北师版九年级上册数学导学案 第2课时 利用一元二次方程解决营销问题及平均变化率问题2
北师版九年级数学上册 第二章 一元二次方程 应用一元二次方程 第2课时 利用一元二次方程解决营销问题

(2)2018年丙类芯片的产量为3x+400=1600(万块),设丙类芯片的产量 每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得y =3200,∴丙类芯片2020年的产量为1600+2×3200=8000(万块),2018 年HW公司手机产量为 2800÷10%= 28000(万部),由题意得400(1+ m%)2+2×400(1+m%-1)2+8000=28000×(1+10%),设m%=t,化 简得3t2+2t-56=0,解得t=4或t=-(舍去),∴t=4,即m%=4, ∴m=400.答:丙类芯片2020年的产量为8000万块,m的值为400
10.(教材P55习题1变式)某种文化衫,平均每天销售40件,每件盈利20元, 若每件降价1元,则每天可多售出10件.如果每天要盈利1080元,则每件应 降价__2_或__1_4__元.
11.(宜宾中考)某产品每件的生产成本为50元,原定销售价为65元,经市场 预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%. 若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x, 根据题意可列方程是____6_5_×__(_1_-__1_0_%__)_×__(_1_+__5_%__)-__5_0_(_1_-__x_)_2=__6_5_-__5_0____.
2.某电商平台上的一家食品旗舰店将进货单价为15元/千克的饼干按16元/ 千克出售时,每天可销售100千克,按市场规律,饼干每千克提价1元,其 销售量就减少5千克,如果此店每天销售这种饼干要获取利润270元,并且 销售量较高,则把饼干的出售价定为每千克( D ) A.20元 B.15元 C.16元 D.18元
50%)3=128×287 =432<500,答:校图书馆能接纳第四个月的进馆人次
北师大版九年级数学上册《应用一元二次方程》第2课时示范公开课教学设计

第二章一元二次方程6 应用一元二次方程第2课时一、教学目标1.利用一元二次方程解决平均变化率问题和销售问题.2.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程.3.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤.4.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.二、教学重难点重点:利用一元二次方程解决决平均变化率问题和销售问题.难点:分析具体问题中的数量关系、建立方程模型并解决问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3 月每个月生产成本的下降率都相同. 求每个月生产成本的下降率.分析:设每月生产成本的下降率为x.等量关系:从1月份连续下降两个月后的生产成本=3月份的生产成本解:设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2=361.解得x1=5%,x2=1.95>1(不合题意,舍去).所以,每个月生产成本的下降率为5%.例2 某商场今年2月份的营业额为440万元,4月份的营业额达到633.6万元.求2月份到4月份营业额的月平均增长率.分析:设2月份到4月份营业额的月平均增长率为x.等量关系:从2月份开始连续增加两个月后的营业额=4月份的营业额解:设2月份到4月份营业额的月平均增长率为x,根据题意,得440(1+x)2=633.6.解得x1=0.2=20%,x2=-2.2(舍去).所以,3月份到5月份营业额的月平均增长率为20%.注意:增长率不可为负,但可以超过1.例3新华商场销售某种冰箱,每台进货价为2500 元.市场调研表明:当销售价为2900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5000 元,每台冰箱的降价应为多少元?分析:售价- 进价= 利润,每台利润×每天的销售量= 每天的总利润设每台冰箱降价x元,售价每降低50 元,多售出4 台.台.售价每降低100 元,多售出4×10050售价每降低x元,多售出4×x台.50解:设每台冰箱降价x元,根据题意,得) = 5000.( 2900-x-2500)(8+4×x50解这个方程,得x1 = x2 = 150.2900-150 = 2750(元).所以,每台冰箱应定价为2750 元.【做一做】某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现:售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?解:设这种台灯售价上涨x元,根据题意,得(40+x-30)(600-10x) = 10000.解这个方程,得x1 = 10,x2 = 40(舍).售价为:40+x = 40+10 = 50(元).应购置台灯:600-10x = 600-10×10 = 500(个).所以,这种台灯的售价应定为50元,这时应购进台灯500个.【方法归纳】思维导图的形式呈现本节课的主要内容:。
《营销问题及平均变化率问题与一元二次方程》课件 2022年数学北师大版九上PPT

