天津市人教版七年级数学下册期末测试题

合集下载

天津市2020〖人教版〗七年级数学下册期末复习考试试卷220

天津市2020〖人教版〗七年级数学下册期末复习考试试卷220

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)(•宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.考点:生活中的平移现象.分析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.解答:解:观察图形可知图案D通过平移后可以得到.故选D.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、B、C.2.(3分)(•北京)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A.155°B.50°C.45°D.25°考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:首先根据平角的定义,可以求出∠ADB,再根据平行线的性质可以求出∠DBC.解答:解:依题意得∠ADB=180°﹣∠ADE=180°﹣155°=25°,∵AD∥BC,∴∠DBC=∠ADB=25°.故选D.点评:此题比较简单,主要考查了两条直线平行的性质,利用内错角相等解题.3.(3分)∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=45°,则∠1的度数是()A.45°B.90°C.135°D.45°或135°考点:对顶角、邻补角.专题:计算题.分析:根据对顶角相等,易得∠1=∠2,∠2的邻补角是∠3,则∠2+∠3=180°,进而计算可得答案.解答:解:∠1的对顶角是∠2,故∠1=∠2,∠2的邻补角是∠3,则∠2+∠3=180°,若∠3=45°,则∠1=∠2=135°;故选C.点本题考查对顶角的性质以及邻补角的定义与性质,是一个需要熟记的内容.评:4.(3分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|考点:实数的性质.分析:根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.解答:解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选A.点评:本题考查了实数的性质,对各项准确计算是解题的关键.5.(3分)已知,则0.005403的算术平方根是()A.0.735 B.0.0735 C.0.00735 D.0.000735 考点:算术平方根.专题:计算题.分析:由于所求已知数0.005403的小数点比54.03向左移动了四位,那么则它的平方根就向左移动两位,由此即可得到结果.解答:解:∵=7.35∴0.005403的算术平方根是0.0735.故选B.点评:此题主要考查了算术平方根的定义和性质,解题关键是小数点的位置,这个数的小数点向左移动了四位.则它的平方根就向左移动两位.6.(3分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.50°B.80°C.65°D.115°考点:平行线的性质;翻折变换(折叠问题).分析:由把矩形ABCD沿EF对折,根据矩形的性质,可得AD∥BC,由折叠的性质,可得∠BFE=∠2,又由∠1=50°,即可求得∠BFE的度数,然后根据两直线平行,同旁内角互补,即可求得∠AEF的度数.解答:解:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D.点评:此题考查了矩形的性质,折叠的性质以及平行线的性质.此题难度不大,解题的关键是注意掌握两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.7.(3分)三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2 B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣考点:实数大小比较.分析:根据两个负数绝对值大的反而小来比较即可解决问题.解答:解:∵﹣2=﹣,又∵<<∴﹣2>﹣>﹣.故选C.点评:本题考查了用绝对值比较实数的大小,比较简单.8.(3分)由点A(﹣5,3)到点B(3,﹣5)可以看作()平移得到的.A.先向右平移8个单位,再向上平移8个单位B.先向左平移8个单位,再向下平移8个单位C.先向右平移8个单位,再向下平移8个单位D.先向左平移2个单位,再向上平移2个单位考点:坐标与图形变化-平移.分析:根据点的坐标发现从A到B横坐标+8,纵坐标﹣8,故先向右平移8个单位,再向下平移8个单位.解答:解:从点A(﹣5,3)到点B(3,﹣5),横坐标+8,纵坐标﹣8,故先向右平移8个单位,再向下平移8个单位,故选:C.点评:此题主要考查了点的平移变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.9.(3分)(•枣庄)在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.解答:解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选B.点评:本题考查了象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.10.(3分)下列语句中,假命题的是()A.如果A(a,b)在x轴上,那么B(b,a)在y轴上B.如果直线a、b、c满足a∥b,b∥c,那么a∥cC.两直线平行,同旁内角互补D.相等的两个角是对顶角考点:命题与定理;点的坐标;对顶角、邻补角;平行公理及推论;平行线的性质.专题:推理填空题.分析: A、若 A(a,b)在x轴上,由此得到b=0,那么可以确定B(b,a)的位置;B、由于直线a、b、c满足a∥b,b∥c,那么根据平行线的性质即可确定是否正确;C、根据平行线的性质即可判定是否正确;D、根据对顶角的定义即可判定.解答:解:A、∵A(a,b)在x轴上,∴b=0,∴B(b,a)在y轴上,故选项正确;B、∵直线a、b、c满足a∥b,b∥c,∴a∥c,故选项正确;C、根据平行线的性质知道两直线平行,同旁内角互补,故选项正确;D、相等的两个角不一定是对顶角,故选项错误.故选D.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了平行线的性质与坐标系点的坐标特点.二、填空题(每题4分,共32分)11.(4分)在、、﹣π中,﹣π是无理数.考点:无理数;算术平方根;立方根.专题:推理填空题.分析:求出=0.3,=3,根据无理数的定义判断即可.解答:解:=0.3,=3,∴无理数有﹣π,故答案为:﹣π.点评:本题考查了无理数,算术平方根,立方根等知识点的应用,无理数包括:含π的;开方开不尽的根式,一些有规律的数,题目比较典型.12.(4分)把命题“对顶角相等”改写成:如果两角是对顶角,那么它们相等.考点:命题与定理.分析:先找到命题的题设和结论,再写成“如果…那么…”的形式.解答:解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:两角是对顶角,它们相等.点评:本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.13.(4分)的平方根是±3,的算术平方根是2.考点:立方根;平方根;算术平方根.专题:应用题.分析:根据平方根、算术平方根和立方根的概念直接计算即可求解.注意:=9,=4.解答:解:∵=9,9的平方根是±=±3,∴的平方根是±3;∵=4,4的算术平方根是2,∴的算术平方根是2.∴应填±3,2.点评:本题考查了平方根、算术平方根和立方根的概念及其运算.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.14.(4分)点A(﹣3,0)在x轴上,点B(﹣2,﹣3)在第三象限.考点:点的坐标.分析:根据在x轴上、各象限点的坐标的特点进行解答.解答:解:因为点A(﹣3,0)的纵坐标为0,所以其在x轴上,因为点B(﹣2,﹣3)的横、纵坐标均为负数,所以它在第三象限.故填:x,三.点评:解答本题的关键是明确在x轴上、各象限点的坐标的特点.15.(4分)已知是方程3x﹣ay=8的解,则a=1.考点:二元一次方程的解.专题:计算题.分析:将x与y的值代入计算即可求出a的值.解答:解:将代入方程3x﹣ay=8得:9﹣a=8,解得:a=1.故答案为:1.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(4分)(•洛阳一模)如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=32°.考点:平行线的性质.分析:根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.解答:解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=∠EFD=×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.点评:本题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.17.(4分)如图,点E在AC的延长线上,若要使AB∥CD,则需添加条件∠1=∠2(写出一种即可).考点:平行线的判定.分析:根据平行线的判定定理得出直接得出即可.解答:解:当∠1=∠2时,AB∥CD(内错角相等,两直线平行).故若要使AB∥CD,则需添加条件∠1=∠2.故答案为:∠1=∠2.点评:此题主要考查了平行线的判定,熟练掌握相关的定理是解题关键.18.(4分)已知点(a,﹣1)与点(2,2b﹣5)关于x轴对称,则a=2,b=3.考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,列出关于a、b的方程,解方程即可.解答:解:∵点(a,﹣1)与点(2,2b﹣5)关于x轴对称,∴a=2,2b﹣5=1,∴a=2,b=3.故答案为2,3.点评:本题考查了关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,牢记此特点是解答本题的关键.三、解答题(共58分)19.(15分)计算(1)4(2﹣x)2=9(2)(3)﹣2(x﹣3)3+16=0.考点:实数的运算;平方根;立方根;零指数幂.分析:(1)直接开方即可;(2)分别根据0指数幂及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(3)先移项,再直接开方即可.解答:解:(1)方程两边同时除以4得,(2﹣x)2=,两边开方得,2﹣x=±,即2﹣x=±,解得x1=,x2=;(2)原式=1﹣0.5+2=2.5;(3)移项得,﹣2(x﹣3)3=﹣16,方程两边同时除以﹣2得,(x﹣3)3=8,两边开方得,x﹣3=2,解得x=5.点评:本题考查的是实数的运算,熟知0指数幂及数的开方法则是解答此题的关键.20.(8分)解方程组:.考点:解二元一次方程组.分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.解答:解:,①+②×2得,7x=21,解得x=3,把x=3代入②得,6+y=4,解得y=﹣2,故此方程组的解为:.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.21.(7分)已知实数a、b在数轴上对应点的位置如图,化简|b﹣a|+|a+b|.考点:整式的加减;绝对值;实数与数轴.专题:计算题.分析:由数轴上点的位置,判断出b﹣a与a+b的正负,利用绝对值的代数意义化简即可得到结果.解答:解:由数轴上点的位置得:b﹣a<0,a+b<0,∴|b﹣a|+|a+b|=a﹣b﹣a﹣b=﹣2b.点评:此题考查了整式的加减,绝对值,以及实数与数轴,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.22.(7分)下图是某市部分地区的示意图,请你建立适当的平面直角坐标系,并写出图中各地点相应的坐标.考点:坐标确定位置.专题:开放型.分析:在图中任选一点建立坐标系,即可写出图中各地点相应的坐标.解答:解:建立如图坐标系:则教育局(﹣1,3);苏果超市(0,1);怡景湾酒店(﹣3,﹣2);同仁医院(4,﹣3).点评:本题考查了学生利用类比点坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再建立适当的坐标系,然后确定各点坐标.23.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.考点:平行线的判定;角平分线的定义.专题:探究型.分析:根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.解答:解:BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(等量代换).∴BE∥DF(同位角相等,两直线平行).点评:此题运用了四边形的内角和定理、角平分线定义、等角的余角相等和平行线的判定,难度中等.24.(11分)在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.考点:坐标与图形变化-平移.分析:先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点C向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点F分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.解答:解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.点评:考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,点C 到直线AB 的距离是指哪条线段长( ) A .CBB .CDC .CAD .DE2.下列不等式变形正确的是( ) A .由a >b ,得a ﹣2<b ﹣2 B .由a >b ,得|a|>|b| C .由a >b ,得﹣2a <﹣2bD .由a >b ,得a2>b23.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是4,则这样的点P 有( ) A .1个B .2个C .3个D .4个4.下列语言是命题的是( ) A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等.5.下列调查中,适宜采用全面调查方式的是( ) A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带违禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 6..不等式组的解集在数轴上表示正确的是( )A .B .C .D .7.若是方程组的解,则(a+b )•(a ﹣b )的值为( ) A .﹣B .C .﹣16D .168.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°9.如图,∠A +∠B +∠C +∠D +∠E +∠F =A.180°B.360°C.540°D.720°10.有甲、乙、丙三种商品,如果购买甲3件,乙2件,丙1件共需315元钱;购买甲1件,乙2件,丙3件共需285元,那么购甲,乙,丙三种商品各一件共需钱A.120元B.130元C.150元D.无法确定11.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩ 无解,则a 的取值范围是A.a <2B.a >2C.a ≥2D.a ≤2 12.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830°,则该多边形的边数是A.7B.8C.7或8D.无法确定第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A (1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B 的坐标为 .14.若a+1和-5是实数m 的两个平方根,则a 的值为 . 15.若0x 2-x =++y ,则=x y .16.如图,将一个宽度相等的纸条按如图所示沿AB 所折叠,已知︒=∠601,则=∠2 .17.已知a 是5的整数部分,b 是5的小数部分,则a-b= . 18.若不等式组⎩⎨⎧<->+1b x 23a 2x 解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)FED CBA19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案) 班级: 姓名: 得分: 时间:120分钟 满分:120分 一、选择题(共10小题,每题3分,共30分) 1.如果m是任意实数,则点P(m﹣4,m+3)一定不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.实数a在数轴上的位置如图所示,则|a-2.5|=( )

