谐波对变频器的危害分析

谐波对变频器的危害分析
谐波对变频器的危害分析

谐波在变频器使用中的危害分析

变频器选型时,电气网友经常会遇到这样一些技术要求,如技术要求中明确要求所选变频器产生

的电压谐波和电流谐波必须要符合中国国家公用电网谐波标准和国际IEEE519等标准要求,具体数值是总的电压谐波畸变率和总的电流谐波率要低于5%,针对这个要求,哪些变频器能符合这

些标准要求呢?这个问题可能不仅会困惑很多销售,同时也可能让很多电气工程师很纠结,所以

在本次论坛上我们欢迎各位网友能够积极探讨,加上理论分析和实测谐波大小,能够让各位网友

明确以下基本概念,正确选择变频器,降低变频器对电网的干扰。

什么是谐波

谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,

就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证实,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的

谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分

为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为

50Hz时,2次谐波为100Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐

波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,变频器主要产生5、7次谐波。

谐波电流计算方法

计算步骤

步骤1:根据国家标准和实际变压器的短路容量计算所允许的各次谐波电流,具体公式为

Ih=IGB(Sr/Sj)

式中:Ih为各次谐波电流允许限值;IGB为基准短路容量下各次谐波电流限值;Sr为实际短路容量,MVA;Sj为基准短路容量,380V时取10MVA。

同一公共连接点的每个用户向电网注入的谐波电流允许值按此用户在该点的协议容量或最大负荷容量与其供电设备容量之比进行分配。如果简单地用谐波电流算术和的方法,得到的结果往往

过于保守,会造成资源的浪费。推荐使用伪平方求和的方法,即有

Ihi=Ih(Si/St)1/a

式中:Si为用户的用电协议容量或最大负荷容量,MVA;St为供电设备容量,MVA;Ihi为

折算后的各次谐波电流允许值;a为相位叠加系数,各次谐波的相位叠加系数可按相关表格查得。

步骤2:额定电流折算

I’e=Ie×(0.38标准电压)

式中:I’e为折算后的额定电流;Ie为变频器的额定电流。

步骤3:根据谐波电流含量表以及变频器的电路形式来确定各次谐波电流的大小,并和步骤1

的结果相比较,判断是否符合国标。计算公式如下:

Ih=I’e×谐波含量(%)×负载率

如果不符合国标,则应采用其他的对策,如使用电抗器、添加谐波补偿设备等。

谐波的限制标准

关于谐波的常用标准是GB-T14549和IEEE519以及GB-T17625。

GB-T14549是中国国内标准,是针对电网提出的谐波限制要求。电力公司使用这个标准来保

证公共电网的质量满足要求。IEEE519是对应于GB-T14549的国际标准,作为“电力系统中的

谐波控制推荐实施和要求”,这个标准的目的是为处理静止功率补偿器和其他非线性负载产生的

谐波提供指南,从而避免电网质量问题。最近随着变频器和其他非线性负载增加,电力公司开始

推行这个标准。如不采取谐波处理措施,大部分变频器不能满IEEE519要求。

GB-T17625是针对接入电网的设备提出的谐波限制要求,当接入电网的设备满足这个标准时,就不会对电网造成危害。因此,设备制造商有义务使所制造的设备满足这个标准的要求,电力公

司有权利限制不满足GB-T17625的设备接入电网。

另一方面,设备的采购方有权利要求所采购的设备满足GB-T17625,否则,企业会承受巨大的经济损失。企业承受的经济损失来自两个方面。第一,设备在运行时,会对用户的内部电网产生

危害,造成制造系统的故障,降低产量,增加废品率;第二,设备运行后,企业不能满足GB-

T14549的要求,需要对电力公司承担责任,接受处罚。

综上所述,GB14549体现了电力公司与电力用户之间的责任关系。GB17625体现了设备制造商与设备用户之间责任关系。

一、在变频器输入侧的对策

1、变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。

2、设置交流电抗器。在电源与变频器输入侧之间串联交流电抗器,这样可使整流阻抗增大来

有效抑制高次谐波电流,提高输入电源的功率因数,使进线电流的波形畸变大约降低30%~50%,是不加电抗器谐波电流的一半左右。

3、设置交流滤波器。滤波器串联在变频器输入侧,由电感线圈组成,通过增大电路的阻抗减

小频率较高的谐波电流。目前谐波抑制的一个重要趋势是采用有源电力滤波器。它串联或是并联于主电路中,实时从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等、方向相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,其特性不受系统的影响,无谐波放大的危险,因而备受关注。

