管理运筹学整理答案(DOC)
管理运筹学第三版习题答案(全)

管理运筹学第三版习题答案(全)第2章线性规划的图解法1.解: x2 5 `A 1B O 1C 6 x1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B点,最优解:x1=2.解: x2 10.60.1 0 0.1 0.6 1 x1(1) 由图解法可得有唯一解 (2) (3) (4) (5)无可行解无界解无可行解无穷多解121569,x2?。
最优目标函数值:777x1?0.2x2?0.6,函数值为3.6。
36920923(6) 有唯一解,函数值为。
83x2?3x1?3.解:(1). 标准形式:maxf?3x1?2x2?0s1?0s2?0s3 9x1?2x2?s1?303x1?2x2?s2?132x1?2x2?s3?9x1,x2,s1,s2,s3?0(2). 标准形式:minf?4x1?6x2?0s1?0s2 3x1?x2?s1?6x1?2x2?s2?107x1?6x2?4x1,x2,s1,s2?0 (3). 标准形式:'''minf?x1'?2x2?2x2?0s1?0s2'''?3x1?5x2?5x2?s1?70'''2x1'?5x2?5x2?503x?2x?2x?s2?30'''x1',x2,x2,s1,s2?0'1'2''24.解:标准形式:maxz?10x1?5x2?0s1?0s2 3x1?4x2?s1?9 5x1?2x2?s2?8x1,x2,s1,s2?0 松弛变量(0,0)最优解为 x1=1,x2=3/2.3705.解:标准形式:minf?11x1?8x2?0s1?0s2?0s3 10x1?2x2?s1?203x1?3x2?s2?184x1?9x2?s3?36x1,x2,s1,s2,s3?0剩余变量(0.0.13)最优解为 x1=1,x2=5.6.解:(1) 最优解为 x1=3,x2=7. (2) 1?c1?3 (3) 2?c2?6 (4)x1?6x2?4(5) 最优解为 x1=8,x2=0. (6) 不变化。
管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案(由于该课程理论性强,采用开卷考试的形式)一、名词解释1.模型2.线性规划3.树4.网络5.风险型决策二、简答题1.简述运筹学的工作步骤。
2.运筹学中模型有哪些基本形式?3.简述线性规划问题隐含的假设。
4.线性规划模型的特征。
5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解?6.简述对偶理论的基本内容。
7.简述对偶问题的基本性质。
8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。
9.简述运输问题的求解方法。
10.树图的性质。
11.简述最小支撑树的求法。
12.绘制网络图应遵循什么规则。
三、书《收据模型与决策》2.1314. 有如下的直线方程:2x1+x2=4a. 当x2=0时确定x1的值。
当x1=0时确定x2的值。
b. 以x1为横轴x2为纵轴建立一个两维图。
使用a的结果画出这条直线。
c. 确定直线的斜率。
d. 找出斜截式直线方程。
然后使用这个形式确定直线的斜率和直线在纵轴上的截距。
答案:14. a. 如果x2=0,则x1=2。
如果x1=0,则x2=4。
c. 斜率= -2d. x2=-2 x1+42.40你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。
模型的代数形式如下所示。
Maximize 成本=15 x1+20 x2约束条件约束1:x1+ 2x2≥10约束2:2x1-3x2≤6约束3:x1+x2≥6和x1≥0,x2≥0a.用图解法求解这个模型。
b.为这个问题建立一个电子表格模型。
c.使用Excel Solver求解这个模型。
答案:a.最优解:(x1, x2)=(2, 4),C=1103.2考虑具有如下所示参数表的资源分配问题:单位贡献=单位活动的利润b.将该问题在电子表格上建模。
c.用电子表格检验下面的解(x1, x2)=(2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), 哪些是可行解,可行解中哪一个能使得目标函数的值最优?d.用Solver来求解最优解。
管理运筹学(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
管理运筹学课后答案-----韩伯裳

第2章 线性规划的图解法1.解:x`A 1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B 点, 最优解:1x =712,7152=x 。
最优目标函数值:7692.解: x 2 10 1(1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。
(2) 无可行解 (3) 无界解 (4) 无可行解 (5)无穷多解(6) 有唯一解 3832021==x x ,函数值为392。