A.a-2.5 B.2.5-a C.a+2.5 D.-a-2.5 3.下列选项中的式表示正确的是( )

A.255 B. 255 C. 255 D.2(5)=-5 4.以下问题,不适合用全面调查的是( ) A.旅客上飞机前的安检 B.学校招聘教师,对应聘人员的面试 C.了解全校学生的课外读书时间 D.了解一批灯泡的使用寿命 5.如图,下列条件中: (1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有( ) A.1 B.2 C.3 D.4

6.如图,已知AC∥BD,∠CAE=35°,∠DBE=40°,则∠AEB等于( ) A.30° B.45° C.60° D.75° 7.以方程组21yxyx的解为坐标的点(,)xy在平面直角坐标系中的位置是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,可列方程组为 ( )

A.35120016xyxy B.351.2606016xyxy C.351.216xyxy D.351200606016xyxy 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A、k>1 B、k<21 C、k>21 D、21<k<1 10.下列判断不正确的是( ) A、若ab,则4a4b B、若2a3a,则a0 C、若ab,则22acbc D、若22acbc,则ab 二、填空题(共10小题,每题3分,共30分) 11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 3 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=-3.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm 4.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 5.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2566.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 8.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .3 9.下列方程中,是二元一次方程的是( ) A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 10.计算12x a a a a ⋅⋅=,则x 等于( ) A .10 B .9 C .8D .4 二、填空题11.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.12.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.13.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.14.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.15.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .16.若等式0(2)1x -=成立,则x 的取值范围是_________. 17.计算:x (x ﹣2)=_____18.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.22.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.24.已知a 6=2b =84,且a <0,求|a ﹣b|的值.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).26.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.27.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.4.C解析:C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.5.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.6.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.A解析:A【解析】【分析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.9.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.10.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.二、填空题11.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.12.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.13.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.14.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.15.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.17.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.18.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.22.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.23.73x+;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511x x x x x222445521x x x x x73x当2x=-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.24.16【分析】根据幂的乘方运算法则确定a、b的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.25.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.26.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.27.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

