高考数学第01期小题精练系列专题10三角函数理含解析
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
【配套K12】高考数学第01期小题精练系列专题11函数理含解析

专题11 函数1.函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2B .1(,)2-∞ C .1(1,0)(0,)2- D .1(,1)(1,)2-∞-- 【答案】D【解析】试题分析:由120x ->,10x +≠,得12x <且1x ≠-,所以函数21()log (12)1f x x x =-++的定义域为1(,1)(1,)2-∞--,故选D.考点:1、函数的定义域;2、对数函数的.2.下列函数中,既是奇函数又是减函数的是( )A .3()(3,3)f x x x =∈-,B .()tan f x x =C .()||f x x x =D .()ln 2xxe ef x --=【答案】D 【解析】考点:1.复合函数的单调性法则;2.奇函数的定义.3.若101a b c >><<,,则下列不等式错误的是( ) A .cca b > B .ccab ba > C. log log a b c c > D .log log b a a c b c > 【答案】D 【解析】考点:1.指数函数的单调性;2.对数函数的单调性.4.若12log 3-≥x ,则函数324)(1--=+x x x f 的最小值为( ) A .4- B .3- C .932- D .0 【答案】A【解析】试题分析:因为12log 3-≥x ,所以21log 3223111log 3log ,22log 233x x ≥-=-=∴≥=,设123xt t ⎛⎫=≥ ⎪⎝⎭则324)(1--=+x x x f ()g t =()2212314,3t t t t ⎛⎫=--=--≥ ⎪⎝⎭,当1t =时,()g t 有最小值()14g =-,即函数324)(1--=+x x x f 的最小值为4-,故选A. 考点:1、指数的运算与性质;2、配方法求最值.5.已知函数)(x f 是定义在R 上的偶函数,若对任意R x ∈,都有)()4(x f x f -=+,且当]2,0[∈x 时,12)(-=x x f ,则下列结论不正确的是( )A .函数)(x f 的最小正周期为4B .)3()1(f f <C .0)2016(=f D .函数)(x f 在区间]4,6[--上单调递减 【答案】B【解析】试题分析:因为函数)(x f 是定义在R 上的偶函数, 所以)()4(x f x f -=+()f x =,可得函数)(x f 的最小正周期为4,A 正确;()()0(2016)50440210f f f =⨯==-=,C 正确;而()()()311f f f =-=,B 错;故选B.考点:1、函数的周期性及函数的奇偶性;2、函数的解析式及单调性.6.已知函数(12),1,()1log ,13x a a x f x x x ⎧-≤⎪=⎨+>⎪⎩当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是( ) A .1(0,]3 B .11[,]32 C .1(0,]2 D .11[,]43【答案】A【解析】考点:1、分段函数的解析式;2、分段函数的单调性及数学的转化与划归思想.7.已知函数()()()f x x a x b =--(其中a b >)的图象如右图所示,则函数()x g x a b =+的图象是( )【答案】A【解析】试题分析:由题意得,x a =,x b =为()f x 的零点,由图可知,01a <<,1b <-,∴()g x 的图象可由x y a =向下平移b -个单位得到,∵01a <<,由于1-<b ,1->∴b ,故可知A 符合题意,故选A . 考点:1、二次函数的性质;2、指数函数的图象与性质.8.已知函数2,3|3|(),3x x f x a x ⎧≠⎪-=⎨⎪=⎩,若函数()4y f x =-有3个零点,则实数a 的值为( )A .-2B .0 C. 2 D . 4 【答案】D【解析】试题分析:由题意得,当432=-x ,可得25,2721==x x ,有两个零点,那么另一个零点在a x f =)(上,即4=a ,所以选D.考点:1.分段函数;2.函数零点的判定定理. 9.函数()43x f x e x =+-的零点所在的区间( ) A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)24【答案】C 【解析】试题分析:由题意得,01)1(,02)41(,01)21(,02)0(4>+=<-=>-=<-=e f e f e f f ,根据函数零点的判定定理,故选C . 考点:函数零点的判定定理.10.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是( ) A .2026(,]33 B .2026(,)33 C .11(,6]3 D .11(,6)3【答案】D 【解析】考点:1.分段函数的解析式及图象的作法;2.函数值域的应用;3.函数方程的综合运用;4.数形结合思想. 11.设1()log (2)()n f n n n N ++=+∈,现把满足乘积(1)(2)()f f f n 为整数的n 叫做“贺数”,则在区间(1,2015)内所有“贺数”的个数是( )A .9B .10C .92 D .102 【答案】A 【解析】考点:对数的运算性质.12.如图1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离与O 到M 的距离之和表示成x 的函数()f x ,则()y f x =在[]0,π上的图象大致是( )A .B .C .D .【答案】B 【解析】试题分析:在直角三角形OMP 中,1,OP POM x =∠=,则cos O M x =,所以点M 到直线OP 的距离与O 到M 的距离之和表示成x 的函数为()sin cos cos sin cos f x OM x x x x x =+=+1sin 2cos 2x x =+,当2x π=时,()02f π=;当0x =时,()01f =,且最小正周期为2π,故选B . 考点:函数的实际应用.。
高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。
三角函数的图象和性质(小题速做,大题细做)-2022届高考数学二轮复习

栏目导航
11
①两个相邻对称中心之间的距离等于T2;②两条相邻对称轴之间的距离等于T2;③对称 中心与相邻对称轴的距离等于T4.
(3)由点的坐标定 φ.把图象上的一个已知点的坐标代入(此时 A,ω,B 已知)求解. 2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其 中的自变量 x 而言的,如果 x 的系数不是 1,就要把这个系数提取后再确定变换的单位长 度数和方向.
栏目导航
14
当 f(x)>1 时,2cos2x-π6>1, 解得 x∈-1π2+kπ,π4+kπ,k∈Z, 此时最小正整数 x=3. 当 f(x)<0 时,2cos2x-π6<0, 解得 x∈π3+kπ,56π+kπ,k∈Z, 此时最小正整数为 2. 综上满足题意的最小正整数为 x=2. 答案:2
栏目导航
9
+φ=π+2kπ,k∈Z,得 φ=43π+2kπ,k∈Z,∴y=sin-2x+43π,但当 x=0 时,y=
sin-2x+43π=- 23<0,与图象不符合,舍去.综上,选 BC.
(2) 解 析 : 先 将 函 数
y
=
sin
x-4π
的
图
象
向
左
平
移
π 3
个
单
位
长
度
,
得
到
函
数
y=
sinx+3π-π4=sinx+1π2的图象,再将所得图象上所有点的横坐标伸长到原来的 2 倍,纵
栏目导航
24
好题精练——练技巧、练规范 2.(多选题)(2021·湖南、河北新高考联考)已知函数 f(x)=sin2x-π6,则下列结论正确 的是( ) A.f(x)的最小正周期为 π B.f(x)的图象关于直线 x=-67π 对称 C.f(x)在-π4,π6上单调递增 D.y=f(x)+fx+4π的最小值为- 2
高考数学(第01期)小题精练系列 专题21 三视图 理(含解析)

专题21 三视图1.如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8B.12C.18D.24【答案】B【解析】考点:几何体的三视图及几何体的体积.2.某几何体的三视图如图所示,则该几何体的体积为()A C D【答案】B【解析】试题分析:由三视图可知,该几何体是由正三棱柱截取一部分所得,故体积为2112222V =⋅=考点:三视图.3.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )A .B .C .D . 【答案】B 【解析】试题分析:俯视图恰好是“图中四边形”,外加四条线的投影,故选B. 考点:三视图.4.一个几何体按比例绘制的三视图如右图所示(单位:m ),则该几何体的体积为( )A .373m B .392m C .372m D .394m 【答案】C 【解析】考点:三视图.5.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+ C.21π+ D .35π++【答案】A 【解析】考点:由三视图求体积.6.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器———商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4 【答案】B 【解析】试题分析:这是一个圆柱和一个长方体,体积为()15.43116.4 2.2512.6, 1.64x x x x π⋅+-⋅⋅=-==. 考点:三视图.7.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+C .243π+D .43π+ 【答案】C 【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+. 考点:三视图.8.如图为某几何体的三视图,則该几何体的表面积为( )A . 10+B . 10C .6+.6【答案】C 【解析】考点:三视图.9.一个几何体的三视图如图所示,则该几何体的体积为( ) A .143B . 5 C. 163D.6【答案】A 【解析】考点:三视图.10.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .... 【答案】C 【解析】考点:三视图.11.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A (B (C (D )3 【答案】B 【解析】试题分析:由三视图可知,几何体的是底面为边长为1的正方形,高为1的四棱锥,直观图如下,其中平面ADE 平面BCDE ,四个侧面面积分别为1,222 ,故选B.考点:1、几何体的三视图;2、棱锥的侧面积及三角形面积公式.1,则四面体ABCD 外接球C.25πD.100π 【解析】考点:1、几何体的三视图; 2、空间想象能力和抽象思维能力以及多面体外接球的性质.。
高考数学(第01期)小题精练系列 专题06 平面向量 理(含解析)

