材料力学习题答案
材料力学习题册_参考答案(1-9章)

第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。
若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。
请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。
在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。
因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。
在本例中,材料的屈服强度是200 MPa。
第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。
若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。
要计算应变,我们可以使用公式ε =σ/E。
将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。
第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。
如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。
请解释塑性变形与弹性变形的区别。
答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。
弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。
而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。
第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。
如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。
请计算在单轴拉伸下,材料达到断裂的临界应力。
材料力学习题答案

.材料力学习题答案27.3在图示各单元体中,试用解析法和图解法求斜截面ab上的应力。
应力的单位为MPa。
解(a) 如受力图(a)所示()70xMPaσ=,()70yMPaσ=-,0xyτ=,30α=(1) 解析法计算(注:P217)()cos2sin22270707070cos6003522x y x yxyMPaασσσσσατα+-=+--+=+-=()7070sin cos2sin60060.622x yxyMPaασστατα-+=+=-=(2) 图解法作Oστ坐标系, 取比例1cm=70MPa, 由xσ、xyτ定Dx点,yσ、yxτ定Dy点, 连Dx 、Dy , 交τ轴于C点, 以C点为圆心, CDx 为半径作应力圆如图(a1)所示。
由CDx起始, 逆时针旋转2α= 60°,得Dα点。
从图中可量得Dα点的坐标, 便是ασ和ατ数值。
7.4 已知应力状态如图所示,图中应力单位皆为MPa。
试用解析法及图解法求:(1) 主应力大小,主平面位置;(2) 在单元体上绘出主平面位置及主应力方向;.(3) 最大切应力。
解 (a) 受力如图(a)所示()50x MPa σ=,0y σ=,()20xy MPa τ=(1) 解析法 (数P218)2max 2min 22x y x y xy σσσσστσ+-⎛⎫⎫=±+⎬ ⎪⎭⎝⎭()()225750050020722MPa MPa ⎧+-⎪⎛⎫=±+=⎨ ⎪-⎝⎭⎪⎩ 按照主应力的记号规定()157MPa σ=,20σ=,()37MPa σ=-02220tan 20.8500xyx yτασσ⨯=-=-=---,019.3α=-()13max 5773222MPa σστ-+=== (2) 图解法作应力圆如图(a1)所示。
应力圆与σ轴的两个交点对应着两个主应力1σ、3σ 的数值。
由x CD 顺时针旋转02α,可确定主平面的方位。
河海大学材料力学习题册答案解析

河海大学材料力学习题册答案解析示例文章篇一:《河海大学材料力学习题册答案解析》一、弯曲内力习题答案解析1. 对于求梁某截面上的剪力和弯矩的题目。
- 答案思路:首先要根据梁的受力情况,采用截面法。
就像是把梁在要求的截面处“一刀切开”,然后看切开后的左右部分的受力平衡。
比如说有一道题,梁上有集中力和均布载荷。
那我们先假设剪力的方向(向上为正或者向下为正,按照规定来),然后对切开后的一部分列平衡方程。
弯矩也是一样,以梁的某一点为矩心,列力矩平衡方程。
- 解析:这就好比我们分蛋糕,要知道某一块蛋糕两边的力量对比。
如果在梁上有一个集中力作用在中间,那么在这个集中力左边和右边的截面,剪力和弯矩的值就会发生变化。
同学们可能会想,这和实际生活有啥关系呢?嘿,就像我们挑扁担,扁担上放了不同重量的东西,在扁担不同位置处,我们感受到的压力(类比剪力)和弯曲程度(类比弯矩)是不一样的。
如果我们把扁担看成梁,就能更好地理解这个概念了。
2. 关于画剪力图和弯矩图的题目。
- 答案思路:根据前面求出的不同截面的剪力和弯矩值,按照一定的规律来画图。
集中力作用处,剪力图会有突变,突变值就是集中力的大小;弯矩图在集中力作用处是折线,在均布载荷作用区间,剪力图是斜直线,弯矩图是抛物线。
- 解析:这就像我们在绘制一幅地图,剪力图和弯矩图就是梁的受力“地图”。
我们要把梁上各个地方的“力量变化”准确地表示出来。
比如说,均布载荷就像是一场均匀的小雨,它对梁的影响是逐渐变化的,所以在图上表现出来就是平滑的曲线。
而集中力就像突然掉下来的一块大石头,一下子就改变了梁的受力情况,所以在剪力图上就是突变的。
二、应力状态与强度理论习题答案解析1. 求主应力的题目。
- 答案思路:我们要用到应力状态的知识,通过应力圆或者公式计算。
先确定已知的应力分量,像正应力和切应力。
然后代入公式计算主应力。
- 解析:这就好比我们在一个复杂的交通路口,要找出主要的交通流向(主应力)。
材料力学第三章答案

材料力学第三章答案材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对b①③对c①②对d 全对7.扭转切应力公式?mnp?i?适用于(d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解:me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
材料力学性能课后习题答案

材料力学性能课后习题答案1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.xx效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