二、采用多相脉冲整流

在条件允许或是要求谐波限制在比较小的情况下,可采用多相整流的方法。12相脉冲整流THDV大约为10%~15%,18相脉冲整流的THDV约为3%~8%,满足国际标准的要求。缺点是需要专用变压器,不利于设备的改造,价格较高。

三、屏蔽干扰源

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。对于变频器,主回路端子PE的正确接地是减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm,长度控制在20m以内。建议变频器的接地与其他动力设备接地点分开,不能共地。

四、变频器谐波的治理可采用以下方法:

(1)变频器的隔离、屏蔽、接地:变频器系统的供电电源与其它设备的供电电源相互独立。或在变频器和其它用电设备的输入侧安装隔离变压器。或者将变频器放入铁箱内,铁箱外壳接地。同时变频器输出电源应尽量远离控制电缆敷设(不小于50mm间距),必须靠近敷设时尽量以正交角度跨越,必须平行敷设时尽量缩短平行段长度(不超过1mm),输出电缆应穿钢管并将钢管作电气连通并可靠接地。作

(2)加装交流电抗器和直流电抗器:当变频器使用在配电变压器容量大于500KVA,且变压器容量大于变频器容量的10倍以上,则在变频器输入侧加装交流电抗器。而当配电变压器输出电压三相不平衡,且不平衡率大于3%时,变频器输入电流峰值很大,会造成导线过热,则此时需加装交流电抗器。严重时则需加装直流电抗器。)

(3)加装无源滤波器:将无源滤波器安装在变频器的交流侧,无源滤波器由L、C、R元件构成谐波共振回路,当LC回路的谐波频率和某一次高次谐波电流频率相同时,即可阻止高次谐波流

入电网。无源滤波器特点是投资少、频率高、结构简单、运行可靠及维护方便。无源滤波器缺点

是滤波易受系统参数的影响,对某些次谐波有放大的可能、耗费多、体积大。直

(4)加装有源滤波器:早在70年代初,日本学者就提出有源滤波器的概念,由源滤波器通过对电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿

谐波电流的目的。与无源滤波器相比具有高度可控性和快速响应性,有一机多能特点。且可消除

与系统阻抗发生谐振危险。也可自动跟踪补偿变化的谐波。但存在容量大,价格高等特点。公(5)加装无功功率静止型无功补偿装置:对于大型冲击性负荷,可装设无功功率的静止型无功

补偿装置,以获得补偿负荷快速变动的无功需求,改善功率因数,滤除系统谐波,减少向系统注

入谐波电流,稳定母线电压,降低三相电压不平衡度,提高供电系统承受谐波能力。而其中以自

饱和电抗型(SR型)的效果最好,其电子元件少,可靠性高,反应速度快,维护方便经济,且我国一般变压器厂均能制造。元

(6)线路分开:因电源系统内有阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸形。把

产生谐波的负荷的供电线路和对谐波敏感的负荷供电线路分开,线性负荷和非线性负荷从同一电

源接口点PCC开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。(7)电路的多重化、多元化:逆变单元的并联多元化是采用2个或多个逆变单元并联,通过波

形移位叠加,抵消谐波分量;整流电路的多重化是采用12脉波、18脉波、24脉波整流,可降低谐波成分;功率单元的串联多重化是采用多脉波(如30脉波的串联),功率单元多重化线路也

可降低谐波成分。此外还有新的变频调制方法,如电压矢量的变形调制。,

(8)变频器的控制方式的完善:随着电力电子技术、微电子技术、计算机网络等高新技术发展,变频器控制方式有了以下发展:数字控制变频器,变频器数字化采用单片机MCS51或