求证:四边形ABEF是菱形.
A
F D
B
EC
3.如图,在△ABC,∠ACB=900,AD是角平分线,点 E、F分别在AB、AD上,且AE=AC,EF∥BC。
求证:四边形CDEF是菱形
A
F :,四在 边正 形方AE形CFA是BC菱D中形,. 点E、F在BDA上,且BF=DE.D OE
台灯的利润为〔x-30〕元,那么每月总利润为〔x - 30〕(600 - 10 (x -
4解0):设). 台灯的售价因定位x元.根据题意,得
〔x - 30〕(600 - 10 (x - 40) ) =10000.
整理,得: x2 - 130x + 4000 = 0 .
解得:
x1 = 50 , x2= 80.
当x = 50 时 , 应进台灯数:600- 10〔50 - 40〕=500
〔个〕.
2.学校图书馆去年年底有图书5万册,预计到明年年底增加 到7.5万册.求这两年的年平均增长率.
解:设每年的平均增长率为x,根据题意得:
5 ( 1 + x )2 = 7.5 那么 ( 1 + x )2 =
所以 1 x 6 . 2
解析:销售利润=〔每件售价-每件进价〕×销售件数,假设设每件涨价x元 ,那么售价为〔50+x〕元,销售量为〔500-10x〕件,根据等量关系列方程
即解可:. 设每件商品涨价x元,根据题意,得
〔50+ x - 40〕〔500 - 10x〕= 8000.
即
x2 - 40x + 300 = 0.
解得 x1 = 10,x2 = 30.
∴ OA=OC
又∵AC⊥BD
图 2 0 .3 .3
最新北师版九年级初三数学上册《营销问题及平均变化率问题与一元二次方程》名师精品教案

第2课时 营销问题及平均变化率问题与一元二次方程教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。
(n 为相距时间)原数(1 - 平均减少率)n = 。
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。
2022年北师版数学《营销问题及平均变化率问题与一元二次方程》精品教案

第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40xx1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%.方法总结:a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计营销问题及平均变化率⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.第2课时 代数式的求值知识技能目标1.了解代数式的值的概念;2.会求代数式的值.过程性目标1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;2.探索代数式求值的一般方法.教学过程一.创设情境现在,我们请四位同学来做一个传数游戏.游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?二.探究归纳1.引导学生得出游戏过程实际是一个计算程序(如下图):当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x +1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.2.代数式的值的概念像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.三.实践应用例1当a=2,b=-1,c =-3时,求下列各代数式的值:(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4.(3)当a =2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换a =3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们通过学习,将来有能力证实它的正确性.例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)=1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2 =2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3当x=-3时,多项式mx3+nx-81的值是10,当x=3时,求该代数式的值.解当x=-3时,多项式mx3+nx-81=-27m-3n-81,此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81=( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的。
2022年北师大版数学《利用一元二次方程解决营销问题及平均变化率问题》配套精品练习(附答案)

第2课时利用一元二次方程解决营销问题及平均变化率问题1.某种纪念品原价是168元,连续两次降价x%后售价为128元。
下列所列方程中正确的是()A 、168(1+x)2=128 B、168(1-x)2=128 C、128(1+x)2=168 D、128(1-x)2=1682.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则由题意列方程为A.200+200×0(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.某商店6月份的利润是2500元,要使8月份的利润达到3600元,这两个月利润的月平均增长的百分率是多少?4.植树造林是造福子孙后代的善义之举,某中学师生从2005年到2008年四年内共植树1999棵,已知该校2005年植树344棵,2006年植树500棵,如果2006年到2008年的植树棵数的年增长率相同,那么该校2008年植树多少棵?5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数.6.某种服装,平均每天可销售20件,每件盈利44元;若每件降价1元,则每天可多售5件。
如果每天要盈利1600元,每件应降价多少元?7.某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?8.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?9.某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件。
初三数学九年级上册:2.6 第2课时 营销问题及平均变化率问题与一元二次方程1教学设计 教案

第2课时 营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x 元,则售价为(50+x )元,销售量为(500-10x )件,根据等量关系列方程即可.解:设每件商品涨价x 元,根据题意,得(50+x -40)(500-10x )=8000,即x 2-40x +300=0.解得x 1=10,x 2=30. 经检验,x 1=10,x 2=30都是原方程的解.当x =10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x =30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.解:设3,4月份销售额的月平均增长率为x.根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,解得x1=0.5,x2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a,变化后的量为b,平均每年的增长率(或降低率)为x,则两年后的值为a(1±x)2.由此列出方程a(1±x)2=b,求出所需要的量.三、板书设计营销问题及平均变化率经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.。
北师大版数学9年级上册学案第2课时 利用一元二次方程解决营销问题