专题06 平面向量1.已知向量b a ,满足)7,3(),3,1(=--=+b a b a ,则=⋅b a ( )A .12-B .20-C .12D .20【答案】A【解析】考点:1.向量的坐标运算;2.向量的数量积运算.2.已知向量(cos ,2)a α=-r ,(sin ,1)b αr ,且//a b r r ,则2sin cos αα等于( )A .45-B .-3C .3D .45【答案】C【解析】试题分析:由已知,ααsin 2cos -=,又1cos sin 22=+αα,故1sin 52=α,所以 2sin cos αα54sin 42-=-=α. 考点:向量平行等价条件、三角函数同角关系式.3.已知22cos ,sin ,,33a OA a b OB a b ππ⎛⎫==-=+ ⎪⎝⎭v u u u v v v u u u v v v ,若OAB ∆是以O 为直角顶点的等腰直角三角形,则OAB ∆的面积等于( )A .1B .12 C .2 D .32【答案】B【解析】 试题分析:因OAB ∆是等腰三角形,故||||OB OA =,又AOB ∠是直角,故0OA OB ⋅=u u u r u u u r ,即022=-b a ,也即1||||==,所以OAB ∆的面积为211121=⨯⨯=S ,应选B. 考点:向量及运算.4.已知向量a ,b 均为单位向量,它们的夹角为23π,则|a +b |=( )A .1B .2C .3D .2 【答案】A 【解析】 试题分析:因为2222()2211a b a b a b ab +=+=++=-=r r r r r r r r ,所以1a b +=r r ,故选A .考点:1.单位向量;2.向量模的性质.5.已知两个力12,F F u u r u u r 的夹角为90o ,它们的合力F u r 的大小为10N ,合力F u r 与1F u u r 的夹角为60o ,那么1F u u r 的大小为( )A .53NB .5N C. 10N D .52N【答案】B【解析】考点:1、平面向量运算的平行四边形法则及向量的几何意义;2、向量的应用.6.若O 是ABC ∆所在平面内一点,且满足|||2|OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC ∆一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】试题分析:由题意得||||OB OC CB AC AB -==-u u u r u u u r u u u r u u u r u u u r ,|2|||OB OC OA OB OA OC OA +-=-+-u u u r u u u r u u u r u u u r u u u r u u u r u u u rAB AC =+u u u r u u u r ,即AC AB -u u u r u u u r AB AC =+u u u r u u u r ,所以222AB AC AC AC AB AB +=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r ,2222AC AB AC AC AC AB -=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r ,所以0AC AB ⋅=u u u r u u u r ,即AC AB ⊥u u u r u u u r ,所以三角形一定是直角三角形,故选B.考点:向量的运算;三角形的性质的判定.7.已知向量()()1,,3,2a m b ==-v v ,且()//a b b +v v v ,则m =( ) A .23- B .23C .-8D .8 【答案】A【解析】考点:向量的坐标运算.8.已知||10a =r ,5302a b =-r r g ,且(-)()15a b a b +=-r r r r g ,则向量a r 与b r 的夹角为( ) A .23π B .34π C .56π D .3π 【答案】C【解析】试题分析:依题意有22530cos ,152a b a b a b θ⋅=⋅⋅=--=-r r r r r r ,解得35cos ,26πθθ=-=. 考点:向量运算.9.已知向量a r 与b r 的夹角为60,2,5a b ==o r r ,则2a b -r r 在a r 方向上的投影为( ) A .32 B .2 C .52D .3 【答案】A【解析】试题分析:投影为()222cos 6085322a b a a a b a a-⋅--===o r r r r r r r r . 考点:向量概念及运算.10.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+u u u r u u u u r u u u r ,则λμ+=( )A .43B .53C .158D .2 【答案】B【解析】试题分析:以A 为坐标原点建立空间直角坐标系,设正方形边长为1,由此,()()11,1,1,,1,12AC AM BD ⎛⎫===- ⎪⎝⎭u u u r u u u u r u u u r ,故11,12λμλμ=-=+,解得415,,333λμλμ==+=. 考点:向量运算.11.M 是ABC ∆所在平面内一点,203MB MA MC ++=u u u r u u u r u u u u r r ,D 为AC 中点,则||||MD BM u u u u r u u u u r 的值为( ) A .12 B .13C. 1 D .2 【答案】B【解析】试题分析:因为203MB MA MC ++=u u u r u u u r u u u u r r ,所以212,33MB MA MC MD MD MB -=+==-u u u r u u u r u u u u r u u u u r u u u u r u u u r ,故M 在中线BD 上,且为靠近D 的一个四等分点,故||13||MD BM =u u u u r u u u u r . 考点:向量运算.12.已知三角形ABC 内的一点D 满足2DA DB DB DC DC DA ===-u u u r u u u r u u u r u u u r u u u r u u u r g g g ,且||||||DA DB DC ==u u u r u u u r u u u r .平面ABC 内的动点P ,M 满足||1AP =u u u r ,PM MC =u u u u r u u u u r ,则2||BM u u u u r 的最大值是( )A .494B .434C. 37634+ D .372334+ 【答案】A【解析】考点:1、平面向量数量积公式及向量的模;2、平面向量的几何运算及坐标运算.。
第01讲 任意角和弧度制及三角函数的概念 (精讲+精练)(教师版)
第01讲任意角和弧度制及三角函数的概念(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:象限角、区域角、终边相同的角角度1:象限角角度2:区域角角度3角:终边相同的角高频考点二:角度制与弧制度的相互转化高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算角度2:与扇形面积有关的计算角度3:题型归类练角度4:扇形弧长公式与面积公式的应用高频考点四:任意角的三角函数角度1:单位圆法与三角函数角度2:终边上任意点法与三角函数角度3:三角函数值符号的判定高频考点五:三角函数线高频考点六:解三角不等式第四部分:高考真题感悟第五部分:第01讲任意角和弧度制及三角函数的概念(精练)1、角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角. ③终边相同的角:终边与角α相同的角可写成360()k k Z βα=+⋅∈.2、弧度制的定义和公式①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||lrα=,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:3602rad π=;180rad π=. 若一个角的弧度数为α,角度数为n ,则180()rad απ=,180n n rad π=⋅.3、任意角的三角函数3.1.单位圆定义法:任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点(,)P x y ,那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin y α=; (2)点P 的横坐标叫角α的余弦函数,记作cos x α=; (3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan yxα=(0x ≠).它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.3.2.终边上任意点法:设(,)P x y 是角α终边上异于原点的任意一点,它到原点的距离为r (0r >)那么:sin y r α=;cos x rα=;tan yx α=(0x ≠)(1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则||lrα=变形可得||l r α=,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式211||22S lr r α== 5、三角函数线正弦线:MPOM正切线:AT6常用结论(1)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.(2)角度制与弧度制可利用180rad π=进行相互转化,在同一个式子中,采用的度量方式必须统一,不可混淆. 30 60 90 150 180)象限角:,k k ∈360180,}k k Z +∈36090,}k k Z +∈ 360270,}k k Z +∈180,}k k Z ∈ 18090,}k k Z +∈ 90,}k k Z ∈一、判断题1.(2022·江西·贵溪市实验中学高三阶段练习)“角α是第一象限的角”是“角2α是第一象限的角”的充分不必要条件.( ) 【答案】错误 【详解】由α是第一象限角可举例380α=︒, 则1902α=︒,得角2α是第二象限的角, 即由“角α是第一象限的角”推不到“角2α是第一象限的角”,所以不是充分条件,所以错误.故答案为:错误. 2.(2022·江西·贵溪市实验中学高三阶段练习)已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是1或4.( ) 【答案】正确 【详解】设扇形所在圆的半径为r ,则扇形弧长l r α=,于是得226122r r r αα+=⎧⎪⎨=⎪⎩,解得21r α=⎧⎨=⎩或14r α=⎧⎨=⎩,所以扇形的圆心角的弧度数α是1或4. 故答案为:正确3.(2022·江西·贵溪市实验中学高二阶段练习)已知角α的终边经过点()P m ,0m ≠,且sin α=,则cos α= ) 【答案】正确 【详解】因为角α的终边经过点()P m ,0m ≠,且sin α=,=m =所以cos α==故答案为:正确4.(2022·江西·贵溪市实验中学高三阶段练习)角θ终边经过点(-3,4),则7cos 225θ=-.( ) 【答案】正确 【详解】由角θ终边经过点()3,4-,可得3cos 5θ==-,而2237cos 22cos 12()1525θθ=-=--=-.故答案为:正确.5.(2022·江西·贵溪市实验中学高二阶段练习)tan 300︒= ) 【答案】错误 【详解】tan 300tan(36060)tan 60︒=︒-︒=-︒=故答案为:错误高频考点一:象限角、区域角、终边相同的角①象限角角度1:确定已知角所在象限例题1.(2022·河南·南阳中学高一阶段练习)若()45180k k α=+⋅∈Z ,则α的终边在( ) A .第二或第三象限 B .第一或第三象限 C .第二或第四象限 D .第三或第四象限【答案】B 【详解】当k 为奇数时,记21,k n n =+∈Z ,则()225360n n α+⋅∈︒=Z ,此时α为第三象限角;当k 为偶数时,记2,k n n =∈Z ,则()45360n n α+⋅∈︒=Z ,此时α为第一象限角. 故选:B例题2.(2022·上海市宝山中学高一期中)平面直角坐标系中,若角532α=︒,则α是第________象限的角. 【答案】二##2 【详解】532360172︒=︒+︒,因此532︒与172︒终边相同,而172︒是第二象限角.所以α是第二象限角. 故答案为:二.角度1题型归类练1.(2022·江西抚州·高一期中)若34πα=-,则α是第( )象限角. A .一 B .二C .三D .四【答案】C 【详解】34πα=-,α终边落在第三象限,α为第三象限角.故选:C.2.(2022·河南南阳·高一期中)“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【详解】若α是第一象限角,则22,2k k k Z ππαπ<<+∈,无法得到α一定属于0,2π⎛⎫⎪⎝⎭,充分性不成立, 若0,2πα⎛⎫∈ ⎪⎝⎭,则α一定是第一象限角,必要性成立,所以“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的必要不充分条件.故选:B3.(多选)(2022·广东·韶关市田家炳中学高一期末)下列四个角为第二象限角的是( )A .200-B .100C .220D .420【答案】AB 【详解】对于A 选项,200160360-=-,故200-为第二象限角; 对于B 选项,100是第二象限角; 对于C 选项,220是第三象限角;对于D 选项,42060360=+,故420为第一象限角. 故选:AB.角度2:由已知角所在的象限确定某角的范围例题1.(多选)(2021·全国·高一专题练习)有一个小于360︒的正角α,这个角的6倍的终边与x 轴的非负半轴重合,则这个角可以为( ) A .60︒ B .90︒ C .120︒ D .300︒【答案】ACD 【详解】由题意,62180k α=⨯︒且k Z ∈,则1803kα︒=,又0360α︒<<︒, ∴1k =时,60α=︒;2k =时,120α=︒;3k =时,180α=︒;4k =时,240α=︒;5k =时,300α=︒; 故选:ACD6.(多选)(2021·全国·高一专题练习)若α为第一象限角,则180()k k Z α⋅︒+∈的终边所在的象限可能是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】AC 【详解】由题设,36036090k k α''︒<<︒+︒,k Z '∈,∴(2)180180(2)18090k k k k k α''+⋅︒<⋅︒+<+⋅︒+︒,令12k k k Z '=+∈,∴1118018018090k k k α⋅︒<⋅︒+<⋅︒+︒,故180()k k Z α⋅︒+∈的终边所在的象限可能是第一、三象限. 故选:AC角度2题型归类练1.