天津市七年级下册末数学试卷及答案

一、解答题1.在平面直角坐标系xOy 中描出下列两组点,分别将每组里的点用线段依次连接起来.第一组:(3,3)-A 、(4,3)C ; 第二组:(2,1)D --、(2,1)E .(1)线段AC 与线段DE 的位置关系是;(2)在(1)的条件下,线段AC 、DE 分别与y 轴交于点B ,F .若点M 为射线OB 上一动点(不与点O ,B 重合).①当点M 在线段OB 上运动时,连接AM 、DM ,补全图形,用等式表示CAM ∠、AMD ∠、MDE ∠之间的数量关系,并证明.②当ACM △与DEM △面积相等时,求点M 的坐标.解析:(1)AC ∥DE ;(2)①∠CAM +∠MDE =∠AMD ,证明见解析;②点M 的坐标为(0,1711)或(0,253).【分析】(1)根据两点的纵坐标相等,连线平行x 轴进行判断即可;(2)①过点M 作MN ∥AC ,运用平行线的判定和性质即可;②设M (0,m ),分两种情况:(i )当点M 在线段OB 上时,(ii )当点M 在线段OB 的延长线上时,分别运用三角形面积公式进行计算即可. 【详解】解:(1)∵A (−3,3)、C (4,3), ∴AC ∥x 轴,∵D (−2,−1)、E (2,−1), ∴DE ∥x 轴, ∴AC ∥DE ;(2)①如图,∠CAM +∠MDE =∠AMD . 理由如下: 过点M 作MN ∥AC ,∵MN∥AC(作图),∴∠CAM=∠AMN(两直线平行,内错角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推论),∴∠MDE=∠NMD(两直线平行,内错角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代换).②由题意,得:AC=7,DE=4,设M(0,m),(i)当点M在线段OB上时,BM=3−m,FM=m+1,∴S△ACM=12AC•BM=12×7×(3−m)=2172m-,S△DEM=12DE•FM=12×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴2172m-=2m+2,解得:m=17 11,∴M(0,1711);(ii)当点M在线段OB的延长线上时,BM=m−3,FM=m+1,∴S△ACM=12AC•BM=12×7×(m−3)=7212m-,S△DEM=12DE•FM=12×4×(m+1)=2m+2,∵S △ACM =S △DEM , ∴7212m -=2m +2, 解得:m =253, ∴M (0,253); 综上所述,点M 的坐标为(0,1711)或(0,253).【点睛】本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想.2.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c -+-+-=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.解析:(1)a=2,b=3,c=4;(2)S 四边形ABOP = 3-m ;(3)存在,P (-3,12).【分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP 的面积=△APO 的面积+△AOB 的面积,即可解答; (3)存在,根据面积相等求出m 的值,即可解答. 【详解】解:(1)由已知()22340a b c ---=可得: a-2=0,b-3=0,c-4=0, 解得:a=2,b=3,c=4; (2)∵a=2,b=3,c=4,∴A (0,2),B (3,0),C (3,4), ∴OA=2,OB=3, ∵S △ABO =12×2×3=3,S△APO=12×2×(-m)=-m,∴S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=12×4×3=6,若S四边形ABOP=S△ABC=3-m=6,则m=-3,∴存在点P(-3,12)使S四边形ABOP=S△ABC.【点睛】本题考查了坐标与图形性质,解决本题的关键是根据非负数的性质求出a,b,c.3.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).解析:(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.4.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t 型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)已知点C(6,1),D(8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B ',当t 的取值范围是 时,B 'M 的最小值保持不变.解析:(1)(3,0);(2)①P 1;②42-≤≤-t 或1t =;(3)13t ≤≤ 【分析】(1)根据“l 型平移”的定义解决问题即可. (2)①画出线段A 1B 1即可判断.②根据定义求出t 最大值,最小值即可判断.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2.【详解】(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为(3,0), 故答案为:(3,0);(2)①如图1中,观察图象可知,将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中, 在线段A ′B ′上的点是P 1,故答案为:P 1;②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是﹣4≤t ≤﹣2或t =1. 故答案为:﹣4≤t ≤﹣2或t =1.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2,此时1≤t ≤3.故答案为:1≤t≤3.【点睛】本题属于几何变换综合题,考查了平移变换,“t型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型.5.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系解析:(1)C(0,2),D(4,2),S四边形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)点p在线段BD上,∠OPC=∠PCD+∠POB;点P在BD延长线上,∠OPC=∠POB-∠PCD;点P在DB延长线上运动时,∠OPC=∠PCD-∠POB.【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(4,2);四边形ABDC的面积=2×(3+1)=8;(2)存在.设点P到AB的距离为h,则S△PAB= 12×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标.(3)分类讨论:当点P在线段BD上,作PM∥AB,根据平行线的性质由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,则∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同样得到当点P在线段DB的延长线上,∠OPC=∠PCD-∠POB;当点P在线段BD的延长线上,得到∠OPC=∠POB-∠PCD . 【详解】(1)依题意,得C (0,2),D (4,2), ∴S 四边形ABDC =AB×OC=4×2=8;(2)在y 轴上是存在一点P ,使S △PAB =S 四边形ABDC .理由如下: 设点P 到AB 的距离为h ,S △PAB =12×AB×h=2h ,由S △PAB =S 四边形ABDC ,得2h=8, 解得h=4,∴P (0,4)或(0,-4).(3)当点P 在线段BD 上,作PM ∥AB ,如图1, ∵MP ∥AB , ∴∠2=∠POB , ∵CD ∥AB , ∴CD ∥MP , ∴∠1=∠PCD ,∴∠OPC=∠1+∠2=∠POB+∠PCD ;当点P 在线段DB 的延长线上,作PN ∥AB ,如图2, ∵PN ∥AB , ∴∠NPO=∠POB , ∵CD ∥AB , ∴CD ∥PN , ∴∠NPC=∠FCD ,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB ;同样得到当点P 在线段BD 的延长线上,得到∠OPC=∠POB-∠PCD .【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系.也考查了平行线的性质和分类讨论的思想.6.如图,已知点()2,A a ,点()6,B b ,且a ,b 24(2)0a b --=.(1)求点A 、B 的坐标;(2)如图1,点()P m n ,是线段AB 上的动点,AE x ⊥轴于点E ,PH x ⊥轴于点H ,BF x ⊥轴于点F ,连接PE 、PF .试探究m ,n 之间的数量关系;(3)如图2,线段AB 以每秒2个单位长度的速度向左水平移动到线段11A B .