大学材料力学习题及答案
大学材料力学习题及答案(题库)(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.是非题:(正确的在括号中打“√”、错误的打“×”) (60小题) 1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。
( √ )2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。
( √ )3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。
(√ )4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。
( √ ) 5.截面上某点处的总应力p 可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。
( √ )7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。
( ) 8.在强度计算中,塑性材料的极限应力是指比例极限p σ,而脆性材料的极限应力是指强度极限b σ。
( )9.低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。
( )10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o 的滑移线,这是由最大剪应力max τ引起的,但拉断时截面仍为横截面,这是由最大拉应力max σ引起的。
( √ )13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。
( ) 14.EA 称为材料的截面抗拉(或抗压)刚度。
( √ )15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。
材料力学课后习题答案
材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。
材料力学(单辉祖)课后习题答案
何种类型(塑性或脆性材料)。
题 2-5
2
解:由题图可以近似确定所求各量。
E
=
∆σ ∆ε
≈
220 ×106 Pa 0.001
=
220 ×109 Pa
=
220GPa
σ p ≈ 220MPa , σs ≈ 240MPa , σ b ≈ 440MPa , δ ≈ 29.7%
该材料属于塑性材料。
2-6 一圆截面杆,材料的应力-应变曲线如题 2-6 图所示。若杆径 d =10mm,杆长
1-5 .....................................................................................................................................................1
2.求θ 的最佳值
由强度条件可得
A1
=
A2
=
F 2[σ ]sinθ
结构总体积为
V
=
2 A1l1
=
F [σ ]sinθ
⋅
l 2cosθ
=
Fl [σ ]sin2θ
6
由
得 由此得
dV dθ
=0
cos2θ = 0
θ = 45o 此 θ 值可使本桁架结构重量最轻,故为 θ 的最佳值。
2-18 图示摇臂,承受载荷 F1 与 F2 作用。试确定轴销 B 的直径 d。已知载荷 F1=50kN,
σ max = 117MPa (在圆孔边缘处)
2-15 图示桁架,承受载荷 F 作用,已知杆的许用应力为[σ ]。若在节点 B 和 C 的
位置保持不变的条件下,试确定使结构重量最轻的α 值(即确定节点 A 的最佳位置)。
大学材料力学习题及答案(题库)
一.是非题:(正确的在括号中打“√”、错误的打“×”)(60小题)1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。
( √ )2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。
( √ )3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。
(√ )4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。
( √ )5.截面上某点处的总应力p可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。
( √ )7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。
( )8.在强度计算中,塑性材料的极限应力是指比例极限σ,而脆性材p料的极限应力是指强度极限σ。
( )b9.低碳钢在常温静载下拉伸,若应力不超过屈服极限σ,则正应力sσ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。
( ) 10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o的滑移线,这是由最大剪应力τ引起的,但拉断时截面仍为横截max面,这是由最大拉应力σ引起的。
( √ )max13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。
( )14.EA 称为材料的截面抗拉(或抗压)刚度。
( √ )15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。
( √ )16.因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。
(√ )17.对于剪切变形,在工程计算中通常只计算剪应力,并假设剪应力在剪切面内是均匀分布的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1 第二章 轴向拉伸与压缩 2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
FN2
F F F F=2kN 2 2 3
3 1
1 F FN1 FN3
2 2 FN (kN)
F4=10kN F2=3kN F3=25kN F1=18kN 2 2 1 1 3
3
FN (kN) 18 15
10
18kN F
N1
3kN 18kN FN2
10kN FN3
FN1= -2kN FN2 = 0kN FN3= 2kN
FN1= -18kN FN2= -15kN FN3= 10kN
F F F +
(a)
(b) +
2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。 1FF=14kN2
2141020420
...