80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能;多种控制

方式结合,单一的控制方式有着各自的缺点,如果将这些单一控制方式结合起来,可以取长补短,从而达到降低谐波提高效率的功效。

(9)使用理想化的无谐波污染的绿色变频器:绿色变频器的品质标准是:输入和输出电流都是

正弦波,输入功率因数可控,带任何负载使都能使功率因数为1,可获得工频上下任意可控的输

出功率。

五、变频器电抗器的选择问题

1,额定交流电流的选择

额定交流电流是从发热方面设计电抗器的长期工作电流,同时应该考虑足够的高次谐波分量。即

输出电抗器实际流过的电流是变频器电机负载的输出电流。

2,电压降

电压降是指50HZ时,对应实际额定电流时电抗器线圈两端的实际电压降。通常选择电压降在

4V~8V左右。

3,电感量的选择

电抗器的额定电感量也是一个重要的参数!若电感量选择不合适,会直接影响额定电流下的电压

降的变化,从而引起故障。而电感量的大小取决于电抗器铁芯的截面积和线圈的匝数与气隙的调整。

输出电抗器电感量的选择是根据在额定频率范围内的电缆长度来确定,然后再根据电动机的实际

额定电流来选择相应电感量要求下的铁芯截面积和导线截面积,才能确定实际电压降。

4,对应额定电流的电感量与电缆长度:

电缆长度额定输出电流电感量

300米 100A 46μH

200A 23μH

250A 16μH

300A 13μH

600米 100A 92μH

200A 46μH

250A 34μH

300A 27μH

理想的电抗器在额定交流电流及以下,电感量应保持不变,随着电流的增大,而电感量逐渐减小。当额定电流大于2倍时,电感量减小到额定电感量的0.6倍。

当额定电流大于2.5倍时,电感量减小到额定电感量的0.5倍。

当额定电流大于4倍时,电感量减小到额定电感量的0.35倍。

六、降低变频器谐波可以采用以下方法:

1)变频器的隔离、屏蔽、接地:变频器系统的供电电源与其它设备的供电电源相互独立。或在变频器和其它用电设备的输入侧安装隔离变压器。或者将变频器放入铁箱内,铁箱外壳接地。同

时变频器输出电源应尽量远离控制电缆敷设(不小于50mm间距),必须靠近敷设时尽量以正

交角度跨越,必须平行敷设时尽量缩短平行段长度(不超过1 mm ),输出电缆应穿钢管并将钢

管作电气连通并可靠接地。

2)加装交流电抗器和直流电抗器:当变频器使用在配电变压器容量大于500KVA ,且变压器容量大于变频器容量的10倍以上,则在变频器输入侧加装交流电抗器。而当配电变压器输出电压

三相不平衡,且不平衡率大于3% 时,变频器输入电流峰值很大,会造成导线过热,则此时需加

装交流电抗器。严重时则需加装直流电抗器。

3)加装无源滤波器:将无源滤波器安装在变频器的交流侧,无源滤波器由 L、C、R元件构成

谐波共振回路,当 LC 回路的谐波频率和某一次高次谐波电流频率相同时,即可阻止高次谐波流

入电网。无源滤波器特点是投资少、频率高、结构简单、运行可靠及维护方便。无源滤波器缺点

是滤波易受系统参数的影响,对某些次谐波有放大的可能、耗费多、体积大。

4)加装有源滤波器:早在70年代初,日本学者就提出有源滤波器的概念,由源滤波器通过对

电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿

谐波电流的目的。与无源滤波器相比具有高度可控性和快速响应性,有一机多能特点。且可消除

与系统阻抗发生谐振危险。也可自动跟踪补偿变化的谐波。但存在容量大,价格高等特点。

5)加装无功功率静止型无功补偿装置:对于大型冲击性负荷,可装设无功功率的静止型无功补偿装置,以或得补偿负荷快速变动的无功需求,改善功率因数,滤除系统谐波,减少向系统注入

谐波电流,稳定母线电压,降低三相电压不平衡度,提高供电系统承受谐波能力。而其中以自饱

和电抗型( SR型 ) 的效果最好,其电子元件少,可靠性高,反应速度快,维护方便经济,且我国

一般变压器厂均能制造。

6)线路分开:谐波产生的根本原因是由于使用了非线性负载,因此,解决的根本办法是把产生谐波的负载的供电线路和对谐波敏感的负载的供电线路分开。由于非线性负载引起的畸变电流在

电缆的阻抗上产生一个畸变电压降,而合成的畸变电压波形加到与此同一线路上所接的其它负载,引起谐波电流在其上流过。因此,减少谐波危害的措施也可从加大电缆截面积,减少回路的阻抗