(2021·全国·高一专题练习)若α是第一象限角,则2α-是( )A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角【答案】D 【详解】由题意知,36036090k k α⋅︒<<⋅︒+︒,k ∈Z ,则180180452k k α⋅︒<<⋅︒+︒,所以180451802k k α-⋅︒-︒<-<-⋅︒,k ∈Z .当k 为偶数时,2α-为第四象限角;当k 为奇数时,2α-为第二象限角.所以2α-是第二或第四象限角.故选:D.2.(2021·广东·中山纪念中学高一阶段练习)若α是第四象限角,则90º-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】B 【详解】由题知,(90360,360)k k α∈-+⋅⋅,k Z ∈, 则90(90360,180360)k k α-∈-⋅-⋅,在第二象限, 故选:B3.(多选)(2022·安徽·界首中学高一期末)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角D .2α是第三或第四象限角【答案】AB 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角,所以πα-是第一象限角,故A 选项正确;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以422k k παπππ+<<+,k ∈Z ,故2α是第一或第三象限角,故B 选项正确;因为α是第二象限角,所以32πα+是第一象限角,故 C 选项错误;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以4224k k ππαππ+<<+,k ∈Z ,所以2α的终边可能在y 轴负半轴上,故D 选项错误. 故选:AB.角度3:确定n 倍角所在象限例题1.(2022·广东广州·高一期末)已知α是锐角,那么2α是( ). A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角【答案】C 【详解】因为α是锐角,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以()20,απ∈,满足小于180°的正角.其中D 选项不包括90,故错误. 故选:C2.(2021·上海·高一课时练习)角θ的终边在第二象限,则角2θ的终边在_________. 【答案】第三、四象限或y 轴非正半轴 【详解】解:θ是第二象限角,36090360180k k θ∴︒+︒<<︒+︒,k Z ∈.236018022360360k k θ︒+︒<<︒+︒,k Z ∈.2θ的终边的位置是第三或第四象限,y 的非正半轴.故答案为:第三、第四象限或y 轴的非正半轴角度3题型归类练1.(2021·上海·高一课时练习)若α是第三象限角,则α-是第_________象限角. 【答案】二 【详解】因为α是第三象限角,所以α的终边在第三象限, 又α-的终边与α的终边关于x 轴对称,所以α-的终边在第二象限,所以α-是第二象限角, 故答案为:二.2.(2018·广西·高一阶段练习)已知α终边在第四象限,则2α终边所在的象限为_______________. 【答案】第三象限或第四象限或y 轴负半轴 由于α是第四象限角,故π2π2π2k k α-<<,故4ππ24πk k α-<<,即2α终边在” 第三象限或第四象限或y 轴负半轴”. 角度4:确定n 分角所在象限例题1.(2021·陕西·榆林市第十中学高一阶段练习)若角α是第一象限角,则2α是( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角【答案】C 【详解】因为α是第三象限角,所以36036090,k k k Z α⋅<<⋅+∈, 所以18018045,2k k k Z α︒⋅<<⋅+∈,当k 为偶数时,2α是第一象限角, 当k 为奇数时,2α是第三象限角. 故选:C .例题2.(多选)(2022·辽宁·抚顺县高级中学校高一阶段练习)如果α是第三象限的角,那么3α可能是下列哪个象限的角( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ACD 【详解】α是第三象限的角,则32,22k k παπππ⎛⎫∈++ ⎪⎝⎭,k Z ∈,所以22,33332k k αππππ⎛⎫∈++ ⎪⎝⎭,k Z ∈; 当=3,k n n Z ∈,2,2,332n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第一象限; 当=31,k n n Z +∈,72,2,36n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第三象限; 当=32,k n n Z +∈,5112,2,363n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第四象限; 所以3α可以是第一、第三、或第四象限角. 故选:ACD角度4题型归类练1.(2022·河南新乡·高一期末)“α是第四象限角”是“2α是第二或第四象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【详解】当α是第四象限角时,3222,2k k k Z ππαππ+<<+∈,则3,42k k k Z παπππ+<<+∈,即2α是第二或第四象限角.当324απ=为第二象限角,但32πα=不是第四象限角,故“α是第四象限角”是“2α是第二或第四象限角”的充分不必要条件. 故选:A2.(多选)(2022·江西·南昌十五中高一阶段练习)已知角α是第一象限角,则角3α可能在以下哪个象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ABC 【详解】解:因为角α是第一象限角,所以222k k ππαπ<<+,k Z ∈,所以223363k k παππ<<+,k Z ∈, 当3k t =,t Z ∈时,2236t t απππ,t Z ∈,3α位于第一象限,当31k t =+,t Z ∈时,2522336t t παπππ,t Z ∈,3α位于第二象限,当32k t =+,t Z ∈时,4322332t t παπππ,t Z ∈,3α位于第三象限,综上可得3α位于第一、二、三象限; 故选:ABC3.(2022·上海师大附中高一期末)设α是第三象限的角,则2α的终边在第______象限. 【答案】二或四 【详解】因为α是第三象限角,所以3222k k ππαππ+<<+,k Z ∈,所以3224k k παπππ+<<+,k Z ∈, 当k 为偶数时,2α为第二象限角, 当k 为奇数时,2α为第四象限角. 故答案为:二或四.②区域角例题1.(2022·湖南·高一课时练习)已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.【答案】{α|k ·360°+45°<α<k ·360°+150°,k ∈Z } 【详解】观察图形可知,终边落在边界上的角分别是36045,360150,k k k Z ⋅︒+︒⋅︒+︒∈, 所以角α的集合是{α|k ·360°+45°<α<k ·360°+150°,k ∈Z }. 故答案为:{α|k·360°+45°<α<k·360°+150°,k ∈Z} 例题2.(2020·全国·高一课时练习)如图所示,终边落在阴影部分(不包括边界)的角的集合是________.【答案】{}90180120180,k k k αα︒+⋅︒<<︒+⋅︒∈Z 【详解】因为终边落在y 轴上的角为90180,k k Z ︒+⋅︒∈,终边落在虚线上的角为1203601202180,k k ︒︒+⋅︒=+⋅︒k Z ∈; 3003601201802180120(21)180,n n n n Z ︒︒︒+⋅︒=+︒+⋅︒=++⋅︒∈,即终边在虚线上的角为120180k ︒+⋅︒,k Z ∈,所以终边落在阴影部分的角为90180120180,k k k Z α︒+⋅︒<<︒+⋅︒∈, 故答案为:{}90180120180,k k k Z αα︒+⋅︒<<︒+⋅︒∈题型归类练1.(2022·上海·华师大二附中高一期中)用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是__________.【答案】32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦【详解】由题图,终边OB 对应角为26k ππ-且Z k ∈,终边OA 对应角为324k ππ+且Z k ∈, 所以阴影部分角θ的集合是32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.故答案为:32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦2.(2021·全国·高一专题练习)如图所示,终边在阴影区域内(含边界)的角的集合为______.【答案】{}4518060180,n n n Z αα+⋅≤≤+⋅∈ 【详解】终边在直线OM 上的角的集合为:{}{}45360,225360,M k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈{}(){}452180,4521180,k k Z k k Z αααα==︒+⋅︒∈⋃=︒++⋅︒∈{}45180,n n Z αα==︒+⋅︒∈.同理可得终边在直线ON 上的角的集合为{}60180,n n Z αα=︒+⋅︒∈,所以终边在阴影区域内(含边界)的角的集合为{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈. 故答案为:{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈3.(2020·全国·高一课时练习)如下图,终边落在OA 位置时的角的集合是__________;终边落在OB 位置,且在360360-︒︒内的角的集合是________;终边落在阴影部分(含边界)的角的集合是______.【答案】 {|360120,}k k αα=︒+︒∈Z {45,315}-︒︒ {|36045360120,}k k k αα︒-︒︒+︒∈Z 【详解】由题意以OA 为终边的一个角是120︒,因此以OA 为终边的角的集合是{|360120,}k k αα=︒+︒∈Z ;以OB 为终边的角的集合是{|36045,}k k αα=︒-︒∈Z ,在已知范围内的有45,315-︒︒两个角,集合表示为{45,315}-︒︒;∴终边落在阴影部分(含边界)的角的集合为{|36045360120,}k k k αα︒-︒︒+︒∈Z . 故答案为:{|360120,}k k αα=︒+︒∈Z ;{45,315}-︒︒;{|36045360120,}k k k αα︒-︒︒+︒∈Z .4.(2019·江苏·海安市南莫中学高一期中)如图所示,阴影部分表示的角的集合为(含边界)______(用弧度表示).【答案】{|,}3k k k Z παπαπ≤≤+∈【详解】如图,阴影部分表示的角α位于一、三象限, 在第一象限,03πα≤≤;在第三象限,43ππα≤≤, ∴阴影部分表示的角的集合为(含边界): {|223k k παπαπ≤≤+或()()21213k k ππαπ+≤≤++,}{|,}3k Z k k k Z παπαπ∈=≤≤+∈.故答案为{|,}3k k k Z παπαπ≤≤+∈.③终边相同的角例题1.(2022·北京师大附中高一期中)将x 轴正半轴绕原点逆时针旋转30,得到角α,则下列与α终边相同的角是( ) A .330︒ B .330-︒C .210︒D .210-︒【答案】B 【详解】由题意得:{}30360,k k Z αα=︒+⋅︒∈,当1k =-时,330α=-︒,B 正确,其他选项经过验证均不正确. 故选:B例题2.(2017·天津市红桥区教师发展中心高一期末)在0~180范围内,与950-终边相同的角是______.【答案】130 【详解】与950-终边相同的角的集合为}{()950360Z k k αα=-+∈, 当3k =时,9503603130α=-+⨯=,所以在0~180范围内, 与950-终边相同的角是130.故答案为:130题型归类练1.(2022·辽宁·凌源市实验中学高一阶段练习)下列与角23π的终边一定相同的角是( ) A .53πB .()43k k Z ππ-∈ C .()223k k Z ππ+∈ D .()()2213k k Z ππ++∈ 【答案】C 【详解】 对于选项C :与角23π的终边相同的角为()223k k Z ππ+∈,C 满足. 对于选项B :当()2k n n Z =∈时, ()442,33k n k Z n Z ππππ-=-∈∈成立; 当()21k n n Z =+∈时,()()44212,333k n n k Z n Z ππππππ-=+-=-∈∈不成立. 对于选项D :()()2521233k k k Z ππππ++=+∈不成立. 故选: C2.