解: 1.轴力 由截面法可求得,杆各横截面上的轴力为 kN14NFF
2.应力
4201014311N11AFMPa175MPa
410201014322N22A
FMPa350MPa 5-2
2-3 图示桅杆起重机,起重杆AB的横截面是外径为mm 20、内径为mm 18的圆环,钢丝绳BC的横截面面积为2mm 10。试求起重杆AB和钢丝绳BC横截面上的应力。 F=2kN15A45CB... 解: 1.轴力 取节点B为研究对象,受力如图所示, 0xF: 045cos30cosNNFFFABBC 0yF: 045sin30sinNFFAB 由此解得: 83.2NABFkN, 04.1NBCFkN 2.应力 起重杆横截面上的应力为 223N182041083.2ABABABAFMPa4.47MPa 钢丝绳横截面上的应力为 101004.13NBCBCBCAFMPa104MPa 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为GPa 1001E和GPa 2102E。若杆的总伸长为mm 126.0Δl,试求载荷F和杆横截面上的应力。
F400600
钢铜.40
21...
解: 1.横截面上的应力 由题意有
2211221121ElElAEFlAEFllll 由此得到杆横截面上的应力为
33221
1
1021040010100600126.0
ElEl
lMPa9.15MPa
2.载荷 24049.15AFN20kN
BFNAB
F
FNBC
y
x30o15o 铜 钢 5-3 2-5 图示阶梯形钢杆,材料的弹性模量GPa 200E,试求杆横截面上的最大正应力和杆的总伸长。 解: 1.最大正应力 由于杆各横截面上的轴力相同,故杆横截面上的最大正应力发生在BC段的任一横截面上,即 127.3MPaMPa204104023NmaxBCAF 2.杆的总伸长 mm57.0mm20800404001020010404 444 22332222BCBCABABBCBCABABBCBCABABBCABdldlEFdEFldEFlEAFlEAFllll 2-6 图示电子秤的传感器为一空心圆筒形结构,圆筒材料的弹性模量GPa 200E。在秤某一沿圆筒轴向作用的重物时,测得筒壁产生的轴向线应变6108.49。试求此重物的重量G。 P
80
.
..9
解: 圆筒横截面上的轴力为 GFN
由胡克定律 EAGE 可以得到此重物的重量为
kN20 N298080410200108.49 2236
EAG
400 800 F=40kN 4020
FN (kN) A C B 40
G 5-4 第三章 材料的力学性质 拉压杆的强度计算
3-1 图示水压机,若两根立柱材料的许用应力为MPa 80][,试校核立柱的强度。
F=600kN
..工件..
..80
解: 立柱横截面上的正应力为
][59.74802106002MPaMPa23A
F
所以立柱满足强度条件。
3-2 图示油缸盖与缸体采用6个螺栓连接。已知油缸内径mm 350D,油压MPa 1p。若螺栓材料的许用应力MPa 40][,试求螺栓的内径。
FpD..