若线段11A B 交y 轴于点C ,当三角形1A CO 和三角形1B CO 的面积相等时,求移动时间t 和点C 的坐标.解析:(1)2,4,6,2A B ;(2)210m n +=;(3)2t =,点C 的坐标为()0,3 【分析】(1)由题意易得40,20a b -=-=,然后可求a 、b 的值,进而问题可求解; (2)由(1)及题意易得4,4,2AE EF BF ===,然后根据APEPEFPBFAEFB S S SS=++四边形建立方程求解即可;(3)分别过点11,A B 作1A P y ⊥轴于点P ,1B Q y ⊥轴于点Q ,由题意易得()()1122,4,62,2A B t t --,然后可得11A P B Q =,进而可求t 的值,最后根据(2)可得三角形1B CO 的面积为3,则问题可求解. 【详解】 解:(1)∵()2420a b --=,∴40,20a b -=-=, ∴4,2a b ==, ∴点()2,4A ,点()6,2B ;(2)由(1)可得点()2,4A ,点()6,2B ,∵AE x ⊥轴于点E ,PH x ⊥轴于点H ,BF x ⊥轴于点F , ∴////AE PH BF ,4,624,2AE EF BF ==-==, ∵()P m n ,,∴2,,6EH m PH n HF m =-==-, ∵APEPEFPBFAEFB S S SS=++四边形,且()12AEFB S AE BF EF =+⋅四边形, ∴()()()1111424424262222m n m ⨯+⨯=⨯⨯-+⨯+⨯⨯-, 化简得210m n +=;(3)分别过点11,A B 作1A P y ⊥轴于点P ,1B Q y ⊥轴于点Q ,如图所示:∵线段AB 以每秒2个单位长度的速度向左水平移动到线段11A B ,时间为t ,∴()()1122,4,62,2A B t t --,∵三角形1A CO 和三角形1B CO 的面积相等, ∴111122A P OCB Q OC ⋅=⋅, ∴11A P B Q =,∴2262t t -=-,解得:2t =,∴()()112,4,2,2A B -,由(2)可得三角形11A B O 的面积为1124221242622AEFB S -⨯⨯-⨯⨯=--=四边形, ∴三角形1B CO 的面积为3,即232CO =, ∴3CO =,∴()0,3C .【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟练掌握图形与坐标、算术平方根与偶次幂的非负性及等积法是解题的关键.7.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.解析:(1)见解析;(2)902FME α∠=︒-,证明见解析. 【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.8.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.9.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=.(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AE D、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD 的度数.∠=∠+∠,证明见解析;(3)122°解析:(1)70°;(2)EAF AED EDG【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.10.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧.①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =20°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =60°;(2)设∠EGC =3x ,∠EFC =2x ,则∠GCF =3x -2x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB ∥CD ,∴∠CEB +∠ECQ =180°,∵∠CEB =110°,∴∠ECQ =70°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=12∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.11.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM ∥CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF 平分∠DBC ,BE 平分∠ABD ,∴∠DBF =∠CBF ,∠DBE =∠ABE ,由(2)知∠ABD =∠CBG ,∴∠ABF =∠GBF ,设∠DBE =α,∠ABF =β,则∠ABE =α,∠ABD =2α=∠CBG ,∠GBF =∠AFB =β,∠BFC =3∠DBE =3α,∴∠AFC =3α+β,∵∠AFC +∠NCF =180°,∠FCB +∠NCF =180°,∴∠FCB =∠AFC =3α+β,△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°, ∵AB ⊥BC ,∴β+β+2α=90°,∴α=15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 12.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠; (3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 13.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA =90°,∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°,∵a ∥b ,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.14.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG +90°+∠HFG =180°,∴2∠BEG +∠HFG =90°.(2)如图2中,结论:2∠BEG -∠HFG =90°.理由:∵EG 平分∠BEF ,∴∠BEG =∠FEG ,∵FH ⊥EF ,∴∠EFH =90°,∵AB ∥CD ,∴∠BEF +∠EFG =180°,∴2∠BEG +90°-∠HFG =180°,∴2∠BEG -∠HFG =90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,已知点()0,0O ,()2,0A ,()1,2B -.(1)求OAB 的面积;(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).解析:(1)2;(2)(0,4),(0,4),(2,0)--;(3)1(1,0)F m +或2(1,0)F m --【分析】(1)直接利用以OA 为底,进行求面积;(2)OBC 的面积等于OAB 的面积,需要分三种情况进行分类讨论;(3)根据BDE BEF SS =推导出OBD OBF S S =,然后分两种情况进行讨论,即当F 位于x 轴负半轴上时与F 位于x 轴正半轴上时. 【详解】解:(1)1122222OAB B S OA y =⋅⋅=⨯⨯=. (2)作如下图形,进行分类讨论:①当点C 在y 轴正半轴上时,111||22OBC B S OC x =⋅⋅=, 114,(0,4)OC C ∴=; ②当点C 在y 轴负半轴上时,221||22OBC B S OC x =⋅⋅=, 224,(0,4)OC C ∴=-;③当点C 在x 轴负半轴上时,33122OBC B S OC y =⋅⋅=, 332,(2,0)OC C ∴=-; 因此符合条件的C 点坐标有3个,分别是(0,4),(0,4),(2,0)--.(3)BDE BEF S S =,1122D F BE h BE h ∴⋅⋅=⋅⋅, DF h h ∴=,即D 与F 点到OB 的距离相等,12OBD D SOB h =⋅⋅, 12OBF F S OB h =⋅⋅, OBD OBF S S ∴=,∴由BDE BEF S S =可推出OBD OBF S S =,①F 位于x 轴负半轴上时, 11(1)2122OBD B S BD y m m =⋅⋅=⨯--⨯=--, 11111122BOF B B S OF y OF y OF =⋅⋅=⋅⋅=, 11OF m ∴=--,1(1,0)F m ∴+;②F 位于x 轴正半轴上时,222112BOF B S OF y OF m =⋅⋅==--, 2(1,0)F m ∴--,综上:点F 的坐标为1(1,0)F m +或2(1,0)F m --.【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷380