(2022·上海市奉贤区奉城高级中学高一阶段练习)与1920°终边相同的角中,最小的正角是________ 【答案】120° 【详解】19205360120︒=⨯︒+︒,所以与1920°终边相同的角中,最小的正角为120°. 故答案为:120°.高频考点二:角度制与弧制度的相互转化例题1.(2022·河南南阳·高一期中)把π5化成角度制是( )A .36°B .30°C .24°D .12°【答案】A 【详解】由角度制与弧度制的互化知,π180=︒, 所以ππ180()3655π=⨯︒=︒, 故选:A例题2.(2022·陕西汉中·高一期中)如图,时钟显示的时刻为12:55,将时针与分针视为两条线段,则该时刻的时针与分针所夹的锐角为( )A .π3B .23π72C .11π36D .3π10【答案】B 【详解】由图可知,该时刻的时针与分针所夹的锐角为2π112π23π12121272+⨯=. 故选:B.题型归类练1.(2022·安徽·砀山中学高一期中)将210°化成弧度为( ) A .5π6-B .5π6C .4π3D .7π6【答案】D 【详解】 7210=210=1806ππ︒⨯, 故选:D.2.(2022·上海市七宝中学高一开学考试)经过50分钟,钟表的分针转过___________弧度的角. 【答案】5π3-【详解】根据题意,分针转过的弧度为5052603ππ-⨯=-. 故答案为:53π-.3.(2022·湖南·高一课时练习)将下表中的角度和弧度互化:180π=︒∴1180π︒=,1801π︒=故:高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算例题1.(2022·上海奉贤区致远高级中学高一期中)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C .2sin1D .2sin1【答案】C 【详解】2弧度的圆心角所对的弦长为2,∴半径1sin1r =,∴所求弧长为22sin1r =. 故选:C.例题2.(2022·湖南·高一课时练习)已知相互咬合的两个齿轮,大轮有48齿,小轮有20齿,当大轮顺时针转动一周时,小轮转动的角是多少度?多少弧度?如果大轮的转速是150r/min ,小轮的半径为10cm ,那么小轮圆周上的点每秒转过的弧长是多少? 【答案】小轮转动的角是864︒,245π弧度,小轮圆周上的点每秒转过的弧长为120π cm 【详解】由题意得,相互咬合的两个齿轮,大轮有48齿,小轮有20齿, 所以当大轮旋转一周时,大轮转了48个齿,小轮转了20齿, 所以小轮转动了4812205=周,即123608645⨯︒=︒,1224255ππ⨯=,所以当大轮的转速为150r/min 时,小轮的转速为121503605⨯=r/min , 所以小轮圆周上的点每秒转过的弧度数为 36026012ππ⨯÷=,因为小轮的半径为10cm ,所以小轮圆周上的点每秒转过的弧长 1210120ππ⨯= cm角度1题型归类练1.(2022·青海·海南藏族自治州高级中学高一期末)已知扇形的圆心角为2rad 5,半径为10,则扇形的弧长为( )A .12 B .1 C .2 D .4【答案】D 【详解】解:因为扇形的圆心角为2rad 5,半径为10,所以由弧长公式得:扇形的弧长为21045l r α=⋅=⨯=故选:D2.(2022·北京·汇文中学高一期中)一圆锥的侧面展开图为一圆心角为23π的扇形,该圆锥母线长为6,则圆锥的底面半径为________. 【答案】2 【详解】因为圆锥的母线长为6,所以侧面展开图扇形的半径为6,设该圆锥的底面半径为r , 所以有26223r r ππ⋅=⇒=, 故答案为:2.角度2:与扇形面积有关的计算例题1.(2022·河北·沧县中学高一阶段练习)已知扇形OAB 的圆心角为8rad ,其周长是,则该扇形的面积是___2cm . 【答案】8 【详解】设扇形的半径为R ,弧长是88l R R =⨯=,则其扇形周长是82R R +=R =22188cm 2R ⨯⨯=. 故答案为:8例题2.(2022·重庆八中高一期末)如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为3π,弧所在的圆的半径为4,则弧田的面积是___________.【答案】6π-【详解】解:根据题意,只需计算图中阴影部分的面积, 设AOB α∠=,因为弧田的弧AB 长为3π,弧所在的圆的半径为4, 所以34πα=,所以阴影部分的面积为113444sin 622παπ⨯⨯-⨯⨯⨯=-所以弧田的面积是6π-故答案为:6π-例题3.(2022·湖南·雅礼中学高一期中)中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O (半径为20cm )中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折叠扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S,当12S S =时,扇形的现状较为美观,则此时扇形OCD 的半径为__________cm【答案】1) 【详解】设,AOB θ∠=,半圆O 的半径为r ,扇形OCD 的半径为1r ,1252S S =,所以2212112212r r rθθθ-,即2212r r r -,所以2212r r===,所以1r r =20,r cm =,所以11)r cm=, 故答案为:1).角度2题型归类练1.(2022·上海市行知中学高二期中)已知圆锥的表面积为28π,其侧面展开扇形的圆心角大小为3π,则这个圆锥的底面半径为______. 【答案】2 【详解】设圆锥的底面半径为r ,母线长为l , 由题意,有228rl r πππ+=①, 由于侧面展开扇形的圆心角大小为3π, 所以23l r ππ=,即6l r =②,由①②得12l =,2r =, 即圆锥的底面半径为2, 故答案为:2.2.(2022·上海市七宝中学高一开学考试)已知扇形的圆心角为3π,弧长为45π,则扇形的面积为___________.【答案】2425π 【详解】依题意,扇形的半径412553lrππα===,所以扇形的面积1141224225525S lrππ==⨯⨯=,故答案为:2425π.3.(2022·上海·高三专题练习)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1)9π2m);(2)少1.522m.试题解析:(1) 扇形半径,扇形面积等于弧田面积=(m2)(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=.平方米按照弧田面积经验公式计算结果比实际少1.52平米.角度3:扇形中的最值问题例题1.(2022·吉林·长春十一高高一期末)已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A.32B.52C.3 D.2【答案】D 【详解】设扇形半径为r ,易得020r <<,则由已知该扇形弧长为402r -.记扇形面积为S ,则()()()22014022010024r r S r r r r +-=-=-≤=,当且仅当20r r =-,即10r =时取到最大值,此时记扇形的圆心角为θ,则40220210r r θ-=== 故选:D例题2.(2022·江西·奉新县第一中学高一阶段练习)如果一个扇形的周长为60cm ,那么当它的半径和圆心角分别为多少时,扇形的面积最大?【答案】当扇形的半径为15cm ,圆心角为2rad 时,扇形的面积最大 【详解】解:设该扇形的半径为cm r ,圆心角为θ,弧长为cm l ,面积为2cm S , 则260l r +=,所以602l r =-,其中030r <<,所以,()()2211602301522522S lr r r r r r ==-=-+=--+,所以当15cm r =时,S 最大,最大值为2225cm , 此时()602152rad 15l r θ-⨯===. 例题3.(2022·广西梧州·高一期中)已知扇形的周长为30. (1)若该扇形的半径为10,求该扇形的圆心角α,弧长l 及面积S ; (2)求该扇形面积S 的最大值及此时扇形的半径 . 【答案】(1)1α=,10l =,50S =; (2)2254,152. (1)由题知扇形的半径10r =,扇形的周长为30, ∴22030l r l +=+=, ∴10l =,10110lr α,1110105022S lr ==⨯⨯=.(2)设扇形的圆心角α,弧长l ,半径为r ,则230l r +=, ∴302l r =-,∴()()21522530112222154S lr r r r r r r -+⎛⎫--=⎪=⎭≤⎝== 当且仅当15r r -=,即152r =取等号, 所以该扇形面积S 的最大值为2254,此时扇形的半径为152.1.(2022·浙江·高三专题练习)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10OA =,()010OB x x =<<,线段BA ,CD 与BC ,AD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值. 【答案】(1)210(010)10x x x θ+=<<+; (2)52x =,2254. (1)解:根据题意,可算得()m BC x θ=,()10m AD θ=. 因为30AB CD BC AD +++=,所以()2101030x x θθ-++=, 所以,()21001010x x x θ+=<<+. (2)解:根据题意,可知()()()2222251011102210AOD BOCx x y S S x x θ+-=-=-=⨯+扇形扇形 ()()22522551055024x x x x x ⎛⎫=+-=-++=--+⎪⎝⎭, 当()5m 2x =时,()2max 225m 4=y .综上所述,当5m 2x =时铭牌的面积最大,且最大面积为2225m 4. 2.(2022·全国·高一阶段练习)已知一扇形的圆心角为()0αα>,周长为C ,面积为S ,所在圆的半径为r . (1)若35α=︒,8r =cm ,求扇形的弧长;(2)若16C =cm ,求S 的最大值及此时扇形的半径和圆心角. 【答案】(1)149πcm ; (2)S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角为2. 【解析】35α=︒=735rad rad 18036ππ⨯=, 扇形的弧长7148369l r αππ==⨯=cm ; (2)设扇形的弧长为l ,半径为r ,则216r l +=,∴162l r =-()08r <<,则()()2211162841622S lr r r r r r ==-=-+=--+,当4r =时,2max 16cm S =,16248l =-⨯=cm ,2l rα,∴S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角2α=.3.(2022·河北张家口·高一期末)已知扇形的圆心角是α,半径为r ,弧长为l . (1)若135α=,10r =,求扇形的弧长l ;(2)若扇形AOB 的周长为22,当扇形的圆心角α为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值. 【答案】(1)152π; (2)当2α=时,扇形面积最大值max 1214S =. (1)31354πα==,∴扇形的弧长3151042l r ππα==⨯=;(2)扇形AOB 的周长()22222L r l r r r αα=+=+=+=,222rα∴=-, ∴扇形AOB 面积2221111112S r r r r r α⎛⎫==-=-+ ⎪⎝⎭,则当112r =,max 1214S =, 即当2α=时,扇形面积最大值max 1214S =. 角度4:扇形弧长公式与面积公式的应用例题1.(2022·陕西·西安中学高一期中)中国传统折扇有着极其深厚的文化底蕴.《乐府诗集》中《夏歌二十首》的第五首曰:“叠扇放床上,企想远风来轻袖佛华妆,窈窕登高台.”如图所示,折扇可看作是从一个圆面中剪下的扇形制作而成若一把折扇完全打开时圆心角为67π,扇面所在大圆的半径为20cm ,所在小圆的半径为8cm ,那么这把折扇的扇面面积为( )A .288πB .144πC .487π D .以上都不对【答案】B 【详解】 由题意得,大扇形的面积为11612002020277S ππ=⨯⨯⨯=, 小扇形的面积为21619288277S ππ=⨯⨯⨯=, 所以扇面的面积为12120019214477S S πππ-=-=. 故选:B6.(2022·全国·高一课时练习)已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值. 【详解】解:设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值. 【点睛】要求周长的最小值,可考虑将周长写成某个变量的函数式,利用函数的单调性求最值.函数()()0,0kf x x x k x=+≠>在(x ∈-∞上单调递减,在)x ∈+∞上单调递增.角度4题型归类练1.(2022·陕西·榆林市第十中学高一阶段练习)已知扇形所在圆的半径为2,圆心角的弧度数是2,则该扇形的弧长为( ) A .1 B .4C .6D .8【答案】B因为扇形所在圆的半径2r =,圆心角的弧度数α=2, 所以该扇形的弧长224l r α==⨯=. 