.
...
.
.
解: 由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。 油缸盖受到的压力为
42DpF 由于6个螺栓均匀分布,每个螺栓承受的轴向力为 46162NDpFF 由螺栓的强度条件
2222N64461dpDdDpAF≤][ 可得螺栓的直径应为 d≥mm6.22mm 3504061][6Dp 5-5
3-3 图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为2mm 200A。两杆的材料相同,许用应力MPa 160][。试求结构的许用载荷][F。 4530BCFAFAFNACFNABxy 解: 由0xF: 045sin30sinNNABACFF 可以得到: ABABACFFFNNN2 即AC杆比AB杆危险,故 32N 200160][NAFACkN 21621NNACABFFkN 由0yF: 030cos45cosNNFFFACAB 可求得结构的许用载荷为 ][F7.43kN 3-4 承受轴力kN 160NF作用的等截面直杆,若任一截面上的切应力不超过MPa 80,试求此杆的最小横截面面积。
解: 由切应力强度条件
AF22Nmax
≤][
可以得到 A≥80210160][23NFmm21000mm2 5-6
3-5 试求图示等直杆AB各段内的轴力。 BDCA2aaa2FFyFAFBFAFAFNCDFNACF2F2FFBFNDB 解: 为一次超静定问题。设支座反力分别为AF和BF 由截面法求得各段轴力分别为 AACFFN,FFFACD2N, BDBFFN ① 静力平衡方程为 0yF: 02BAFFFF ② 变形协调方程为 0DBCDACllll ③ 物理方程为 EAaFlACACN, EAaFlCDCD2N,EAaFlDBDBN ④ 由①②③④联立解得:FFA47,FFB45 故各段的轴力分别为:FFAC47N,4NFFCD,FFDB45N。 3-6 图示结构的横梁AB可视为刚体,杆1、2和3的横截面面积均为A,各杆的材料相同,许用应力为][。试求许用载荷][F。
FACBDE
FyFNADFNCE FNBFFl2ll
aa
解: 为一次超静定问题。 由对称性可知,BFADFFNN,BFADll。 ①
静力平衡条件: 0yF: 0NNNFFFFBFCEAD ②
变形协调条件: CEADll
即 EAlFEAlFCEAD2NN 即 CEADFFNN2 ③ 由①②③解得:FFFFCEBFAD522NNN
由AD、BF杆强度条件AFBFAD52≤][,可得该结构的许用载荷为 AF][25][ 5-7
3-7 图示铰接正方形结构,各杆的材料均为铸铁,其许用压应力与许用拉应力的比值为3][][tc,各杆的横截面面积均为A。试求该结构的许用载荷][F。 aaFFCBAD (b)'NFFNFNDFFNFN(a)B 解: B点受力如图(a)所示,由平衡条件可得:2NFF 由对称性可知,AD、BD、AC、BC四杆受拉,拉力均为2F,由拉杆的强度条件 AF2t≤][t 可得 F≤A][2t ① D点受力如图(b)所示,由平衡条件可得:FFFNN2' CD杆受压,压力为F,由压杆的强度条件 AFc≤][3][tc 可得 F≤A][3t ② 由①②可得结构的许用载荷为AF][2][t。 3-8 图示横担结构,小车可在梁AC上移动。已知小车上作用的载荷kN 15F,斜杆AB为圆截面钢杆,钢的许用应力MPa 170][。若载荷F通过小车对梁AC的作用可简化为一集中力,试确定斜杆AB的直径d。
0.8m
1.9mABFCFCFNABxA
解: 由几何关系,有388.09.18.08.0sin22
取AC杆为研究对象 0CM: 09.1sinNFxFAB
由此可知:当m 9.1x时, kN66.38kN388.015sinmaxNNFFFABAB
由 42maxNmaxdFABAB≤][ 可得 d≥mm17mm1701066.384][43maxNABF