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(每小题3分,满分30分)1.9的算术平方根是()A. 3 B.±3 C.﹣3 D.2.在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中生每天的零花钱4.实数0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),,﹣,其中无理数有()A. 1个B. 2个C. 3个D. 4个5.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角.A. 1个B. 2个C. 3个D. 4个6.如果a<b,那么下列不等式成立的是()A. a﹣b>0 B. a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b7.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠58.某校七年级在“数学小论文”评比活动中,共征集到论文30篇,并对其进行评比、整理,分成组画出频数分布直方图(如图),从左到右各小长方形的高度比为2:4:3:1,则第2组的频数为()A. 12 B. 10 C. 9 D. 69.若关于x的不等式组无解,则实数a的取值范围是()A. a<﹣4 B. a=﹣4 C. a>﹣4 D. a≥﹣410.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A. 400 cm2B. 500 cm2C. 600 cm2D. 4000 cm2二、填空题(每小题3分,满分24分)11.将方程2x+y=25写成用含x的代数式表示y的形式,则y=.12.写出一个大于2且小于4的无理数:.13.如一组数据的最大值为61,最小值为48,且以2为组距,则应分组.14.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOD=20°,则∠COB的度数为°.15.把命题“对顶角相等”改写成“如果…那么…”的形式:.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.17.如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第次运动后,动点P的坐标是.三、解答题(满分66分)19.计算:+﹣.2)解方程组(2)解不等式组并把它的解集在数轴上表示出来.21.下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充完整:证明:∵CD与EF相交于点H(已知)∴∠1=∠2()∵AB∥CD(已知)∴∠2=∠EGB()∵GN是∠EGB的平分线,(已知)∴∠4= (角平分线定义)∵∠1=∠2,∠2=∠EGB(已证)∴∠1=∠EGB()∵(已证)∴∠4=∠1(等量代换)22.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图:分组频数百分比600≤x<800 2 5%800≤x<1000 6 15%1000≤x<1200 45%9 22.5%1600≤x<1800 2合计40 100%根据以上提供的信息,解答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?24.已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.25.某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元.(1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?(2)若有顾客同时购买汉堡包和橙汁且购买费恰好为20元,问汉堡店该如何配送?26.某养鸡场计划购买甲、乙两种鸡雏共2000只进行饲养,已知甲种鸡雏每只2元,乙种鸡雏每只3元.(1)若购买了这批鸡雏共用了4500元,求甲、乙两种鸡雏各购买了多少只?(2)若购买这批鸡雏的钱不超过4700元,问应选购甲种鸡雏至少多少只?(3)相关资料表明:甲、乙两种鸡雏成活率分别为94%和99%,若要使这比鸡雏的成活率不低于96%且买鸡雏的总费用最小,问应选购甲、乙两种鸡雏和各多少只?总费用最小是多少元?参考答案与试题解析一、选择题(每小题3分,满分30分)1.9的算术平方根是()A. 3 B.±3 C.﹣3 D.考点:算术平方根.分析:根据开方运算,可得一个正数的算术平方根.解答:解:9的算术平方根是3.故选:A.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.2.在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中生每天的零花钱考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故B选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故C选项错误;D、了解全市中生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故D选项正确.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.实数0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),,﹣,其中无理数有()A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数得三种形式求解.解答:解:=4,无理数有:﹣π,0.1010010001…(相邻两个1之间依次多一个0),﹣,共3个.故选C.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数得三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角.A. 1个B. 2个C. 3个D. 4个考点:平行公理及推论;对顶角、邻补角;垂线;平移的性质.分析:根据平行公理及推论、平移的性质、邻补角定义、垂线的性质解答即可.解答:解:(1)过直线外一点有且只有一条直线与已知直线平行,故本项错误;(2)过一点有且只有一条直线与已知直线垂直,故本项正确;(3)平移只改变图形的位置,不改变图形的形状和大小,本项正确;(4)两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角,故本项错误.故选:B.点评:本题主要考查了平行公理及推论、平移的性质、邻补角定义、垂线的性质,熟练掌握定理即推论是解题的关键.6.如果a<b,那么下列不等式成立的是()A. a﹣b>0 B. a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b考点:不等式的性质.分析:根据不等式的基本性质对每个选项进行判断.解答:解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.点评:此题考查的知识点是不等式的性质,关键不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.7.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠5考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一判断即可.解答:解:A、∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误;B、∵∠1=∠2,∴AD∥BC,故本选项正确;C、∵∠3=∠4,∴AB∥CD,故本选项错误;D、∵∠B=∠5,∴AB∥CD,故本选项错误.故选B.点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.8.某校七年级在“数学小论文”评比活动中,共征集到论文30篇,并对其进行评比、整理,分成组画出频数分布直方图(如图),从左到右各小长方形的高度比为2:4:3:1,则第2组的频数为()A. 12 B. 10 C. 9 D. 6考点:频数(率)分布直方图.分析:总数30乘以对应的比例即可求解.解答:解:第2组的频数是:30×=12.故选A.点评:本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.9.若关于x的不等式组无解,则实数a的取值范围是()A. a<﹣4 B. a=﹣4 C. a>﹣4 D. a≥﹣4考点:解一元一次不等式组.分析:先求出①中x的取值范围,再根据不等式组无解确定a的取值范围即可.解答:解:解①移项得,2x﹣4x>7+1,合并同类项得,﹣2x>8,系数化为1得,x<﹣4,故得,由于此不等式组无解,故a≥﹣4.故选D.点评:本题考查的是一元一次不等式组的解法,解答此题的关键是熟知解不等式组解集应遵循的原则“同大取较大,同小去较小,大小小大中间找,大大小小解不了”的原则.10.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A. 400 cm2B. 500 cm2C. 600 cm2D. 4000 cm2考点:二元一次方程组的应用.专题:数形结合.分析:根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=50,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.解答:解:设一个小长方形的长为xcm,宽为ycm,由图形可知,,解得:.所以一个小长方形的面积为400cm2.故选A.点评:此题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.二、填空题(每小题3分,满分24分)11.将方程2x+y=25写成用含x的代数式表示y的形式,则y=25﹣2x.考点:解二元一次方程.分析:把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边,其它的项移到另一边即可.解答:解:移项,得y=25﹣2x.故答案为:y=25﹣2x.点评:本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.此题直接移项即可.12.写出一个大于2且小于4的无理数:(答案不唯一).考点:估算无理数的大小.专题:开放型.分析:根据无理数的定义得出大于2且小于4的无理数即可.解答:解:∵大于2且小于4的无理数为:<x<,∴x可以为:x=(答案不唯一).故答案为:(答案不唯一).点评:此题主要考查了估计无理数,根据题意得出4<<5是解题关键.13.如一组数据的最大值为61,最小值为48,且以2为组距,则应分7组.