故选:B2.(2022·北京·高一期中)已知某扇形的圆心角为6π,弧长为23π,则该扇形的半径为___________;面积为___________. 【答案】 4 43π##43π 【详解】由题设,该扇形的半径2436r ππ=÷=,面积为1244233S ππ=⨯⨯=. 故答案为:4,43π3.(2022·江苏省木渎高级中学高一期末)中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇面所在扇形的圆心角为____rad ,此时扇面..面积为____cm 2.【答案】 52704 【详解】解:如图,设AOB θ∠=,OA OB r ==,由题意可得:2464(16)r r θθ=⎧⎨=+⎩,解得:485r =,52θ=. 所以,21481486416247042525OCD OAB S S S cm ⎛⎫=-=⨯⨯+-⨯⨯=⎪⎝⎭.故答案为:5;7042.高频考点四:任意角的三角函数角度1:单位圆法与三角函数例题1.(2022·全国·高三专题练习)设0a <,角α的终边与圆221x y +=的交点为(34)P a a -,,那么sin 2cos αα+=( ) A .25-B .15-C .15D .25【答案】D 【详解】画图,角α的终边与圆221x y +=的交点为(34)P a a -,,设()P x y ,,则3x a =-,4y a =,代入得22(3)(4)1a a -+=,解得2125a =, ∵0a <, ∴15a =-,∴34()55P -,, 又∵在单位圆中,cos x α=,sin y α=, ∴3cos 5α=,4sin 5α=-, ∴2sin 2cos 5αα+=, 故选:D例题2.(2022·北京师大附中高三期中)已知正角α的终边经过点1(2P -,则角α的值可以是_______(写出一个就可以).【详解】因为1(2P -,所以2tan 12α==-所以角α的值可以是23π.故答案为:23π(答案不唯一)角度1题型归类练1.(2022·全国·高三专题练习)点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A.1,2⎛ ⎝⎭ B.12⎛- ⎝⎭C.21⎛⎫⎪ ⎪⎝⎭ D.12⎫-⎪⎪⎝⎭【答案】B 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(2P '-. 故选:B.2.(2022·四川凉山·高一期末)已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与以原点为圆心,半径为1的圆相交于点则34,55A ⎛⎫-- ⎪⎝⎭,则 tan α=( )A .34B .43C .34-D .43-【答案】B 【详解】由题意可得:角α的终边与单位圆的交点为34,55A ⎛⎫-- ⎪⎝⎭,所以35x =-,45y =-,所以445tan 335y x α-===-,故选:B.角度2:终边上任意点法与三角函数例题1.(2022·北京师大附中高一期中)若角α的终边经过点(2,4)P -,则tan α=( ) A .12-B .12C .2D .2-由题设,4tan 22α==--. 故选:D例题2.(2022·北京·人大附中高一期中)已知角α的终边过点()4,3(0)P a a a ->,则cos α的值是( ) A .35 B .35C .45D .45-【答案】C 【详解】 由题意知:44cos 55a a α===.故选:C.角度2题型归类练1.(2022·山东山东·高一期中)已知点(1)P -是角α终边上一点,则cos α=() A . B .12-C D .12【答案】A 【详解】因为点(1)P -是角α终边上一点,所以cos α==故选:A.2.(2022·宁夏·石嘴山市第一中学三模(理))已知角θ的终边上有一点(4,3)(0)a a a P ->,则2sin cos θθ+的值是( ) A .25-B .25C .25或25-D .不确定【答案】B 【详解】角θ的终边上点(4,3)(0)aa a P ->,则||5r OP a ==, 于是得3344sin ,cos 5555a a a a θθ-====-, 所以3422sin cos 2()555θθ+=⨯+-=.故选:B3.(2022·河南焦作·高一期中)若角θ的终边经过点(),3P x -,且3sin 5θ=-,则tan θ=( )A .43-B .43±C .34-D .34±由三角函数的定义可得3sin 5θ==-,解得4x =±,因此3tan 4θ=±.故选:D.4.(2022·四川自贡·高一期末)角α的终边过点()12,5P ,则cos α=( ) A .513B .1213C .125D .512【答案】B 【详解】由题意P 到原点的距离为13r OP ==, 所以12cos 13α=. 故选:B .角度3:三角函数值符号的判定例题1.(2022·陕西·榆林市第十中学高一阶段练习)若3α=,则( ) A .sin 0,cos 0αα>> B .sin 0,cos 0αα>< C .sin 0,cos 0αα<> D .sin 0,cos 0αα<<【答案】B 【详解】 因32παπ<=<,则α是第二象限象限角, 所以sin 0,cos 0αα>< . 故选:B例题2.(2022·北京房山·高一期中)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【详解】sin 0θ<,则角θ在第三,四象限,tan 0θ<,则角θ在第二,四象限,所以满足sin 0θ<且tan 0θ<,角θ在第四象限. 故选:D3.(2022·全国·高三专题练习(理))若tan 0α<,则下列结论一定正确是( ) A .sin 0α< B .sin 20α<C .cos 0α<D .cos20α<【答案】B 【详解】。
高考数学——三角函数和解三角形经典试题练习及解析
1 / 14高考数学 三角函数和解三角形试题及解析1、在①ac =sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由、问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?【解析】由sin 3sin A B可得:ab=不妨设(),0a b m m ==>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.2、在ABC 中,角,,A B C 所对的边分别为,,a b c、已知5,a b c ===2 / 14(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值。
【解析】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin4441313A A A πππ+=+=+=. 【答案】(Ⅰ)4Cπ;(Ⅰ)sin 13A =;(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭.3、在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积、3 / 14条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==、 注:如果选择条件①和条件②分别解答,按第一个解答计分、【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin 4C =, 4S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 2a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====4 / 14由正弦定理得:6sin sin a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=4、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且222b a c ac =+-, (Ⅰ)求角B 的大小;(Ⅱ)若a =c =2,求△ABC 的面积; (Ⅲ)求sinA +sinC 的取值范围.【答案】(1)60°; (2; (3)⎝. 【解析】(Ⅰ)由.2222a c b cosB ac+-=,得12cosB =,所以3B π=;(Ⅱ)由(Ⅰ)得1602ABCSacsin =︒=(Ⅲ)由题意得23sinA sinC sinA sin A π⎛⎫+=+-⎪⎝⎭32sinA =+6A π⎛⎫=+ ⎪⎝⎭.因为0<A <23π,所以26A π⎛⎫<+≤ ⎪⎝⎭.5 / 14故所求的取值范围是⎝.模拟试题1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=、 (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形、 【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,6 / 14所以a =, 故222b a c =+, 即ABC 是直角三角形、2、在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足πsin sin 3c A a C ⎛⎫=+⎪⎝⎭. (Ⅰ)求角C 的大小; (Ⅱ)若ABC的面积为1a b -=,求c 和()cos 2A C -的值.【答案】(Ⅰ)3π;(Ⅱ)c =,()6os 22c 1A C -=. 【解析】(Ⅰ)由正弦定理可知:sin sin a c A C =,已知πsin sin 3c A a C ⎛⎫=+ ⎪⎝⎭,所以sin sin sin (sin coscos sin )33C A A C C ππ⋅=⋅⋅+⋅,(0,)sin 0A A π∈∴≠,所以有sin tan 3C C C C π=⇒==.(Ⅱ)41sin 12,132a S ab C ab a b b =⎧=⋅=⇒=-=⇒⎨=⎩,由余弦定理可知:2222cos 13c a b ab C c =+-⋅=⇒=222cos sin 2b c a A A bc +-==⇒==,211sin 22sin cos 22cos 11313A A A A A =⋅==-=-, ()cos 2cos 2cos sin 2s 1111132i 6n 2A C A C A C -⨯=+⋅=-⋅=.7 / 143、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=、 (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围、【答案】(1) 3B π=;(2)(82. 【解析】(1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=、 0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=. (2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=-=+.又因,tan 62C C ππ<<>318tan C <+<8 / 14ABCS <<. 故ABCS的取值范围是,)824、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且sin a b C +=、 (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,1sin 1a A =,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S 、【答案】(1)6π;(2)1n n + 【解析】Ⅰ1)由得,所以又(2)设的公差为,由(1)得,且,Ⅰ、又ⅠⅠⅠⅠ、ⅠⅠ5、在△ABC中,a=c=,________.(补充条件)(1)求△ABC的面积;(2)求sin(A+B).从①b=4,②cosB=,③sinA=这三个条件中任选一个,补充在上面问题中并作答.【答案】详见解析【解析】选择①(1)在△ABC中,因为a=c=,b=4,由余弦定理得22222a b ccosCab+-===,因为C∈(0,π),所以2sinC==,所以1142222S absinC==⨯=.(2)在△ABC中,A+B=π﹣C.所以()2sin A B sinC+==.选择②(1)因为cosB=,B∈(0,π),所以sinB==,因为a=c=11222S acsinB===.9/ 1410 / 14(2)因为a =c =,cosB =, 由b 2=a 2+c 2﹣2accosB,得222216b ⎛=+-= ⎝⎭,解得b =4,由sin sin bc BC ,解得2sinC =, 在△ABC 中,A +B =π﹣C ,()sin A B sinC +==. 选择③依题意,A为锐角,由sinA =cosA ==,在△ABC中,因为a=c =cosA =, 由余弦定理a 2=b 2+c 2﹣2bccosA,得222210b =+-, 解得b =2或b =4,(1)当b =2时,112122S bcsinA ==⨯=. 