方式来实现。可以将线性负载与非线性负载从同一电源接口点(PCC)就开始分别的电路供电,这

样可以使由非线性负载产生的畸变电压不会传导到线性负载上去。这是目前治理谐波问题较为理

想的解决方案。

7)电路的多重化、多元化:逆变单元的并联多元化是采用2个或多个逆变单元并联,通过波形移位叠加,抵消谐波分量;整流电路的多重化是采用12脉波、18脉波、24脉波整流,可降低谐波成分;功率单元的串联多重化是采用多脉波(如30脉波的串联),功率单元多重化线路也可

降低谐波成分。此外还有新的变频调制方法,如电压矢量的变形调制。

8)变频器的控制方式的完善:随着电力电子技术、微电子技术、计算机网络等高新技术发展,变频器控制方式有了以下发展:数字控制变频器,变频器数字化采用单片机MCS51或

80C196MC等,辅助以 SLE4520或EPLD液晶显示器等来实现更加完善的控制性能;多种控制方式结合,单一的控制方式有着各自的缺点,如果将这些单一控制方式结合起来,可以取长补短,

从而达到降低谐波提高效率的功效。

9)使用理想化的无谐波污染的绿色变频器:绿色变频器的品质标准是:输入和输出电流都是正弦波,输入功率因数可控,带任何负载使都能使功率因数为1,可获得工频上下任意可控的输出

功率。变频器内置的交流电抗器,它能很好的抑制谐波,同时可以保护整流桥不受电源电压瞬间

尖波的影响,实践表明,不带电抗器的谐波电流明显高于带电抗器产生的谐波电流。为了减少谐

波污染造成的干扰,在变频器的输出回路安装噪声滤波器。并且在变频器答应的情况,降低变频

器的载波频率。另外,在大功率变频器中,通常使用12脉冲或18脉冲整流,这样在电源中,通过消除最低次谐波来减少谐波含量。

综上所述,可以了解变频器以及变频器谐波产生的机理,变频器谐波以及其危害性,以及采用变频器隔离、接地或采用无源滤波器、有源滤波器、加设无功补偿装置以及绿色变频器等方法。

随着电力电子技术以及微电子技术等技术的飞速发展,在治理谐波问题上将会迈上一个新的台阶,将变频器产生的谐波控制在最小范围之内以达到抑制电网污染,提高电能质量。

谐波干扰问题分析与谐波治理方法建议

谐波干扰问题分析与谐波治理方法建议 一、存在的谐波干扰问题介绍 某科技发展有限公司主要从事先进陶瓷材料相关技术、产品和系统的研发,涉及生物医学材料、新能源材料、电子信息材料、化工陶瓷材料、以及多功能结构陶瓷材料等领域。 该公司目前新安装的300KW中频烧结炉,可控硅控制功率加热,出现功率因数低0.3-0.5,谐波大,造成共用的容量1250Kvar供电变压器配置的容量为600Kvar无功补偿电容装置产生过热保护无法正常投切运行等问题。 二、谐波干扰状况分析 随着我国制造业的蓬勃发展和人民生活水平的不断提高,电力电子技术在电网设备中得到广泛应用,大量的非线性负荷广泛应用在工业、商业和民用电网中,给电网造成的污染问题越来越得到重视。如在一般工业领域使用的中频炉、变频器、软启动器、电弧炉、轧机、电解槽、电镀槽等负荷,商业和民用领域如节能灯、气体灯具、变频空调、电脑、冰箱等,都产生大量的谐波,尤其是近几年在我国节能技术产业的发展过程中出现了各种类型的专用节电装置,这些节电装置采用的均是电力电子控制技术如变频控制和可控硅调压原理,属典型的谐波源,大量使用导致谐波的产生,轻者影响供电质量使制造工艺较为精细的产品质量受到影响,或者由于在节电过程中使用的节电器具产生的谐波导致谐振,而使无功得不到满意补偿甚至不补偿影响节电效果,重者导致电气设备长期发热,降低使用寿命甚至损坏、火灾,危害电网安全。 为了便于对北京某科技发展有限公司新安装使用的中频烧结炉产生谐波危害进行分析,特地借鉴下列两组关联数据