考点:频数(率)分布表.专题:计算题.分析:根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.解答:解:∵在样本数据中最大值与最小值的差为61﹣48=13,又∵组距为2,∴组数=13÷2=6.5,∴应该分成7组.点评:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.14.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOD=20°,则∠COB的度数为110°.考点:垂线;对顶角、邻补角.分析:先根据垂直的定义求出∠BOE=90°,然后求出∠BOD的度数,再根据对顶角相等求出∠AOC的度数,再根据邻补角的定义求出∠COB的度数.解答:解:∵OE⊥AB,∴∠BOE=90°,∵∠EOD=20°,∴∠BOD=∠BOE﹣∠EOD=90°﹣20°=70°,∴∠COB=180°﹣∠BOD=180°﹣70°=110°.故答案为:110.点评:本题考查了垂线的定义,对顶角相等,邻补角的和等于180°,要注意领会由垂直得直角这一要点.15.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.考点:平行线的性质.专题:常规题型.分析:根据两直线平行,内错角相等求出∠1的内错角,再根据三角板的度数求差即可得解.解答:解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.点评:本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.17.如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点(﹣2,1)上.考点:坐标确定位置.专题:常规题型.分析:根据和的坐标作出直角坐标系,然后写出所在点的坐标.解答:解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.故答案为(﹣2,1).点评:本题考查了坐标确定位置:直角坐标系中,坐标平面内的点与有序实数对一一对应;记住各象限内点的坐标特征和坐标轴上点的坐标特征.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第次运动后,动点P的坐标是(,2).考点:规律型:点的坐标.分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.解答:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第次运动后,动点P的横坐标为,纵坐标为1,0,2,0,每4次一轮,∴经过第次运动后,动点P的纵坐标为:÷4=503余3,故纵坐标为四个数中第3个,即为2,∴经过第次运动后,动点P的坐标是:(,2),故答案为:(,2).点评:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题(满分66分)19.计算:+﹣.考点:实数的运算.分析:根据算术平方根、立方根两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=0.2﹣3﹣=﹣3.3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2)解方程组(2)解不等式组并把它的解集在数轴上表示出来.考点:解一元一次不等式组;解二元一次方程组;在数轴上表示不等式的解集.分析:(1)②﹣①得3y=,求出y,把y的值代入①得出关于x的方程3x﹣3=2,求出x即可.(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(1)解:原方程组整理得,∵②﹣①得:3y=9,解得:y=3,把y=3代入①得:3x﹣3=2,解得:x=,∴方程组的解是:;(2),由①得,x>﹣,由②得,x≤4,故不等式组的解集为:﹣<x≤4.在数轴上表示为:.点评:本题考查了解一元一次方程和解一元一次不等式组,解一元一次方程的关键是把二元一次方程组转化成一元一次方程;掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解一元一次不等式组的关键.21.下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充完整:证明:∵CD与EF相交于点H(已知)∴∠1=∠2(对顶角相等)∵AB∥CD(已知)∴∠2=∠EGB(两直线平行,同位角相等)∵GN是∠EGB的平分线,(已知)∴∠4=∠BGE(角平分线定义)∵∠1=∠2,∠2=∠EGB(已证)∴∠1=∠EGB(等量代换)∵∠EGB(已证)∴∠4=∠1(等量代换)考点:平行线的性质.专题:推理填空题.分析:由CD与EF相交于点H得到∠1=∠2,根据平行线的性质∠2=∠EGB,由角平分线的性质得到∠4=BGE然后根据等量代换得到结论.解答:证明:∵CD与EF相交于点H(已知)∴∠1=∠2(对顶角相等)∵AB∥CD(已知)∴∠2=∠EGB(两直线平行,同位角相等)∵GN是∠EGB的平分线,(已知)∴∠4=BGE(角平分线定义)∵∠1=∠2,∠2=∠EGB(已证)∴∠1=∠EGB(等量代换)∵EGB,(已证)∴∠4=∠1(等量代换),故答案为:对顶角相等,两直线平行,同位角相等,∠EGB,等量代换,∠4=∠EGB.点评:本题考查了平行线的性质,角平分线的性质,对顶角的性质,熟练掌握性质定理是解题的关键.22.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.考点:作图-平移变换.专题:作图题.分析:(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴C(﹣2,0)的对应点C1的坐标为(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.点评:本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图:分组频数百分比600≤x<800 2 5%800≤x<1000 6 15%1000≤x<1200 45%9 22.5%1600≤x<1800 2合计40 100%根据以上提供的信息,解答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.专题:图表型.分析:(1)、(2)比较简单,读图表以及频数分布直方图易得出答案.(3)根据(1)、(2)的答案可以分析求解.求出各个分布段的数据即可.解答:(1)根据题意可得出分布是:1200≤x<1400,1400≤x<1600;1000≤x<1200中百分比占45%,所以40×0.45=18人;1600≤x<1800中人数有2人,故占=0.05,故百分比为5%.故剩下1400≤x<1600中人数有3,占7.5%.(2)(3)大于1000而不足1600的占75%,故450×0.75=337.5≈338户.答:居民小区家庭属于中等收入的大约有338户.点评:本题的难度一般,主要考查的是频率直方图以及考生探究图表的能力.24.已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.考点:平行线的判定与性质;垂线.专题:探究型.分析:先结合图形猜想BF与AC的位置关系是:BF⊥AC.要证BF⊥AC,只要证得DE∥BF即可,由平行线的判定可知只需证∠2+∠3=180°,根据平行线的性质结合已知条件即可求证.解答:证明:BF与AC的位置关系是:BF⊥AC.理由:∵∠AGF=∠ABC,∴BC∥GF(同位角相等,两直线平行),∴∠1=∠3;又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE;∵DE⊥AC,∴BF⊥AC.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元.(1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?(2)若有顾客同时购买汉堡包和橙汁且购买费恰好为20元,问汉堡店该如何配送?考点:二元一次方程组的应用;二元一次方程的应用.分析:(1)首先设每个汉堡x元,每杯橙汁y元,根据题意可得两个等量关系:①3个汉堡包和2杯橙汁收取了32元;②2个汉堡包和3杯橙汁收取了28元,可列出方程组求出每个汉堡和每杯橙汁的花费,再求出4个汉堡包和5杯橙汁的花费即可;(2)根据题意设配送汉堡a个,橙汁b杯,花费是8a+4b=20,然后再讨论出整数解即可.解答:解:(1)设每个汉堡x元,每杯橙汁y元,由题意得:,解得:,∴4x+5y=52,答:他应收顾客52元钱.(2)设配送汉堡a个,橙汁b杯,8a+4b=20,∴b=5﹣2a,∵a,b都是正整数,∴a=1,b=3;a=2,b=1;答:汉堡店该配送方式有两种:①外送汉堡1个,橙汁3杯;②外送汉堡2个,橙汁1杯.点评:此题主要考查了二元一次方程(组)的应用,关键是弄懂题意,找出合适的等量关系,列出方程组.26.某养鸡场计划购买甲、乙两种鸡雏共2000只进行饲养,已知甲种鸡雏每只2元,乙种鸡雏每只3元.(1)若购买了这批鸡雏共用了4500元,求甲、乙两种鸡雏各购买了多少只?(2)若购买这批鸡雏的钱不超过4700元,问应选购甲种鸡雏至少多少只?(3)相关资料表明:甲、乙两种鸡雏成活率分别为94%和99%,若要使这比鸡雏的成活率不低于96%且买鸡雏的总费用最小,问应选购甲、乙两种鸡雏和各多少只?总费用最小是多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)利用这批鸡苗的总费用为等量关系列出一元一次方程后解之即可;(2)利用这批鸡苗费用不超过4700元列出一元一次不等式求解即可;(3)列出有关总费用的函数关系式,求得当总费用最少时自变量的取值范围即可.解答:解:设购买甲种小鸡苗x只,那么乙种小鸡苗为(2000﹣x)只.(1)根据题意列方程,得2x+3(2000﹣x)=4500,解这个方程得:x=1500,2000﹣x=2000﹣1500=500,即:购买甲种小鸡苗1500只,乙种小鸡苗500只;(2)根据题意得:2x+3(2000﹣x)≤4700,解得:x≥1300,即:选购甲种小鸡苗至少为1300只;(3)设购买这批小鸡苗总费用为y元,根据题意得:y=2x+3(2000﹣x)=﹣x+6000,又由题意得:94%x+99%(2000﹣x)≥2000×96%,解得:x≤1200,因为购买这批小鸡苗的总费用y随x增大而减小,所以当x=1200时,总费用y最小,乙种小鸡为:2000﹣1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y最小,最小为4800元.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷45