3.解:(1). 标准形式:3212100023m ax s s s x x f ++++=,,,,9221323302932121321221121≥=++=++=++s s s x x s x x s x x s x x(2). 标准形式:21210064m in s s x x f +++=,,,46710263212121221121≥=-=++=--s s x x x x s x x s x x(3). 标准形式:21''2'2'10022m in s s x x x f +++-=,,,,30223505527055321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x4.解:标准形式:212100510m ax s s x x z +++=,,,8259432121221121≥=++=++s s x x s x x s x x松弛变量(0,0) 最优解为 1x =1,x 2=3/2.标准形式:32121000811m in s s s x x f ++++=,,,,369418332021032121321221121≥=-+=-+=-+s s s x x s x x s x x s x x剩余变量(0.0.13) 最优解为 x 1=1,x 2=5.6.解:(1) 最优解为 x 1=3,x 2=7. (2) 311<<c (3) 622<<c (4)4621==x x(5) 最优解为 x 1=8,x 2=0. (6) 不变化。
《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
管理运筹学(第四版)第三章习题答案

3.1(1)解:, 53351042..715min 212112121≥≥+≥≥++=y y y y y y y t s y y ω(2)解:无限制32132131323213121,0,0 2520474235323..86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω3.4解:例3原问题6,,1,0603020506070..min 166554433221654321 =≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j对偶问题:6,,1,0111111..603020506070max 655443322161654321 =≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω3.5解:(1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为⎪⎪⎪⎪⎭⎫ ⎝⎛-=-31610211B 。
由P32式(2.16)(2.17)(2.18)可知b B b 1-=',5,,1,,1 ='-=='-j P C c P B P j B j j j j σ,其中b 和j P 都是初始数据。
设⎪⎪⎭⎫ ⎝⎛=21b b b ,5,,1,21 =⎪⎪⎭⎫⎝⎛=j a a P j j j ,()321,,c c c C =,则⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-⇒='-25253161021211b b b B b ,即⎪⎩⎪⎨⎧=+-=2531612521211b b b ,解得⎩⎨⎧==10521b b ⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-⇒='-0211121031610212322211312111a a a a a a P B P j j ,即 ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=+-=-=+-==+-=03161121213161212113161021231313221212211111a a a a a a a a a ,解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-====121130231322122111a a a a a a()()()⎪⎪⎪⎪⎭⎫⎝⎛---=---⇒'-=31612102121,0,0,2,4,4132c c c P C c j B j j σ,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=+--=+-2314612142121113132c c c c c c ,解得⎪⎩⎪⎨⎧==-=6102132c c c所以原问题为:,, 10352..1026max 32132132321≥≤+-≤++-=x x x x x x x x t s x x x z 对偶问题为:, 102263..105min 212121221≥≥+-≥-≥+=y y y y y y y t s y y ω(2)由于对偶问题的最优解为()()()2,4,,5454*=-=-=σσσc c C Y IB IB3.6解:(1)因为3x 的检验数0353≤⨯-c ,所以3c 的可变范围是153≤c 。
茹少锋教授管理运筹学课后答案

试用单纯形法求其满意解,若有多个满意解,求出其中两个。
解:将原模型转化为
A = b=
选d-i=(i=1,2,3)取为基变量, =(0,P1, P2)
B-1b= B-1A-C=
检验数行 按 形成:
单纯形表
1
0
1
0
0
-1
0
0
6
(2)
-1
0
1
0
0
-1
0
2
2
-3
0
0
1
0
0
-1
6
p0
0
180
0
6
0+180
140+0
280+0
280
2
7
0+180
140+180
280+0
320
1
8
0+360
140+180
280+0
360
0
9
0+360
140+180
280+0
420+0
420
3
10
0+360
140+180
280+180
420+0
460
2
k=1时,S1=10,u1=0,1,2,3,4,5
当 时取到最大值, =
k=3时,
当 时取到最大值,
k=2时
当 时有最大值,
k=1时
当 时有最大值,
故最优策略集为
2.某工厂生产三种产品,运送各种产品的重量与利润关系如下表所示。现将三种产品运往市场销售。运输能力总量不超过10吨,问如何安排运输使得总利润最大?