用以推断可能产生谐波的含量。 借鉴测试数据一:2014年5月9日浙江某公司新安装使用的中频烧结炉的现场测试数据显示,该中频烧结炉运行时电源进线上基波电流在17-391A有功功率在7.8-118.5KW,谐波电压总畸变率5.7-6.3%,谐波电流总畸变率42-72.9%,功率因数在0.33-0.64范围内波动。 借鉴测试数据二:2014年6月22日领步公司应邀对某新型材料(江苏)有限公司生产线300KW中频烧结炉的谐波测试数据如下:运行电流在250A时谐波参数,谐波电压总畸变率4.4%,谐波电流总畸变率29.9%;运行电流在365A时谐波参数,谐波电压总畸变率6.7%,谐波电流总畸变率30.1% 运行电流 在250A时 谐波参数

变频器谐波的影响及控制作用分析

龙源期刊网 https://www.360docs.net/doc/fd8407296.html, 变频器谐波的影响及控制作用分析 作者:孟涛曹美乐 来源:《城市建设理论研究》2013年第09期 摘要:随着电子技术的迅速发展,开关电源的应用日益普及,给电网造成污染,干扰其它设备的正常工作。针对变频器广泛应用的现状,本文简单地探讨了变频器谐波的影响及控制作用。 关键词:变频器;谐波影响;控制作用 中图分类号:F407.63 文献标识码:A 文章编号: 引言:变频器的使用给人们带来了方便和巨大的利益,它必将更为普遍的使用。但是由于它所特有的工作方式,给公用电网带来了一定的破坏,成为电网谐波污染源之一,所以,分析和研究抑制谐波的方法将成为一个非常重要的课题。 1谐波的危害我们知道,变频器对电容量大的电网和大型的电力系统所造成的影响几乎没有,对于那些容量小的电力系统,变频器谐波产生的危害是巨大的,谐波电压和电流对于公共电网的干扰是明显的,使用电设备的环境改变,给他周围的通信系统和其他设备都能带来一定的危害。那么,谐波对电力系统及其周围环境带来的危害都有哪些呢?供电线路的电能损失 严重。供电线路的肌肤效应和临近效应,使其本身的电阻会随着频率的提高而增大,这就造成了电能的浪费。中性线平时的电流过流量极小,因此导线较细,可是刚线路存在大量的三次谐波通过中线是,会因电阻突然增大产生大量的热,以至于导线绝缘皮层老化、损坏、使用寿命缩短,极有可能造成火灾。最近发生的好多商业大厦火灾,专家分析极有可能是导线的电流过大造成的。谐波影响其共同工作环境中其他设备正常使用。谐波对发电机的影响主要有功率 损耗过大、发热、震动、噪音、过电压。对短路器的影响主要是延长其故障时的断开电源的时间。这也是工业电机使用发生伤亡事故的主要原因。供电系统电网产生谐振。共同频率下, 用于供电系统的装备电容器有着不同的用途,他们的抗干扰能力要比其他电路强的多,不可能有谐振产生。但谐波频率时,抗敢能力大幅下降而感抗值是成倍增长的,这样就极有可能出现谐振,谐波电流增大,导致电容器及其他设备即刻被烧毁。谐波能引起公用电网其连接的局 部电网的并联、串联谐振,使谐波放大,造成极大的危害。谐波使安全保护设备失灵。谐波 的产生会使电磁继电器和自动保护装置发出错误的指令,使工业仪表和电能计量表产生的误差加大。谐波的产生的危害进一步扩大到了对电力用户的危害,对通信系统的通信信号产生干扰,严重的能使通信系统处于瘫痪。影响电子仪表的工作精密度,设备的使用寿命缩短,家用电器使用工况下降等。 2谐波危害的解决措施变电器的使用极大的方便了人们的生活,可它的危害也是并存的。电脑和一些电子敏感产品的普遍使用,使人们对供电的质量要求也越来越高,全球许多国家和地区都制定了各自谐波的标准,用来减少谐波造成的污染。总体来说,谐波危害的解决措施有