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠1=∠A B.∠A=∠3 C.∠1=∠4 D.∠A+∠2=180°2.(3分)如果∠1=∠2,∠1+∠3=90°,∠2+∠4=90°,那么∠3与∠4的关系是()A.互余B.相等C.互补D.以上都不对3.(3分)如果a∥b,a∥c,那么b与c的位置关系是()A.不一定平行B.一定平行C.一定不平行D.以上都有可能4.(3分)在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A.B.C.D.5.(3分)将周长为10的△ABC沿BC方向平移l个单位,得到△DEF,则四边形ABFD的周长是()A.12 B.14 C.15 D.166.(3分)实数,,0,﹣π,,,0.1010010001…(相连两个1之间依次多一个0),其中无理数有()个.A.1 B.2 C.3 D.47.(3分)已知2m﹣4与3m﹣1是同一个正数的两个平方根,则m的值是()A.0 B.1 C.2 D.38.(3分)若a=﹣+6,则ab的算术平方根是()A.2 B. C.±D.49.(3分)若=6.356,则=()A.63.56 B.0.006356 C.635.6 D.0.635610.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是9二、填空题(本大题共6小题,共18分)11.(3分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=.12.(3分)如图,∠ACB=90°,CD⊥AB,AC=5,BC=12,AB=13.点A到CD 边的距离是;点C到AB边的距离是.13.(3分)如图,直线l1与l2相交于点O,OM⊥l1,若∠α=48°,则∠β等于.14.(3分)如图,已知直线L1∥L2,将等边三角形如图放置,若∠ɑ=40°,则∠β等于.15.(3分)的平方根是.16.(3分)已知点P(a﹣2,2a+8)到x轴、y轴的距离相等,则a=.三、解答题17.(6分)求x的值:(1)27﹣(x+4)3=0;(2)2(x﹣1)2=.18.(8分)计算:(1)|﹣|﹣|﹣2|﹣|﹣1|;(2)﹣1++3﹣27﹣|2﹣|++﹣.19.(4分)已知:y=﹣﹣,求:x+y的平方根.20.(7分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)的值.21.(5分)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.22.(6分)如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°(1)求∠GFC的度数:(2)求证:DM∥BC.23.有相距3个单位的两点A(a,﹣3),B(2,b),且AB平行于坐标轴,求a、b.24.(8分)已知x轴上的点A(2n﹣4,n+1)和y轴上的点B(3m﹣6,m+2),及坐标轴上的一点C,构成的△ABC的面积是16,求点C坐标.25.(8分)已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠1=∠A B.∠A=∠3 C.∠1=∠4 D.∠A+∠2=180°【解答】解:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故A不可以;当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF;∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故B、D都可以;当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故C可以;故选A.2.(3分)如果∠1=∠2,∠1+∠3=90°,∠2+∠4=90°,那么∠3与∠4的关系是()A.互余B.相等C.互补D.以上都不对【解答】解:∵∠1=∠2,∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4;故选:B.3.(3分)如果a∥b,a∥c,那么b与c的位置关系是()A.不一定平行B.一定平行C.一定不平行D.以上都有可能【解答】解:∵a∥b,a∥c,∴b∥c.∴b与c的位置关系是一定平行,故选B.4.(3分)在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A.B.C.D.【解答】解:根据平移的概念,观察图形可知图案C通过平移后可以得到.故选:C.5.(3分)将周长为10的△ABC沿BC方向平移l个单位,得到△DEF,则四边形ABFD的周长是()A.12 B.14 C.15 D.16【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选A.6.(3分)实数,,0,﹣π,,,0.1010010001…(相连两个1之间依次多一个0),其中无理数有()个.A.1 B.2 C.3 D.4【解答】解:无理数有:,﹣π,0.1010010001…(相连两个1之间依次多一个0),共3个.故选C.7.(3分)已知2m﹣4与3m﹣1是同一个正数的两个平方根,则m的值是()A.0 B.1 C.2 D.3【解答】解:∵2m﹣4与3m﹣1是同一个正数的两个平方根,∴2m﹣4+3m﹣1=0,∴m=1.故选B.8.(3分)若a=﹣+6,则ab的算术平方根是()A.2 B. C.±D.4【解答】解:∵a=﹣+6,∴∴1﹣3b=0,∴b=,∴a=6,∴ab=6×=2,2的算术平方根是,故选:B.9.(3分)若=6.356,则=()A.63.56 B.0.006356 C.635.6 D.0.6356【解答】解:∵=6.356,∴=0.6356;故选D.10.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是9【解答】解:A、8的平方根为±2,错误;B、﹣7是49的平方根,正确;C、立方根等于它本身的数有﹣1,0,1,错误;D、=9,9的算术平方根为3,错误,故选B二、填空题(本大题共6小题,共18分)11.(3分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=130°.【解答】解:如图,∵l1∥l2,∴∠3=∠1=50°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣50°=130°.故答案为:130°.12.(3分)如图,∠ACB=90°,CD⊥AB,AC=5,BC=12,AB=13.点A到CD 边的距离是;点C到AB边的距离是.【解答】解:由于AC•BC=AB•CD∴CD=在Rt△ACD中,由勾股定理可得:AD=∴A到CD边的距离为:,C在AB边的距离为:故答案为:,13.(3分)如图,直线l1与l2相交于点O,OM⊥l1,若∠α=48°,则∠β等于42°.【解答】解:如图:∵OM⊥l1,∴∠1=90°,∵∠α+∠β+∠1=180°,∴∠β=180°﹣90°﹣48°=42°.故答案为:42°.14.(3分)如图,已知直线L1∥L2,将等边三角形如图放置,若∠ɑ=40°,则∠β等于20°.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BA C﹣∠DAC=60°﹣40°=20°.故答案为20°.15.(3分)的平方根是±.【解答】解: =的平方根是:±.故答案为:±.16.(3分)已知点P(a﹣2,2a+8)到x轴、y轴的距离相等,则a=a=﹣10或a=﹣2.【解答】解:由题意,得a﹣2=2a+8或a﹣2+2a+8=0,解得a=﹣10或a=﹣2,故答案为:a=﹣10或a=﹣2.三、解答题17.(6分)求x的值:(1)27﹣(x+4)3=0;(2)2(x﹣1)2=.【解答】解:(1)∵27﹣(x+4)3=0,∴(x+4)3=27,∴x+4=3,解得x=﹣1.(2)∵2(x﹣1)2=,∴(x﹣1)2=4,∴x﹣1=±2,解得:x=3或x=﹣1.18.(8分)计算:(1)|﹣|﹣|﹣2|﹣|﹣1|;(2)﹣1++3﹣27﹣|2﹣|++﹣.【解答】解:(1)|﹣|﹣|﹣2|﹣|﹣1|=﹣﹣2+﹣+1=2﹣2﹣1(2)﹣1++3﹣27﹣|2﹣|++﹣=﹣1+9﹣24﹣2++2+2﹣=﹣+19.(4分)已知:y=﹣﹣,求:x+y的平方根.【解答】解:∵y=﹣﹣,∴x=,y=﹣,∴x+y=1,∴x+y的平方根是±1.20.(7分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)的值.【解答】解:(1)∵4<5<9,36<37<49,∴2<<3,6<<7.∴a=﹣2,b=6.∴a+b﹣=﹣2+6﹣=4.(2)∵1<<2,∴9<8+<10,∴x=9.∵y=8+﹣x.∴y﹣=8﹣x=﹣1.∴原式=3×9﹣1=26.21.(5分)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.【解答】解:∵∠1=∠2,∴AE∥DC,∴∠CDE=∠E,∵∠3=∠E,∴∠CDE=∠3,∴DE∥BC,∴∠B=∠ADE,∵∠ADE=180°﹣∠DAE﹣∠E=50°,∴∠B=50°.22.(6分)如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°(1)求∠GFC的度数:(2)求证:DM∥BC.【解答】解:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC,∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.23.有相距3个单位的两点A(a,﹣3),B(2,b),且AB平行于坐标轴,求a、b.【解答】解:①若AB∥x轴,则b=﹣3,点B在点A的左边时,a=2+3=5,点B在点A的右边时,a=2﹣3=﹣1;此时,a=﹣3,a=﹣1或5;②若AB∥y轴,则a=2,点B在点A的上方时,b=﹣3+3=0,点B在点A的下方时,b=﹣3﹣3=﹣6.此时,a=2,b=0或﹣6.24.(8分)已知x轴上的点A(2n﹣4,n+1)和y轴上的点B(3m﹣6,m+2),及坐标轴上的一点C,构成的△ABC的面积是16,求点C坐标.【解答】解:∵点A(2n﹣4,n+1)在x轴上,点B(3m﹣6,m+2)在y轴上,∴n+1=0,3m﹣6=0,解得n=﹣1,m=2,∴点A(﹣6,0),B(0,4),①点C在x轴上时, AC•4=16,解得AC=8,若点C在点A的左边,则OC=﹣6﹣8=﹣14,若点C在点A的右边,则OC=﹣6+8=2,此时,点C的坐标(﹣14,0),(2,0),②点C在y轴上时, BC•6=16,创作人:百里公地 创作日期:202X.04.01创作人:百里公地 创作日期:202X.04.01 解得BC=,若点C 在点B 的上边,则OC=4+=, 若点C 在点B 的下边,则OC=4﹣=﹣, 此时,点C 的坐标(,0),(﹣,0),综上所述,点C 的坐标为(﹣14,0)或(2,0)或(,0)或(﹣,0).25.(8分)已知:A (0,1),B (2,0),C (4,3)(1)求△ABC 的面积;(2)设点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标.【解答】解:(1)S △ABC =3×4﹣×2×3﹣×2×4﹣×1×2=4; (2)如图所示:以BP 1,BP 2为底,符合题意的有P 1(﹣6,0)、P 2(10,0)、以AP 3,AP 4为底,符合题意的有:P 3(0,5)、P 4(0,﹣3).创作人:百里公地创作日期:202X.04.01 审核人: 北堂址重 创作单位: 博恒中英学校。

