟二)下列无理数中,不是介于-3与2之间的是()A.-5B .5C.-3D .3【答案】B.考点:估算无理数的大小.7.(2015届浙江省宁波市江东区4月中考模拟)实数5的相反数是().A.15B.-15C.﹣5 D.5【答案】C.【解析】试题分析:∵符号相反,绝对值相等的两个数互为相反数,∴5的相反数是﹣5.故选C.考点:实数的性质.8.(2015届浙江省宁波市江东区4月中考模拟)下列四个数中,值最小的数是().A.tan45°B .3C.πD.8 3【答案】A.【解析】试题分析:tan45°=1,根据实数比较大小的方法,可得,1<3<83<π,所以tan45°<3<83<π,因此四个数中,值最小的数是tan45°.故选A.考点:1.实数大小比较;2.特殊角的三角函数值.9.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+256y y-+=0,则第三边长为.【答案】22、13或5.考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论.10.(2015届山东省济南市平阴县中考二模)计算:2-1+2cos30°-tan60°-(π+3)0= .【答案】-1 2.【解析】试题分析:原式=1323122+⨯--=-12.故答案为:-12.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)的算术平方根为.【答案】2.【解析】试题分析:∵4=2,2的算术平方根是2,∴4的算术平方根为2.故答案为:2.考点:算术平方根.12.(2015届北京市平谷区中考二模)计算:()10 12sin603133π-⎛⎫--︒+-+-⎪⎝⎭.【答案】-3.【解析】试题分析:分别进行负整数次幂、特殊角的三角函数值、绝对值的化简、零指数幂,然后按照实数的运算法则计算即可.试题解析:原式=3323112--⨯+-+=333--+=3-.考点:实数的运算.13.(2015届安徽省安庆市中考二模)计算:﹣32+.【答案】-9.考点:1.实数的运算;2.特殊角的三角函数值.14.(2015届广东省深圳市龙华新区中考二模)计算:(-12)-1+(π-2015)0-3tan30°+|-3|【答案】-1.【解析】试题分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=-2+1-3×33+3=-1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.15.(2015届湖北省黄石市6月中考模拟)计算:﹣2sin30°﹣(﹣13)﹣2+(2﹣π)0﹣38 +(﹣1)2012.【答案】-6.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.。

人教版八年级下册数学Unit1单元知识点总结

人教版八年级下册数学Unit1单元知识点
总结
人教版八年级下册数学 Unit 1 单元知识
点总结
本文档总结了人教版八年级下册数学Unit 1的重要知识点。

1. 开方与乘方
- 开方是指求一个数的平方根,如√x表示x的平方根。

- 乘方是指将一个数自乘若干次,如x的n次方表示x自乘n 次。

2. 指数运算
- 指数运算是指将一个数乘以它自身若干次,如2³=2 × 2 × 2=8。

- 指数运算有以下规律:
- 任何数的0次方等于1:a⁰=1。

- 任何数的1次方等于它本身:a¹=a。

- 相同的底数相乘,指数相加:aⁿ×aᵐ=aⁿ⁺ᵐ。

- 相同的底数相除,指数相减:aⁿ÷aᵐ=aⁿ⁻ᵐ。

- 多个数的积的指数运算,等于每个数分别进行指数运算后再相乘:(a×b)ⁿ=aⁿ×bⁿ。

3. 平方与平方根
- 平方是指一个数自乘,如x²表示x的平方。

- 平方根是指求一个数的平方等于该数的平方根,如√x²=|x|。

4. 保留小数
- 小数可以通过四舍五入来保留指定的小数位数。

- 截取小数:截取小数指定的位数,不进行四舍五入。

5. 分数的乘除法
- 分数的乘法:将两个分数的分子与分母分别相乘,然后约分得到最简分数。

- 分数的除法:将一个分数乘以另一个分数的倒数,然后约分得到最简分数。

以上是人教版八年级下册数学Unit 1的知识点总结。

希望对你的学习有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中八年级学生“摇篮杯——生活中的数学知识”初赛试卷
1.在一本名为《数学和想象》的书中,作者爱德华·卡斯纳和詹姆斯·纽曼引入了一个
名叫“Googol”的大数,这个数既大且好,很快就被著书撰文者采用并普及到数学文
章中,“Googol”是这样一个数,即在1这个数字后面跟上一百个零.如果用科学记数
法表示“Googol”这个大数,它的指数是( )
A.98 B.99 C.100 D.101
2.老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由三个
特大号的骰子摞在一起而成的,如图1所示,其中可看见7个面,而11
个面是看不到的,则看不见的面其点数总和是( )
A.21 B.22 C.41 D.4
3.在夏令营活动中,有198名学生参加,这198名学生排成一列,按1、2、3、4、3、2、
1、2、3、4、3、2、1„„的规律报数,那么第198名学生所报的数是( )
A.1 B.2 C.3 D.4
4.天意花店在母亲节感恩大特卖活动中,康乃馨1.5元/支,玫瑰花2元/支,包装成整
束加工费2元.莉莉手里有21元钱,想买10支花,包装成整束后送给妈妈,应该如何
搭配( )
A.7支康乃馨,3支玫瑰花 B.8支康乃馨,2支玫瑰花
C.3支康乃馨,7支玫瑰花 D.2支康乃馨,8支玫瑰花
5.小明和爸爸在锻炼时发现:小明每跑8步而爸爸只能跑5步,可是爸爸2步的距离相当
于小明5步的距离.如果小明从爸爸面前跑了27步后,爸爸才开始追小明,则爸爸把
小明追上至少需要跑的步数为( )
A.20 B.30 C.40 D.48
6.某经理在翻阅往年的日历时,发现某一年的5月份,仅剩下了5个星期五的日期,日期
之和为80,请你判断一下这个月的4日是星期( )
A.一 B.三 C.五 D.日
7.张奶奶从邮递员手中接过所订的报纸,不经意间从这份报纸中抽出一张,发现第8版和
第21版在同一张纸上.请你判断一下,这份报纸共有( )
A.27版 B.28版 C.29版 D.以上答案都不对
8.秋季运动会上,七年级(1)班的萌萌、路佳、王玉三人一起进行百米赛跑(假定三人
均为匀速直线运动).如果当萌萌到达终点时,路佳距终点还有10米,王玉距终点还有
20
米.那么当路佳到达终点时,王玉距终点还有( )