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

变频器谐波干扰及抑制

变频器谐波干扰及抑制 0 引言 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其他许多优点而被国内外公认为最有发展前途的调速方式。但是由于变频器中普遍有晶闸管、整流二极管及大功率IGBT开关等非线性元器件,在使用中会产生大量谐波,从而干扰周围电器正常运行。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作,因此有必要对变频器应用系统中的干扰问题进行探讨。 1 变频调速系统谐波的产生 变频器的主电路一般由交-直-交组成,外部输入的380 V/50 Hz 的工频电源经三相桥路晶闸管整流成直流电压信号后,经滤波电容滤波及大功率晶体管开关器件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅里叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR 大功率逆变器件,其PWM的载波频率为2耀3 kHz,而IGBT大功率逆变器件的PWM最高载频可达15 kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 用于电机调速的交-直-交型通用变频器一般是6脉动装置,其谐波电流含有率如表1所列。此外,交-交型变频器通过一套可关断晶闸管和斩波技术,不经过整流这个环节,把电网工频直接变成交流调速电机所需要的交流频率。交-交型变频器除了向电网系统注入高次谐波外,还注入谐间波(即频率不是工频倍数)电流。谐波电流的频率和含量随电机的工况变化而变化。 2 谐波的传播途径 变频器能产生功率较大的谐波,对系统其他设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射,这是频率很高的谐波分量的主要传播方式;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其他设备,这是变频器输入电流干扰信号的主要传播方式;最后变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流,感应的方式又有两种:即电磁感应方式,这是电流干扰信号的主要方式;静电感应方式,这是电压干扰信号的主要方式。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 3 谐波的危害 1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2)谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4)谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

变频器高次谐波干扰的五大危害

1)变压器电流谐波将增加铜损,谐波电压将增加铁损,其综合结果就是使得变压器的温度上升。谐波还可能引起变压器绕组及线间电容之间的共振,从而产生噪声污染。 2)变频器当变频器输入电压发生畸变,输入电流峰值增大,就使得变频器整流二极管及电解电容负担加重,容易产生过电压或者过电流,导致变频器的运行不正常。由于变频器属于电力电子装置,很容易感受谐波失真而误动作,从而影响变频器的工作性能和使用寿命。 3)电动机电机绕组存在杂散电容,谐波主要引起电动机的附加发热,导致电动机的额外温升,使得电动机的机械效率下降。谐波的产生还会引起绕组不均匀处过热导致的绝缘层损坏、电机转矩脉冲及噪声的增加。 4)供电线路高频谐波电流使线路阻抗随着频率的增加而提高,对供电线路产生了附加谐波损耗,造成电能的浪费,并且导体对高频谐波电流的集肤效应使线路的等效阻抗增加,导致线路压降增大,输出电缆的截面要相应增大。 5)电力电容器工频状态下,电力系统装设的电容器比系统中的感抗要大得多。但在谐波频率较高时,感抗值成倍增加而容抗值大幅减少,这就可能出现谐振,谐振造成异常电流进入电容器,导致电容器过热,绝缘破坏直至烧毁。 此外,谐波可能导致开关设备、保护电器的误动作,影响计量仪表测量精度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/fd8407296.html,。

谐波的危害

1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和 谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量, 2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过 电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。 3、影响设备的稳定性,尤其是对继电保护装置,危害特大。 4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误 动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。 5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。 谐波对公用电网和其他系统的危害大致有以下几个方面: 1、加大企业的电力运行成本 由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。 2、降低了供电的可靠性 谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。 3、引发供电事故的发生 电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

变频器谐波抑制方法

变频器谐波抑制方法 对小容量的通用变频器,高次谐波很少成为问题,但当使用的变频器容量大或数量多时,往往就会产生高次谐波电流和高次谐波干扰问题,因此对于高次谐波先采取适当的对策和预防措施是非常重要的。 1. 改善变频器结构 可以从变频器自身硬件结构或者整个变频系统的构建方式和设备选择等方面考虑,从根本上减少变频系统注入电网的谐波、无功等污染。 (1) 变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器; (2) 在整流环节采用多重化技术,提高脉波数,可以有效地提高特征谐波次数,降低特征谐波幅值。对于大容量晶闸管变频器可以采取这种方法,利用多重化抑制流向电源侧的高次谐波; (3) 采用高频整流电路,改善整流波形,提高功率因数,直流电压可调节; (4) 逆变环节采用高开关频率高的电力电子器件,如MOSFET,IGBT等,可以提高载波频率比,抑制变频器输出端的高频谐波。 (5) 在逆变环节采用多重化技术,提高脉波数,使输出的电流电压波形更加接近正弦波。但重数越多电路越复杂,可靠性会随之降低,三重化电路可以兼顾输出波形质量和设备可靠性,较理想。 2. 采用合适的控制策略 从变频器控制器这一点出发,可采用更合适的控制策略或者在原来的控制策略基础上作点优化和改进,原理上更大限度地减少谐波的产生。以实际应用中常用的正弦脉宽调制法(SPWM)法和特定消谐法(SHE)法为例。 根据SPWM基本理论,当调制波频率为fr,载波频率为fc,载波频率比N=fc/fr,单极性SPWM控制在输出电压中产生N-3次以上的谐波,双极性SPWM控制在输出电压中产生N-2次以上的谐波。比如,N=25,采用单极性SPWM控制,低于22次的谐波全被消除,采用双极性SPWM控制,低于23次的谐波全被消除。 但输出电压频率较高的时候,由于受到元件开关频率的限制,N值不可能大,SPWM 控制的优势就不太明显了,这个时候选择SHE法可以在开关次数相等的情况下输出质量较高的电压、电流,降低了对输入、输出滤波器的要求。