当b =4时,114222S bcsinA ==⨯=. (2)由a=c=,10sinA =,a c sinA sinC=,得2sinC =,11 / 14在△ABC 中,A +B =π﹣C ,()sin A B sinC +==. 7、在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,并且222b c a bc +-=.(1)已知_______________,计算ABC 的面积;请①a =2b =,③sin 2sin C B =这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求cos cos B C +的最大值.【答案】(1)见解析(2)1【解析】(1)若选②2b =,③sin 2sin C B =、sin 2sin C B =,24c b ∴==,222b c a bc +=+,2221cos 22b c a A bc +-∴==, 又(0,)A π∈,3A π∴=、ABC ∆∴的面积11sin 24222S bc A ==⨯⨯⨯= 若选①a =②2b =、由222b c a bc +=+可得3c =,222b c a bc +=+,2221cos 22b c a A bc +-∴==, 又(0,)A π∈,12 / 14 3A π∴=、ABC ∆∴的面积11sin 2322S bc A ==⨯⨯=、 若选①a =③sin 2sin C B =sin 2sin C B =,2c b ∴=,又222b c a bc +=+,222472b b b ∴+=+,可得b =,c =ABC ∆∴的面积11sin 22MBC S bc A ===、 (2)3A π=1cos cos cos cos[()]cos cos()cos cos 332B C B B B B B B B πππ∴+=+-+=-+=-1cos sin()26B B B π==+ 203B π<<, 5366B πππ∴<+< ∴当3B π=时,sin()cos cos 6B B C π+=+有最大值1、 8、已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,5a b +=,3c =,________.是否存在以a ,b ,c 为边的三角形?如果存在,求出ABC 的面积;若不存在,说明理由.从①1cos 3C =;②1cos 3=-C;③sin 3C =这三个条件中任选一个,补充在上面问题中并作答.13 / 14【答案】详见解析【解析】若选取条件①1cos 3C =,此时sin 3C ==, 因为5a b +=,所以()2222252a b a b ab ab +=+-=-, 由余弦定理,22225291cos 223a b c ab C ab ab +---===,解得6ab =, 则22252613a b +=-⨯=,所以()222213121a b a b ab -=+-=-=, 所以1a b -=±,又5a b +=,解得32a b =⎧⎨=⎩或者23a b =⎧⎨=⎩, 所以存在以a ,b ,c为边的三角形,其面积为12323ABCS =⨯⨯⨯=若选取条件②1cos 3=-C , 因为5a b +=,所以()2222252a b a b ab ab +=+-=-, 由余弦定理,22225291cos 223a b c ab C ab ab +---===-,解得12ab =, 则22252121a b +=-⨯=,所以()22221240a b a b ab -=+-=-<,显然不成立,所以不存在以a ,b ,c 为边的三角形.若选取条件③sin C =,得1cos 3C =±, 由选取条件①可知,当1cos 3C =时,存在以a ,b ,c为边的三角形,其面积为ABC S =14 / 14由选取条件②可知,当1cos 3=-C 时,不存在以a ,b ,c 为边的三角形. 9、在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇、若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值、【解析】如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC Ⅰ14x ⅠBC Ⅰ10x ⅠⅠABC Ⅰ120°.根据余弦定理得(14x )2Ⅰ122Ⅰ(10x )2Ⅰ240x cos 120°Ⅰ解得x Ⅰ2.故AC Ⅰ28ⅠBC Ⅰ20.根据正弦定理得ⅠⅠ解得sin αⅠⅠ.所以红方侦察艇所需要的时间为2小时,角α的正弦值为.。
高考三角函数历年真题汇总以及解析
1.若34cos,sin ,2525θθ==则角θ的终边落在直线( )上A. 2470x y -=B. 2470x y +=C. 7240x y +=D. 7240x y -=2.已知在△ABC 中,22tan tan A a B b =,判断△ABC 的形状为( ).A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形3.已知函数()()cos 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos2g x x =的图象,则函数()f x 的图象( )A. 关于直线23x π=对称 B. 关于直线6x π=对称C. 关于点2-03π⎛⎫⎪⎝⎭,对称 D. 关于点5-012π⎛⎫⎪⎝⎭,对称 4.已知2sin 1cos αα=+,其中α是第一象限角,则tan2α=( )A.12- B. 2C.12D.135.已知函数()sin()(0,||)2f x x πωϕωϕ=+><,其图像相邻两条对称轴之间的距离为2π,且函数()12f x π+是偶函数,则下列判断正确的是( )A. 函数f (x )的最小正周期为2πB. 函数f (x )在区间3[,]4ππ上单调递增 C. 函数f (x )的图象关于直线712x π=-对称 D. 函数f (x )的图象关于点7(,0)12π对称 6.在△ABC 中,a 、b 、c 分别为内角A 、B 、C()sin sin A B A B+=+,3cos 5C =,且4ABCS=,则c =( )B. 4C.3D. 57.在△ABC 中,4ABC π∠=,AB =,3BC =,则sin BAC ∠=( )8.将函数()2sin(2)(0)f x x ϕϕπ=+<<的图象上所有点的纵坐标缩短为原来的12,再把所得图象上的所有点向右平移4π个单位长度后,得到函数()g x 的图象,若函数()g x 在3x π=处取得最大值,则函数()f x 的图象( )A 关于点5,012π⎛⎫-⎪⎝⎭对称 B. 关于点,06π⎛⎫⎪⎝⎭对称C. 关于直线512x π=-对称 D. 关于直线6x π=对称9.当[,]33x ππ∈-时,函数2()cos 444x x x f x =+ )A. C. 110.若1cos 44πα⎛⎫-= ⎪⎝⎭,则sin 2α的值为( )A. 78- B.78C. 18-D.1811.函数()sin()sin()36f x x a x ππ=++-的一条对称轴方程为2x π=,则a =( )A. 1C. 2D. 312.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,4A π=,12B π=,c =,则a =( )A. 2B. 22C. 32D. 4213.在直角坐标系xOy 中,如果相异两点()(),,,A a b B a b --都在函数()y f x =的图象上,那么称A ,B 为函数()f x 的一对关于原点成中心对称的点对(A ,B 与B ,A 为同一对).函数()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上关于原点成中心对称的点对有( )A. 1对B. 2对C. 3对D. 4对14.将函数()sin 36f x x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),再将所得到的图象向右平移()0m m >个单位长度,得到函数()g x 的图象.若()g x 为奇函数,则m 的最小值为_______. 15.给出下列四个命题正确的是______________: ①函数()ln 2f x x x =-+在区间(1,)e 上存在零点; ②将函数cos()6y x π=-的图象的横坐标变为原来的12倍得到函数cos(2)3y x π=-; ③若1m ≥-,则函数22log (2)y x x m =--的值域为R ;④“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件; 16.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos sin a B b A c A +=,则△ABC 的形状为_____________. 17.正弦型函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的图象如图所示,则()f x 的解析式为_______________.18.用I M 表示函数sin y x =在闭区间I 上的最大值,若正数a 满足[0,][,2]2a a a M M ≥,则[0,]a M =________;a 的取值范围为________.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,22a bc =且sin 2sin A C =,则cos C ________.20.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2b sin A a cos B +a sin B . (1)求B ;(2)设b =,a =4,D 为线段BC 上一点,若S △ABD ,求AD 的长. 21.已知函数()()22sin cos f x x x x =++-(1)求它的单调递增区间; (2)若0,2x π⎛⎫∈ ⎪⎝⎭,求此函数的值域. 22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且22sin 30C C -++=. (1)求角C 的大小;(2)若b =,△ABC 的面积为sin 2A B ,求sin A 及c 的值. 23.已知函数()2cos 2sin 2x x f x x πωωω⎛⎫=++ ⎪⎝⎭(0>ω)的最小正周期为π.(1)求ω的值和函数f (x )的单调增区间; (2)求函数f (x )在区间,2ππ⎡⎤⎢⎥⎣⎦上的取值范围. 24.已知△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且1cos 2a c Bb =+. (1)求cos C ;(2)若c =,求+a b 的取值范围.25.已知函数2()cos 2cos 1f x x x x =+-(x ∈R ). (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的单调区间;(2)若06()5f x =,0[,]42x ππ∈,求0cos2x 的值. 26.已知a ,b ,c 分别为说角△ABC 三个内角A ,B ,C 的对边,满足222sin sin sin sin sin 0.A B C B C --+=(1)求A ;(2)若b =2,求△ABC 面积的取值范围. 27.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭满足下列3个条件中的2个条件:①函数f (x )的周期为π;②6x π=是函数f (x )的对称轴;③04f π⎛⎫=⎪⎝⎭且在区间,62ππ⎛⎫⎪⎝⎭上单调; (Ⅰ)请指出这二个条件并说明理由,求出函数f (x )的解析式; (Ⅱ)若0,3x π⎡⎤∈⎢⎥⎣⎦,求函数f (x )的最值.试卷答案1.B【详解】由条件可知2724cos 2cos1,sin 2sin cos 2252225θθθθθ=-=-==, 24tan 7θ-=.又24tan 7y x θ==-, 所以247x y =-,即2470x y +=. 故选:B . 2.C 【分析】22tan tan A a B b=左边切化弦,右边用正弦定理化边为角可解 【详解】22tan tan A a B b =,22sin cos sin sin cos sin A B AB A B∴=cos sin cos sin B A A B∴=,sin cos sin cos A A B B ∴= sin 2sin 2A B ∴=22A B ∴=或2+2=A B πA B ∴=或+=2A B πABC 是等腰或直角三角形故选:C . 3.D 由题意得22ππω=,故1ω=, ∴()cos(2)f x x ϕ=+, ∴()cos[2()]cos(2)cos 263g x x x x ππϕϕ=-+=-+=,∴3πϕ=,∴()cos(2)3f x x π=+.∵2251()cos(2)cos 133332f ππππ=⨯+==≠±,21()cos(2)cos 166332f ππππ=⨯+==-≠±, ∴选项A,B 不正确. 