A.10米 B.889米 C.1119米 D.无法确定
9.用等长的小木棒拼三角形,至少3根可拼成1个等边三角形,至少5根可拼成2个等边
三角形,至少7根可拼成3个等边三角形,若拼成13个等边三角形,至少需要小木棒
的根数为( )
A.39 B.27 C.24 D.25

图1
10.如图3,长方形ABCD为大小可调节的弹子盘,4个角都有洞.弹子从A出发,路线
与边成45角,撞到边界即反弹.当4AB,3AD时,弹子最后落入B洞.若5AB,
4AD
时,弹子在落入洞之前,撞击BC边的次数和最后落入的洞分别是( )

A.2次,D洞 B.2次,B洞 C.1次,B洞 D.1次,D洞

11.甲瓶装了12瓶可口可乐,乙瓶装了14瓶可口可乐,若甲瓶的容积是乙瓶的容积的一半,
现将水分别注满瓶甲和瓶乙,然后倒入第三个大瓶混合,那么混合后的液体中可口可
乐占( )

A 16 B 15 C 14 D 13
12.小英、小亮、小明和小华四名同学参加了数学竞赛选拔赛,小亮和小华两个同学的得
分和等于小明和小英的得分和;小英与小亮的得分和大于小明和小华的得分和,小华的
得分超过小明与小亮的得分和.则这四位同学的得分由大到小的顺序是( )
A 小明,小亮,小华,小英 B 小华,小明,小亮,小英
C 小英,小华,小亮,小明 D 小亮,小英,小华,小明
13.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间
原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中
A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)
检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B
组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,
那么B组检验员人数为( )
A 8人 B 10人 C 12人 D 14人

14.李元到保险公司办理房屋火灾保险,其保险金为房屋价格的23,按规定每年所交的保
险费是保险金的1.5%.李元去年交保险费184元,但由于某些因素房屋价格上涨80%,
今年李元的房屋火灾保险费应是( )
(A)147.2元 (B)331.2元 (C)341.2元 (D)341.8元
15.2008年5月12日四川汶川发生8.0级地震,造成当地严重的人员伤亡和财产损失,
某单位积极开展“捐资助教”活动,对口帮助灾区某一学校的贫困学生.已知该校的
高中和初中共有学生1 862人,其中高中学生按每人每学期500元标准,初中学生按每
人每学期350元标准,而高中年级的学生有30%的学生,由于家庭条件相对好些,未

D
C
B
A
接受资助.请你计算这个单位一学期拿出的资助款是( )
(A)651 700元 (B)661 700元 (C)751 700元 (D)601 700元
16.筐内有196个苹果,如果不一次拿出,也不一个一个地拿,要求每次拿出的苹果个数
同样多,而且正好拿完,那么拿法共有( )
(A)4种 (B)6种(C)7种(D)9种
17.某个体商贩在一次买卖中同时卖出两件上衣,每件以135元出售,若按成本计算其中
一件盈利25%,另一件亏本25%,则在这次买卖中,他( ).
(A)不赚不赔(B)赚9元 (C)赔18元 (D)赚18元
18.有一个旅客携带30千克的行李从天津乘飞机去南京,按民航规定,旅客最多可免费
携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,该旅客购买了120
元的行李票,则他的飞机票价格为( )
(A)1000元 (B)800元 (C)600元 (D)400元
19.某年中考,所用准考证号共有7位,设定末尾用1表示男生,用2表示女生.比如,
0113141表示“2001年参加考试,考场为第13考场,座位号为14号,男生.”那么,
请同学们想一想:“0202022”表示的含义是 ( )
(A)2001年参加考试,考场为第02考场,座位号为02号,女生;
(B)2002年参加考试,考场为第02考场,座位号为02号,男生;
(C)2002年参加考试,考场为第02考场,座位号为20号,女生;
(D)2002年参加考试,考场为第02考场,座位号为02号,女生
20.甲商厦以九折优惠出售价值100万元的商品,乙商厦采用有奖销售办法也销售100万
元商品,且规定凡购满100元者送奖券一张,每一万张奖券中设一等奖5个,各奖1000
元;二等奖10个,各奖500元;三等奖20个,各奖200元;四等奖40人,各奖100
元;五等奖1000个,各奖10元,则两商厦各自将100万元商品销售完后( )
(A)甲比乙多赚7.2万元 (B)乙比甲多赚7.2万元
(C)甲比乙至少多赚7.2万元 (D)乙比甲至少多赚7.2万元

CCBDB DBCCA DCCBA CCBDD

相关文档
最新文档