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

角坐标系中,点 到 轴的距离为 ,到 轴的距离为 ,且在第二象限,则点 的坐标为()
A. B. C. D.
二、填空题
11.分解因式: __________.
12.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
13.已知某种植物花粉的直径为0.00033cm,将数据0.00033用科学记数法表示为________________.
28.如图,在数轴上,点 、 分别表示数 、 .
(1)求 的取值范围.
(2)数轴上表示数 的点应落在()
A.点 的左边B.线段 上C.点 的右边
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
17.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
18.如图, 三边的中线AD、BE、CF的公共点为G, ,则图中阴影部分的面积是________.
19.若满足方程组 的x与y互为相反数,则m的值为_____.
20.一个容量为 的样本的最大值为 ,最小值为 ,若取组距为 ,则应该分的组数是为_______.
2.D
解析:D
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
如图,
∵a∥b,
∴∠2=∠3,
∵∠3=∠1+90°,∠1=34°,
∴∠3=124°,
∴∠2=∠3=124°,
故选:D.
【点睛】
此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
3.C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市人教版七年级数
学下册期末测试题 Document serial number【LGGKGB-LGG98YT-LGGT8CB-
天津人教版七年级数学下册期末测试
一、选择题:(本大题共10个小题,每小题3分,共30分)
1.若m >-1,则下列各式中错误的...
是( )
A .6m >-6
B .-5m <-5
C .m+1>0
D .1-m < 22011-2-23
3.已知a >b >0,那么下列不等式组中无解..
的是( )
A .⎩⎨⎧-><b x a x
B .⎩⎨⎧-<->b x a x
C .⎩⎨⎧-<>b x a x
D .⎩
⎨⎧<->b x a x 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°
(C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12
x y =⎧⎨=⎩的方程组是( )
A.135x y x y -=⎧⎨+=⎩
B.135x y x y -=-⎧⎨+=-⎩
C.331x y x y -=⎧⎨-=⎩
D.2335x y x y -=-⎧⎨+=⎩
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )
A .1000
B .1100
C .1150
D .1200
(1) (2)
7.下列方程中,是一元一次方程的是( ).
A .52=+y x B.
211=-x C .0=x D .042=x
8.为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( )
A .31元
B .元
C .元
D .27元
9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)
B.(4,5)
C.(3,4)
D.(4,3)
二、填空题:本大题共9个小题,每小题3分,共27分,把答案直接填在答题卷的横线上.
的平方根是________,算术平方根是______,-8的立方根是_____.
12.不等式5x-9≤3(x+1)的解集是________.
13. 4.对于方程4321=+y x ,用含x 的代数式表示y 为 .
14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.
15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.
16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正
六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)
18.若│x 2-25│
则x=_______,y=_______.
19.若关于x 的方程1(2)510k k x
k --++=是一元一次方程,则k =_____,
x =_____. 20. 关于x 的不等式322x a --≤的解集如图所示,则a 的值是_______.
21.如果a+b=5,ab=6,那么=+-223b ab a _______
C
B A D
三、解答题:共43分,解答题应写出文字说明、证明过程或演算步骤.
19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.215
12,4)2(3x x x x ,并把解集在数轴上表示出来. 20. 已知不等式组3462
21113
2x x x x -≤-⎧⎪+-⎨-<⎪⎩,求此不等式组的整数解; 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由。

22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
23. 分解因式:
(1)121
2)b a -(-1692)b a +( (2)1222---b b a (3)4)(4)(2++-+b a b a (4)-4ab ab b a 1216232-+
24.利用分解因式计算
(1)99(102+1)(104+1)+1 (2)57512425-1222⨯⨯ .
25.已知0136422=++-+y x y x ,求y x +的值
26、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.
答案:
一、选择题:(共30分) BCCDD,C
二、填空题:(共24分)
11.±7,7,-2 12. x ≤6
13.三 14.垂线段最
短。

15. 40 16. 400
17. ①②③ 18. x=±5,y=3
三、解答题:(共46分) 19. 解:第一个不等式可化为
x -3x+6≥4,其解集为x ≤1.
第二个不等式可化为 2(2x -1)<5(x+1),
有 4x -2<5x+5,其解集为x >
-7. ∴ 原不等式组的解集为-7<x ≤1. 把解集表示在数轴上为:
21. ∠B=∠C。

理由:
∵AD∥BC
∴∠1=∠B,∠2=∠C
∵∠1=∠2
∴∠B=∠C
22. 解:因为∠AFE=90°,
所以∠AEF=90°-∠A=90°-35°
=55°.
所以∠CED=•∠AEF=55°,
所以∠ACD=180°-∠CED-∠D
=180°-55°-42=83°.
25. 解:设用A型货厢x节,则用B
型货厢(50-x)节,由题意,得
解得28≤x≤30.
因为x为整数,所以x只能取28,29,30.
相应地(5O-x)的值为22,21,20.
所以共有三种调运方案.
第一种调运方案:用 A型货厢28节,B型货厢22节;
第二种调运方案:用A型货厢29节,B型货厢21节;
第三种调运方案:用A型货厢30节,用B型货厢20节.。

相关文档
最新文档