又22()cos(2)cos()10333f ππππ-=-⨯+=-=-≠, 55()cos(2)cos()0121232f ππππ-=-⨯+=-=, ∴选项C,不正确,选项D 正确.选D . 4.C 【分析】由二倍角公式和平方关系可得22sincoscos 222ααα=,再由商数关系即可得解.【详解】因为2sin 1cos αα=+,所以224sin cos1cos sin 2222αααα=+-,所以22sincoscos 222ααα=,又α是第一象限角,所以cos02α≠,所以2sincos1222cos 2ααα=即1tan 22α=.故选:C.【点睛】本题考查了二倍角公式及同角三角函数关系的应用,考查了运算求解能力,属于基础题. 5.B图像相邻两条对称轴之间的距离为2π,即三角函数的周期为22,,22ππππωω⨯=∴==,所以sin 2sin 212126f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又12f x π⎛⎫+ ⎪⎝⎭是偶函数,,62k k Z ππϕπ∴+=+∈,即,3k k Z πϕπ=+∈,又2πϕ<,解得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.A项,最小正周期T π=,错误;B 项, 由222,232k x k k Zπππππ-≤+≤+∈,解得单调递增区间为5,,1212k k k Z ππππ⎡⎤-+⎢⎥⎣∈⎦,k=1时成立,故正确;;C 项, 2,32x k k Z πππ+=+∈,解得对称轴是,212k x k Z ππ=+∈,错误;D 项, 由2,3x k k Z ππ+=∈,解得对称中心是,0,26⎛⎫-∈ ⎪⎝⎭k k Z ππ,错误;综上所述,应选B. 6.B 【分析】由三角函数的基本关系式和4ABCS=,求得10ab =,再由正弦定理,得到a b =+,根据余弦定理,列出方程,即可求解.【详解】因3cos 5C =,则(0,)2C π∈,所以4sin 5==C ,又因为4ABCS=,即114sin 4225ab C ab =⨯=,解得10ab =,sin sin C A B =+a b =+, 由余弦定理,可得22222223162cos 2()33255c a b ab C a b ab a b ab c =+-=+-⨯=+-=-,整理得216c =,即4c =.故选:B.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于中档题. 7.C试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin 4BAC π=∠,解得sin BAC ∠=考点:解三角形. 8.C 【分析】根据函数()sin y A ωx φ=+的图象变换规律,得到sin 2)2(x g x πϕ⎛⎫-+ ⎝=⎪⎭,函数()g x 在3x π=处取得最大值,求得3πϕ=,再求函数()f x 的对称轴和对称中心即可.【详解】由题意得,12sin 2sin (4)222x x x g ππϕϕ⎡⎤⎛⎫⎛⎫⨯-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=, 由函数()g x 在3x π=处取得最大值,得max sin 2sin 13326()g x g ππππϕϕ⎛⎫⎛⎫⎛⎫==⨯-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴262k ππϕπ+=+,k Z ∈,23k πϕπ=+,k Z ∈,∵0ϕπ<<,∴3πϕ=,∴2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由23x k ππ+=,k Z ∈,得26k x ππ=-,k Z ∈, ∴函数()f x 的图象关于,026k ππ⎛⎫- ⎪⎝⎭,k Z ∈对称, 故A ,B 选项错误; 由232x k πππ+=+,k Z ∈,得212k x ππ=+,k Z ∈, ∴函数()f x 的图象的对称轴方程为212k x ππ=+,k Z ∈, 显然当1k =-时,函数()f x 的图象的对称轴为直线512x π=-, 故选:C .【点睛】本题主要考查三角函数的图象变换,三角函数的最值,三角函数图象的对称性等,考查的数学核心素养是数学运算、直观想象. 9.B【分析】由二倍角公式降幂,然后由两角和的正弦公式化简函数为一个角一个三角函数形式,再利用正弦函数性质可得最小值. 【详解】21()cos sin 4442222223x x x x x x x x f x π⎫⎛⎫=-=+==+⎪ ⎪⎪⎝⎭⎭, 当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,,2362x πππ⎡⎤+∈⎢⎥⎣⎦,所以236x ππ+=,即3x π=-时,min ()2f x =. 故选:B .【点睛】本题考查求正弦型函数的最值,解题关键是利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式. 10.A 【分析】 根据1cos 44πα⎛⎫-=⎪⎝⎭,将sin 2α,利用诱导公式和二倍角的余弦公式转化为2sin 22cos 14παα⎛⎫=-- ⎪⎝⎭求解.【详解】因为1cos 44πα⎛⎫-=⎪⎝⎭, 所以27sin 2cos 22cos 1448ππααα⎡⎤⎛⎫⎛⎫=-=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A【点睛】本题主要考查诱导公式和二倍角公式的应用,还考查了转化求解问题的能力,属于基础题. 11. B 【详解】试题分析:()f x 的对称轴是2x π=2f π⎛⎫∴= ⎪⎝⎭cos cos 36a ππ+=a =考点:三角函数性质点评:利用对称轴处取最值求解 12.C 【分析】先求得C ,然后利用正弦定理求得a . 【详解】因为,412A B ππ==,所以23C A B ππ=--=,所以sin sin c Aa C===故选:C【答案】 13.C 【分析】作出函数6log y x =,作出sin ,02y x x π=≤关于原点的对称图像,由图象交点个数即可得到结论.【详解】若()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上有关于原点成中心对称的点, 则6log y x =与sin,02y x x π=≤关于原点对称图像有交点,作出6log y x =,sin(),02y x x π=--≥图象如图,由图象可知,有3个交点,从而()f x 有3对关于原点对称的点. 故选:C【点睛】本题主要考查了对数函数、正弦型函数的图象与性质的应用问题,也考查了数形结合思想,属于中档题. 14.3π 【分析】利用图象变换求得函数()y g x =的解析式,由函数()y g x =为奇函数,可得出关于m 的代数式,进而可求得正数m 的最小值. 【详解】将函数()sin 36f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数11sin 3sin 6626y x x ππ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭的图象, 再将所得函数图象向右平移()0m m >个单位长度,得到()()111sin sin 26262g x x m x m ππ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭的图象,由于函数()y g x =为奇函数,则()162m k k Z ππ-=∈,()23m k k Z ππ∴=-∈, 当0k =时,正数m 取得最小值3π. 故答案为:3π. 【点睛】本题考查利用三角函数图象变换求函数解析式,同时也考查了利用正弦型函数的奇偶性求参数,考查计算能力,属于中等题.①③④ 【分析】根据零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义判断各选项.【详解】①()ln 2f x x x =-+,(1)10f =-<,()10f e e =->,由零点存在定理得()f x 在(1,)e 上有零点,①正确;②函数cos()6y x π=-的图象的横坐标变为原来的12得到函数cos 26y x π⎛⎫=- ⎪⎝⎭,②错误;③1m ≥-时,440m ∆=+≥,故函数值域为R ,③正确;④()1x x a e f x ae -=+是奇函数,则1()11x x xx x xa e ae a e f x ae e a ae------===-+++,22(1)(1)0xa e --=,1a =±,因此“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件,④正确. 故答案为:①③④【点睛】本题考查命题的真假判断,掌握零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义是解题基础. 16. 直角三角形 【分析】利用正弦定理边角互化思想求得sin A 的值,可求得角A 的值,进而可判断出ABC 的形状. 【详解】cos cos sin a B b A c A+=,由正弦定理得sin cos cos sin sin sin A B A B A C +=,即()()sin sin sin sin sin A C A B C C π=+=-=,0C π<<,则sin 0C >,sin 1A ∴=,0A π<<,2A π∴=.因此,ABC 为直角三角形. 故答案为:直角三角形.【点睛】本题考查利用正弦定理边角互化思想判断三角形的形状,考查计算能力,属于基17.()2sin(2)3f x x π=+【分析】由最值求得A ,由周期求得ω,由最高点或零点横坐标及ϕ的范围求得ϕ,得解析式.【详解】由题意1A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,∴22πωπ==, 由正弦函数性质得,22122k ππϕπ⨯+=+,k Z ∈,∵2πϕ<,∴3πϕ=.∴()2sin(2)3f x x π=+.故答案为:()2sin(2)3f x x π=+【点睛】本题考查求三角函数的解析式,掌握“五点法”作正弦函数的图象是解题关键. 18. 1; 513,612ππ⎡⎤⎢⎥⎣⎦【分析】根据三角函数的有界性易得[0,]1a M =,通过作图分析可得a 的取值范围. 【详解】作出函数sin y x =的图象,如图所示:显然,[0,]a M 的最大值为1,[0,][,2]2a a a M M ≥,∴[,2]a a M 的最大值为12, 作出直线12y =与sin y x =相交于,,A B C 三点,且151131(,)(,),(,)626262A B C πππ,由图形可得:5,513613662,6a a a ππππ⎧≤⎪⎪⇒≤≤⎨⎪≤⎪⎩, 故答案为:513[,]66ππ. 【点睛】本题考查函数的新定义问题,考查函数与方程思想、数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意结合图象进行分析求解. 19.78【分析】根据正弦定理将角化成边得2a c =,结合2b c =,将边统一用c 表示,再利用余弦定理,即可得答案; 【详解】sin 2sin 2A C a c =⇒=,又22a bc =,∴2b c =,∴2222277cos 2248a b c c C ab c +-===⋅⋅, 故答案为:78. 【点睛】本题考查正余弦定理的应用,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意将边统一用c 进行表示,进而求得角的余弦值. 20. (1)3π;(2) 【分析】(1)根据2b sin Aa cos B +a sin B ,利用正弦定理得到sin sin cos B A A B =,再根据sin 0A ≠求解.(2)在△ABC 中,利用余弦定理求得c ,再由S △ABD,求得BD ,然后 在△ABD 中,由余弦定理求解.【详解】(1)因为2b sin Acos B +a sin B ,所以2sin sin sin cos sin sin B A A B A B =+,sin sin cos B A A B =,sin 0A ≠tan B =()0,B π∈ 3B π=(2)在△ABC 中,由余弦定理得:2222cos b a c ac B =+-,解得6c =或2c =-(舍去),因为S △ABD =1sin 22⨯⨯=BD c B , 解得 3BD =,在△ABD 中,由余弦定理得:2222cos 27AD BD c BD c B =+-⨯⨯⨯=,解得AD =.【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题. 21.(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈);(2)(1⎤⎦.【分析】(1)化简()f x ,再根据正弦函数的单调增区间代入求解即可. (2)根据(1)的结果()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,再根据0,2x π⎛⎫∈ ⎪⎝⎭求出23x π+的范围结合sin 23y x π⎛⎫=+⎪⎝⎭的值域为,12⎛⎤-⎥⎝⎦,即可求出结果.