第2课时 利用一元二次方程解决营销问题1、使学生会用列一元二次方程的方法解决有关商品的销售问题.2、进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.自学指导 阅读教材第54至55页,完成预习内容.知识探究例1 新华商场销售某种冰箱,每台进价为250元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?.5000:元量平均每天销售冰箱的数每台冰箱的销售利润主要相等关系是分析=⨯,)25002900(,)2900(,元每台冰箱的销售利润为元是那么每台冰箱的定价就元如果设每台冰箱降价---x x x.,,)5048(进而解决问题了就可以列出一个方程这样台量为平均每天销售冰箱的数x ⨯+ 得根据题意元设每台冰箱降价解,,:x.5000)5048)(25002900(=⨯+--x x.022500300:2=+-x x 整理得得解这个方程,.15021==x x.275015029002900=-=-∴x.2750:元每台冰箱的定价应为答活动1 小组讨论例 1. 某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.如果每天盈利1600元,每件应降价多少元?124,36.x x ==(不合题意,舍去)答:每件服装应降价4元.活动2 跟踪训练1.(益阳中考)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为( D )(不合题意,舍去)得根据题意元设每件服装应降价解,,:x .1600)1520)(44(=⨯+-x x .014440:2=+-x x 整理得得解这个方程,124,36.x x ==A .20(12)80x +=B .220(1)80x ⨯+=C .220(1)80x +=D .220(1)80x += 2.(日照中考)某县为大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为( D )A.20%或-220%B. 40%C. -220%D. 20%3.(乌鲁木齐中考)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?解:设每件降价x 元,则每件销售价为(60-x )元,每星期销量为(300+20x )件,根据题意,得6080)20300)(4060(=+--x x .解得11=x ,42=x .因为在顾客得实惠的前提下进行降价,所以取x =4.∴定价为60-x =56(元) .答:应将销售单价定为56元.请使用《名校课堂》相应部分练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时利用一元二次方程解决营销问题及平均变化率问题学习目标
1、使学生会用列一元二次方程的方法解决有关商品的销售问题和平均变化率问题.
2、进一步培养学生化实际问题为数学问题的能力和分析问题解决问
题的能力,培养学生应用数学的意识。
学习重点:
学会用列方程的方法解决有关商品的销售问题和平均变化率问题.学习难点:
如何找出等量关系。
学习过程:
一、预习尝试:
某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a 元,则可卖出(350
—10a)件,商场计划要赚450元,则每件商品的售价为多少元?
二、典型示例:
例1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大
销售,增加盈利,商场决定采取适当的降价措施。
经调查发现,在一定范围内,衬衫
的单价每降一元,商场平均每天可多售出2件。
如果商场通过销售这批衬衫每天要盈
利1200元,衬衫的单价应降多少元?
例2 为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了棵.已知这些学生在七年级时种了400棵,若平均成活率95%,求这个年级每年植树数的平均增长率.(精确到0.1%)
分析至今已成活棵,指的是连续三年春季上山植树的总和.
解设这个年级每年植树数的平均增长率为x,则
第二年种了400(1+x)棵;
第三年种了400(1+x)2棵;
三年一共种了400+400(1+x)+400(1+x)2棵;
三年一共成活了[400+400(1+x)+400(1+x)2]×95%棵.
根据题意列方程得
[400+400(1+x)+400(1+x)2]×95%=
解这个方程得
x1≈0.624=62.4%
x2≈-3.624=-362.4%
但x2=-362.4%不合题意,舍去,所以
x=62.4%.
答这个年级每年植树数的平均增长率为62.4% .
三、课堂小结:
养学生用数学的意识以及渗透转化和方程的思想方法.2.在解方程时,注意巧算;注意方程两根的取舍问题.
分层训练:
一、基础巩固
1、某种商品原价是100元,经过两次提价后的价格是120元,求平均每次降价的百分率。
设平均每次降价的百分率为x,下列所列方程中正确的是()
A、100(1+x)2=120
B、100(1-x)2=120
C、120(1+x)2=100
D、120(1-x)2=100
2. 将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,若设求涨价x元,根据题意可列方程为()
A.(x-40)(500-10x)=5000 B.(x-40)
[500-10(x-40)]=5000
C.(10-x)[500-10(x-40)] =5000
D.(10-x)(500-10x)=5000
3. 某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取降价措施.经调研发现,如果每件衬衫每降价1元,商场平均每天多售出2件.
(1)每降价1元,每件盈利元,商场平均每天可售出件,共盈利元.
(2)每降价元,每件盈利元,商场平均每天可售出件,共盈利元.
(3)每降价x元,每件盈利元,商场平均每天可售出件,共盈利元.
(4)设商场每件衬衫降价x元,每天要盈利1200元,列出方程是.
4、某商场礼品柜台购进大量贺年卡,一种贺年卡平均每天可销售500张,每张盈利0.3元。
为了尽快减少库存,商场决定采取适当的措施。
调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天多售出300张。
商场要想平均每天盈利160元,每张贺年卡应降价多少元?
5.某服装店花1200元进了一批服装,按40%的利润定价,无人购买,决定打折出售,但仍无人购买,结果又一次打折后才售完,经结算这批服装共盈利280元,若两次打折相同,问每次打了多少折?
二、拓展延伸:
6、某商场将进货价为30元的台灯以40元售出,平均每月能售出600
个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10
个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
7、某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商
品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
三、探究创新:
8、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~65元3之间。
市场调查发现:若每箱以50元销售,平均每天可销售90箱;价
格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱。
⑴写出平均每天销售y(箱)与每箱售价x(元)之间的关系式;
⑵求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间
的关系式(每箱的利润=售价-进价);
⑶当每箱牛奶售价为多少时,平均每天的利润为900元?
⑷当每箱牛奶售价为多少时,平均每天的利润为1200元?。