《管理运筹学》试题及参考答案

《管理运筹学》试题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量B.销售价格C.顾客的需求D.竞争价格2.我们可以通过(C )来验证模型最优解。
A.观察B.应用C.实验D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 2.5 表2-3为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为12max53zxx,约束形式为,34,xx为松弛变量,表中解代入目标函数后得10z。
表2-3 x1 x2 x3 x4 x3 2 c 0 1 1/5 x1 a d e 0 1 j b -1 f g
(1)求a~g的值; (2)表中给出的解是否为最优解。 解:a=2,b=0,c=0,d=1,e=4/5,f=0,g=5;表中给出的解为最优解。
2.6 表2-4中给出某求最大化线性规划问题的初始单纯形表及迭代后的表,45,xx
为松
弛变量,求表中a~l的值及各变量下标m~t的值。
表2-4 x1 x2 x3 x4 x5 xm 6 b c d 1 0 xn 1 -1 3 e 0 1 j a 1 -2 0 0
xs f g 2 -1 1/2 0 xt 4 h i 1 1/2 1 j 0 7 j k l
解:a=-3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=-5,k=3/2,l=0;变量的下标为m—4,n—5,s—1,t—6 2.10 下述线性规划问题: 要求根据以上信息确定三种资源各自的影子价格。 解:由以上信息可以求得该问题的对偶问题的最优解
11131148(6,8,9)693,1,27332310TBYCB
所以三种资源的影子价格分别为48,1,33。
2.11 某单位加工制作100套工架,每套工架需用长为2.9m、2.1m和1.5m的圆钢各一根。已知原材料长7.4m。问如何下料使得所用的原材料最省? 解:简单分析可知,在每一根原材料上各截取一根2.9m,2.lm和1.5m的圆钢做成一套工架,每根原材料剩下料头0.9m,要完成100套工架,就需要用100根原材料,共剩余90m料头。若采用套截方案,则可以节省原材料,下面给出了几种可能的套截方案,如表2-5所示。
表2-5 可能的下料方案 方案 长度/m A B C D E
2.9 1 2 0 1 0 2.1 0 0 2 2 1 1.5 3 1 2 0 3 合计/m 7.4 7.3 7.2 7.1 6.6
料头/m 0 0.1 0.2 0.3 0.8
实际中,为了保证完成这100套工架,使所用原材料最省,可以混合使用各种下料方案。 设按方案A,B,C,D,E下料的原材料数分别为x1,x2,x3,x4,x5,根据表2-5可以得到下面的线
性规划模型 123451243451235
min00.10.20.30.8210022100..3231000,1,2,3,4,5izxxxxxxxxxxxstxxxxxi
用大M法求解此模型的过程如表2-6所示,最优解为:x*=(0,40,30,20,0)T,最优值为 z*=16。 表2-6 cj 0 -0.1 -0.2 -0.3 -0.8 -M -M -M θi CB XB b x1 x2 x3 x4 x5 x6 x7 x8
-M x6 100 1 2 0 1 0 1 0 0 100 -M x7 100 0 0 2 2 1 0 1 0 — -M x8 100 [ 3 ] 1 2 0 3 0 0 1 100/3 j 4M -0.1 +3M -0.2 +4M -0.3 +3M -0.8 +4M 0 0 0
-M x6 200/3 0 5/3 -2/3 1 -1 1 0 -1/3 200/3 -M x7 100 0 0 2 [ 2 ] 1 0 1 0 100/2 0 x1 100/3 1 1/3 2/3 0 1 0 0 1/3 — j 0 -0.1 +5M/3 -0.2 +4M/3 -0.3 +3M -0.8 0 0 -4M/3
-M x6 50/3 0 [ 5/3 ] -5/3 0 -3/2 1 -1/2 -1/3 150/15 -0.3 x4 50 0 0 1 1 1/2 0 1/2 0 — 0 x1 100/3 1 1/3 2/3 0 1 0 0 1/3 100/1 j 0 -0.1 +5M/3 0.1 -5M/3 0 -0.65 -3M/2 0 0.15 3M/2 -4M/3