【详解】(1)())21sin 22cos 1f x x x =+-1sin 212sin 23x x x π⎛⎫=++=++ ⎪⎝⎭由222232k x k πππππ-+≤+≤+,得51212k x k ππππ-+≤≤+,k Z ∈.故此函数的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈).(2)由02x π<<,得42333x πππ<+<.sin 23y x π⎛⎫=+ ⎪⎝⎭的值域为⎛⎤ ⎥⎝⎦.()12sin 23f x x π⎛⎫=++ ⎪⎝⎭的值域为(1⎤⎦,故此函数的值域为(1⎤-⎦【点睛】本题主要考查了三角函数的性质,常考三角函数的性质有:对称轴、单调性、最值、对称中心.属于中档题. 22.(1)34C π=;(2)sin 1A c ==. 【分析】(1)由三角恒等变形可得cos 2C =-,0C π<<又,即34C π=.(2)由余弦定理得c =,再由正弦定理及三角形面积公式可得:2sin ()sin sin sin sin a b c C C A B C==,即1c ==,得解.【详解】解:(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴,sinA C ∴==,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.【点睛】本题考查了三角恒等变形及正余弦定理,属中档题. 23.(1)1ω=;单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)[]0,3. 【分析】(1)先将函数解析式整理,得到()2sin 216f x x ⎛⎫=-++ ⎪⎝⎭πω,根据最小正周期,即可求出1ω=,由正弦函数的单调性,列出不等式求解,即可得出单调增区间; (2)先由3x ππ≤≤,得到7132666x πππ≤+≤,根据正弦函数的性质,即可求出结果. 【详解】(1)()2cos 2sin cos 1cos 22x x x x x f x x ⎛⎫=++=-+- ⎪⎝⎭πωωωωωω2cos 212sin 216x x x ⎛⎫=-+=-++ ⎪⎝⎭πωωω,∵函数()f x 的最小正周期为22T ππω==, ∴1ω=;∴()2sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 由3222262k x k πππππ+≤+≤+()k ∈Z ,得263k x k ππππ+≤≤+()k ∈Z ,∴函数()f x 的单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (2)由2x ππ≤≤得7132666x πππ≤+≤, 所以1sin 21,62x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,则()[]2sin 210,36f x x ⎛⎫=-++∈ ⎪⎝⎭π. 即()f x 的取值范围为[]0,3.【点睛】本题主要考查由正弦型函数的周期求参数,考查求正弦型函数的单调区间,考查求正弦型函数在给定区间的值域,属于常考题型. 24.(1)12;(2)3【分析】(1)利用余弦定理将角转化为边,再利用余弦定理求得结果;(2)由已知结合正弦定理将边转化角,再利用三角形内角和定理、辅助角公式转化为求6a b A π⎛⎫+=+ ⎪⎝⎭的取值范围.【详解】(1)由1cos 2a c Bb =+,可得222222cos a ab ac B a c b -==+-, 整理得222a b c ab +-=,所以222cos 122a b c C ab +-==.(2)由(1)得1cos 2C =,0C π<<,3C π=,,sin 2C =,c = 由正弦定理得2sin sin sin a b cA B C===, ∴22sin 2sin 2sin 2sin 3a b A B A A π⎛⎫+=+=+-⎪⎝⎭3sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,∵3C π=,∴203A π<<,5666A πππ<+<, 1sin 126A π⎛⎫<+≤ ⎪⎝⎭6A π⎛⎫<+≤ ⎪⎝⎭∴+a b 的取值范围是3.【点睛】本题主要考查正弦定理和余弦定理的应用,属于中档题. 25.(1)最小正周期是π,增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2 【分析】(1)应用二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解; (2)由(1)求得0sin 26x π⎛⎫+ ⎪⎝⎭,再求出0cos 26x π⎛⎫+⎪⎝⎭,然后用两角差的余弦公式求解.【详解】(1)1()2cos 222cos 22sin 2326f x x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以最小正周期为22T ππ==, 0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,由2662x πππ≤+≤,得06x π≤≤, 由72266x πππ≤+≤得62x ππ≤≤, 所以()f x 的增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2)由(1)得062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭, 因为0,43x ππ⎡⎤∈⎢⎥⎣⎦,所以0252,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以04cos 265x π⎛⎫+=- ⎪⎝⎭,所以0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦431552=-+⨯=【点睛】本题考查求三角函数的周期与单调区间,考查两角和与差的正弦、余弦公式,二倍角公式,同角间的三角函数关系.解题关键是把三角函数化为一个角的一个三角函数形式,然后由正弦函数性质求解. 26.(1)3A π=;(2)(2【分析】 (1)利用正弦定理的边角互化可得222a b c bc =+-,再利用余弦定理即可求解. (2)利用正弦定理可得2sin sin C c B=,再利用三角形的面积公式可得12sin 2sin 2sin ABC C S A B=⨯⨯,根据三角形的内角和性质以及两角差的正弦公式可将式子312tan B ⨯,结合B 的取值范围即可求解. 【详解】解:(1)由已知及正弦定理得, 222,a b c bc =+- 由余弦定理可得2221cos .22b c a A bc +-== 又0A π<<,.3A π∴=(2) 由已知及正弦定理得, 2sin ,sin C c B =由2,3B C π+=得12sin 2sin 2sin ABC C S A B=⨯⨯2sin()313.sin 2tan B B Bπ-==+⨯ ABC 是锐角三角形,得20,0,232B B πππ<<<-<得.62B ππ<<tan B >∴10tan B ∴<<ABC S <<所以ABC面积的取值范围是,2 【点睛】本题考查了正弦定理的边角互化、余弦定理解三角形、三角形的面积公式、两角差的正弦公式,属于中档题.27.(Ⅰ)①②成立,理由见解析,()sin 26f x x π⎛⎫+⎝=⎪⎭;(Ⅱ)f (x )的最大值为1;最小值为12.【分析】(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案. (Ⅱ)03x π≤≤得到52666x πππ≤+≤,得到函数值域,即可得出最值. 【详解】(Ⅰ)由①可得,22ππωω=⇒=. 由②得:6226k k πωπππωϕπϕπ+=+⇒=+-,k Z ∈ 由③得,44m m πωπωωπϕπ+=⇒=-,m Z ∈220322633T πππππωω≥-=⇒≥⇒<≤ 若①②成立,则2ω=,6π=ϕ,()sin 26f x x π⎛⎫+ ⎝=⎪⎭. 若①③成立,则42m m πωπϕππ=-=-,m Z ∈,不合题意. 若②③成立,则()1266264k m m k ππωπωππω+-=-⇒=--≥,k Z ∈与③中的03ω<≤矛盾,所以②③不成立.所以,只有①②成立,()sin 26f x x π⎛⎫+⎝=⎪⎭. (Ⅱ)由题意得,()5102136662x x f x ππππ≤≤⇒≤+≤⇒≤≤. 所以,当6x π=时,函数()f x 取得最大值1;当0x =或3x π=时,函数()f x 取得最小值12.。
【2019最新】高考数学第01期小题精练系列专题09解三角形理含解析
【解析】
考点:1、正弦定理及余弦定理;2、同角三角函数之间的关系.
8.中三边上的高的大小依次为,,,则为()
A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形
【答案】C
【解析】
试题分析:设中三边分别为,设,因为,故能构成三角形,取大角,,所以为钝角,所以为钝角三角形,故选C.
2.中,若,则()
A.B.
C.是直角三角形D.或
【答案】D
【解析】
考点:解三角形.
3.设锐角△的三个内角,,的对边分别为,,成等比数列,且,
则角()
A.B.C.D.
【答案】B
【解析】
考点:1、等比数列的性质;2、正弦定理及特殊角的三角函数.
4.在△中,,,分别是,,的对边长,已知,且
,则实数.
【答案】
——教学资料参考参考范本——
【2019最新】高考数学第01期小题精练系列专题09解三角形理含解析
______年______月______日
____________________部门
1.中,角的对边分别是,已知,则()
A.B.C.D.
【答案】C
【解析】
试题分析:由,由余弦定理得
,即,所以,故选C.
考点:余弦定理.
【解析】
试题分析:因为,两边平方可得即,解得:,而可以变形为,即,所以,,故答案为.
考点:1、余弦定理的应用;2、同角三角函数之间的关系.
5.如图所示,为测一树的高度,在地面上选取两点,从两点分别测得树尖的仰角为,,且两点间的距离为,则树的高度为()
A.B.C.D.
【答案】A
【解析】
试题分析:在中,
考点:1、三角形的形状判断;2、余弦定理的应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 三角函数
1.下列说法正确的是( )
A .第二象限的角比第一象限的角大
B .若1sin 2α=,则6
πα= C .三角形的内角是第一象限角或第二象限角
D .不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关
【答案】D
【解析】
考点:1、弧度制与角度制;2、象限角及特殊角的三角函数.
2.若点55(sin ,cos )66
ππ在角的终边上,则sin α的值为( )
A .-.12- C .12
D 【答案】A
【解析】
试题分析:角的终边上的坐标为55(sin ,cos )66ππ,即1,2
⎛ ⎝⎭,则由任意角的三角函数的定义,可得
sin 2
α=-,故选A. 考点:特殊角的三角函数及任意角的三角函数的定义.
3.已知的终边过点()2,3,则7tan 4πθ⎛⎫+ ⎪⎝⎭
等于( ) A .15- B .
15
C .-5
D .5 【答案】B
【解析】
试题分析:“的终边过点()2,3”,所以3tan 2θ=,所以7tan 11tan tan 441tan 5ππθθθθ-⎛⎫⎛⎫+=-== ⎪ ⎪+⎝⎭⎝⎭. 考点:三角恒等变换.
4.已知3sin 22cos 2π
απαα<<=,,则cos()απ-的值为( )
A .13
B .13
- D . 【答案】C
【解析】
考点:1.二倍角公式的应用;2.三角函数中诱导公式的应用.
5.将函数()sin()2f x x π
π=+图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)
,再把 图象上所有的点向右平移1个单位,得到函数()g x 的图象,则函数()g x 的单调递减区间是( )
A .[21,22]()k k k Z -+∈
B .[21,23]()k k k Z ++∈
C.[41,43]()k k k Z ++∈ D .[42,44]()k k k Z ++∈
【答案】C
【解析】 试题分析:由题意得,)2sin(3)(x x f ππ
+=图象上所有点的横坐标伸长到原来的倍(纵坐标不变)
,再把图象上所有的点向右平移个单位,)2sin(3)(x
x g π=,由)(2
32222Z k k x
k ∈+≤≤+ππππ
π,则[41,43]()x k k k Z ∈++∈,故选C .
考点:1.三角函数的拉伸变换;2.三角函数的平移变换;3.三角函数的单调性.
6.余弦函数cos()4y x π=+
在下列哪个区间为减函数( ) A .3,
44ππ⎡⎤-⎢⎥⎣⎦ B .[],0π- C .3,44ππ⎡⎤-⎢⎥⎣⎦ D .,22ππ⎡⎤-⎢⎥⎣⎦ 【答案】C。