谐波标准及变频器谐波干扰的解决方法

谐波标准及变频器谐波干扰的解决方法 谐波标准及变频器谐波干扰的解决方法 一、前言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 二、谐波和电磁辐射对电网及其它系统的危害 1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 三、有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2, EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍: 1.国际标准 IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv.

谐波对电网危害

谐波污染对电网有哪些具体影响? 谐波污染对电网的影响主要表现在: (1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。 (2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。 按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。 表2-5 电网电压正弦波形畸变极限值 用户供电电压(kV)总电压正弦波形畸变率极限值各奇、偶次谐波电压正弦波形畸变率极限之(%) 0.38 5 4 2 6或10 4 3 1.75 35或63 3 2 1 110 1.5 1 0.5 谐波对电力变压器有哪些影响? (1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。(2)谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施 摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法. 关键词:变频器谐波危害抑制 前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。 一、变频器原理及其谐波的产生 变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构 众所周知,电机的转速和电源的频率是线性关系。 变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。 从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。 在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

电厂发电机的谐波危害分析与测试

电厂发电机的谐波危害分析与测试 发表时间:2017-03-09T15:51:09.617Z 来源:《电力设备》2017年第1期作者:丁超孟庆铭张晓彤 [导读] 本文重点针对谐波的危害进行分析,并研究一下我国谐波的监测。 一、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。谐波的产生主要是来自下列具有非线性特性的电气设备:具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式家用电器中。 二、谐波的危害 1、增加了发、输、供和用电设备的附加损耗 发电机出现谐波会使设备过热,降低设备的效率和利用率。由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。 2、影响继电保护和自动装置的工作和可靠性 谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧炉等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。 3、使测量和计量仪器的指示和计量不准确 由于电力计量装置都是按50Hz的标准的正弦波设计的,当供电电压或负荷电流中有谐波成分时,会影响感应式电能表的正常工作。在有谐波源的情况下,谐波源用户处的电能表记录了该用户吸收的基波电能并扣除一小部分谐波电能,从而谐波源虽然污染了电网,却反而少交电费;而与此同时,在线性负荷用户处,电能表记录的是该用户吸收的基波电能及部分的谐波电能,这部分谐波电能不但使线性负荷性能变坏,而且还要多交电费。电子式电能表更不利于供电部门而有利于非线性负荷用户。 4、干扰通信系统的工作 电力线路上流过的3、5、7、11等幅值较大的奇次低频谐波电流通过磁场耦合,在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下,还会威胁通信设备和人员的安全。另外高压直流(HVDC)换流站换相过程中产生的电磁噪声(3-10kHz)会干扰电力载波通信的正常工作,并使利用载波工作的闭锁和继电保护装置动作失误,影响电网运行的安全。 5、对用电设备的影响 谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。对于带有启动用的镇流器和提高功率因数用的电容器的荧光灯及汞灯来说,会因为在一定参数的配合下,形成某次谐波频率下的谐振,使镇流器或电容器因过热而损坏。对于采用晶闸管的变速装置,谐波可能使晶闸管误动作,或使控制回路误触发。 三、谐波的测试与监测 1、谐波的实验室测试 我们可以利用示波器来记录发电机端线电压和三相电流,其波形如下: 实验可知,当发电机带整流负载时,受负载非线性工作特性的影响,发电机的机端线电压和三相电流的波形都发生了严重的畸变,含有大量的谐波。而且发电机伴随着震动现象,这是受谐波电磁转矩的影响,另外发电机的定子和转子发热严重。 2、我国的谐波监测发展 我国为加强对谐波的监测,管理及治理,于1994年正式颁布了GB/T14549-93国家标准《电能质量--公用电网谐波》。为了配合国家电力公司《电网电能质量技术监督管理规定》和国家《公用电网谐波标准》的执行,各企业生产了许多电能质量监测仪等系列产品。这些产品可测量三相电压、三相电流的谐波、序分量、电压变动和闪变、电压偏差、功率因数、有功、无功、频率、暂态电压等参数,谐波可测量63次,仪器实时监测定时记录,记录结果可以存盘并打印,为用户提供丰富、完整的实测记录资料。产品广泛应用于变电站、风电场、钢铁企业及电气化铁路,产品通过相关认证,完全能够满足电网运行要求,实现对电网安全保驾护航。 谐波分析是信号处理的一种基本手段。在电力系统的谐波分析中,主要采用各种谐波分析仪分析电网电压、电流信号的谐波,该类仪表的谐波分析次数一般在40次以下。对于变频器而言,其谐波分布与电网不同,电网谐波主要为低次谐波,而变频器的谐波主要为集中在载波频率整数倍附近的高次谐波,一般的谐波分析设备只能分析50次以下的谐波,不能测量变频器输出的高次谐波。对于PWM波,当载波频率固定时,谐波的频率范围相对固定,而所需分析的谐波次数,与基波频率密切相关,基波频率越低,需要分析的谐波次数越高。一般宜采用宽频带的,运算能力较强、存储容量较大的变频功率分析仪,根据需要,其谐波分析的次数可达数百甚至数千次。例如,当载波频率为2kHz,基波频率为50Hz时,其40次左右的谐波含量最大;当基波频率为5Hz时,其400次左右的谐波含量最大,需要分析的谐波次数