-0.1 x2 10 0 1 -1 0 -9/10 3/5 -3/10 -1/5 -0.3 x4 50 0 0 1 1 1/2 0 1/2 0 0 x1 30 1 0 1 0 13/10 -1/5 1/10 2/5 j 0 0 0 0 -0.74 -M +0.06 -M +0.12 -M -0.02
求解该问题的LINGO程序如下: model: sets: row/1..3/:b; arrange/1..5/:x,c; link(row,arrange):a; endsets data: b=100,100,100; c=1,0.1,0.2,0.3,0.8; a=1,2,0,1,0,0,0,2,2,1,3,1,2,0,3; enddata min=@sum(arrange(j):c(j)*x(j)); @for(row(i):@sum(arrange(j):a(i,j)*x(j))=b(i);); end 运行该程序后,也立即可以得到最优解为:x*=(0,40,30,20,0)T,最优值为z*=16。即按方案B下料40根,方案C下料30根,方案D下料20根,共需原材料90根就可以制作完成100套工架,剩余料头最少为16m。 2.13 某昼夜服务公交公司的公交线路每天各时段内所需要司机和乘务人员如表2-9所示。
表2-9 班次 时间 所需人数 班次 时间 所需人数 1 6:00-10:00 60 4 18:00-22:00 50 2 10:00-14:00 70 5 22:00-2:00 20 3 14:00-18:00 60 6 2:00-6:00 30
设司机和乘务人员分别在各时段开始时上班并连续工作8小时。问该公司公交线路应如何安排司机和乘务人员,使得既能满足工作需要,又使配备的总人数最少?(本科生仅需建立问题的数学模型) 解:设xi为安排从第i班次开始时上班的人数,则该问题的数学模型为
61611223344556min607060..5020300,1,2,...,6iiizxxxxxxxstxxxxxxxi
求解此模型得到最优解:**(40,30,30,20,0,30),150Txz。 2.18 现有线性规划问题 123123123123
max5513320..1241090,,0zxxxxxxstxxxxxx
先用单纯形法求出最优解,然后分析在下列各种条件下,最优解分别有什么变化? (1)约束条件①的右端项系数由20变为30; (2)约束条件①的右端项系数由90变为70; (3)目标函数中3x的系数由13变为8;
解:在上述LP问题的第①、①个约束条件中分别加入松弛变量x4,x5得
① ② 123451234123512345
max551300320..1241090,,,,0zxxxxxxxxxstxxxxxxxxx
列出此问题的初始单纯形表并进行迭代运算,过程如表2-12所示。
表2-12 cj -5 5 13 0 0 θi CB XB b x1 x2 x3 x4 x5
0 x4 20 -1 1 [ 3 ] 1 0 20/3 0 x5 90 12 4 10 0 1 9 j -5 5 13 0 0
13 x3 20/3 -1/3 [ 1/3 ] 1 1/3 0 20 0 x5 70/3 46/3 2/3 0 -10/3 1 35 j -2/3 2/3 0 -13/3 0
5 x2 20 -1 1 3 1 0 0 x5 10 16 0 -2 -4 1 j 0 0 -2 -5 0
由表2-12中的计算结果可知,LP问题的最优解X*=(0,20,0,0,10)T,z*=5*20=100。 (1)约束条件①的右端项系数由20变为30,则有 1103030419030Bb
列出单纯形表,并利用对偶单纯形法求解,过程如表2-13所示。
表2-13 cj -5 5 13 0 0 CB XB b x1 x2 x3 x4 x5 5 x2 30 -1 1 3 1 0 0 X5 -30 16 0 [ -2 ] -4 1 j 0 0 -2 -5 0
5 x2 -15 23 1 0 [ -5 ] 3/2 13 x3 15 -8 0 1 2 -1/2 j -16 0 0 -1 -1
0 x4 3 -23/5 -1/5 0 1 -3/10 13 x3 9 6/5 2/5 1 0 1/10 j -103/5 -1/5 0 0 -13/10