变频器的谐波及常用解决方法

变频器的谐波及常用解决方法 摘要: 随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。 关键词:变频器;谐波;抑制;干扰 由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。 1 谐波的含义 谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整数倍。 2 变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。 输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。 输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。所以,输出回路电流信号也可分解为只含正弦波的基波和其它各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 3 谐波干扰的危害 一般来讲,变频器对容量相对较大的电力系统影响不是很明显,而对容量较小的系统,谐波产生的干扰是不可忽视的,谐波的出现是对电网的一种污染,它使用电设备所处的环境恶化,给周边的通讯带来危害。 4 谐波研究的意义 正因为谐波有如此大的危害,所以我们要研究它。各种谐波源产生谐波给电力系统造成巨大的污染,影响到整个电力系统的运行环境、包括系统中的广大用户,而且其污染影响的范围很广,距离很远。 研究谐波的意义,还在于其对电力电子技术自身发展的影响。谐波是电力电子技术发展的产物,而它的出现已经成为阻碍电子技术发展的重大障碍,它迫使电子领域的人员必须对谐波问题进行更加有效的研究。

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

谐波的危害及治理

谐波的危害及治理

谐波对供电系统的危害及治理 中铝贵州分公司第一铝矿汪元江 [摘要] [关键词] 1、引言 一个理想的电力系统是以单一恒定频率与规定幅值的稳定电压供电的。但实际上,由于近年来随着科学技术的不断发展,在电力系统中大功率整流设备和调压装置的利用、高压直流输电的应用、大量非线性负荷的出现以及供电系统本身存在的非线性元件等使得系统中的电压波形畸变越来越严重,对电力系统造成了很大的危害。因此,要实现对电网谐波的综合治理,就必须搞清楚谐波的来源、危害及电网在各种不同运行方式下谐波潮流的分布情况,以采取相应的措施限制和消除谐波,从而改善供电系统供电质量和确保系统的安全经济运行。 2、谐波产生的原因 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次,n 为整数,例如5、7、11、13、17、19等。变频器主要产生5、7次谐波。 3、电网谐波的来源 3.1 发电源产生谐波,由于发电机三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀等其他一些原因,发电源多少也会产生一些谐波,但对电网影响很小。 3.2 输配电系统产生谐波,输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性特性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 3.3 整流设备产生谐波,近年来,由于晶闸管整流装置在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式

相关文档
最新文档