数学本科毕业论文
数学与应用数学专业毕业论文范文

如何写数学与应用数学专业的论文我是一位大一的学生,导员老师为了虽然我没写过论文,但还是想提点建议,楼主不妨考虑一下。
作为大一学生,限于学识和能力,要写作的所谓“专业论文”,不会要求达到毕业论文那样高的水平,只要对所学过某一方面的知识和方法作一个较为系统的整理就可以了。
鉴于此,下面就楼主所提到的四门课程各拟一题,仅供参考: 1.数学分析:极限的求法; 2.高等代数:行列式的计算方法; 3.空间解析几何:仿射变换及其应用; 4.高等几何:高等几何在平面几何证题中的应用。
应用数学专业毕业论文先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。
使学生获得科学、教学研究方法的初步训练。
培养学生的独立研究能力和重视开发学生的创新能力。
两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。
学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
四、毕业论文成绩评定 1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。
二、论文标题: 1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。
其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文: 1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
数学与应用数学大学导论课论文怎么写(一)题名(Title,Topic)题名又称题目或标题。
数学与应用数学毕业论文范文

数学与应用数学毕业论文范文在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。
下文是店铺为大家整理的关于数学与应用数学毕业论文的内容,欢迎大家阅读参考!数学与应用数学毕业论文篇1浅析高校目前的应用数学教学状况与改革策略在高校设立的学科中数学教学占有的位置不容忽视,加强数学教育就能够使学生在解决实际问题时更有把握,并且学生自身还可以构建其数学知识体系。
所以,在进行高效实际数学教学改革时,师生都对教学改革的观念加以重视,同时要慢慢的培养学生养成良好的学习习惯。
1 高校应用数学内在的意义高校应用数学这门学科非常重要,并且不同与以往的教学。
其一,是应用领域上的不同,高校应用数学的开始针对性特别的强,以往是数学有着较为传统的应用领域。
其二,应用数学主要关注的就是将理论知识联系到实际,可是,以往的数学主要就是对理论加以注重。
即使有很大的差异存在这两种数学中,可是这两种学科的内容是不能分离的,他们是一个整体,存在的差异也只是在针对性方面和教学目标方面[1].2 高校目前的应用数学的教学状况2.1 建立应用数学的有关课堂学生在深入学习应用数学知识后,可以对数学中的一些基础运算加以掌握,并且学生的思维能力也得到了提高,学生能够深入的分析数学中的所有问题,并在对所有问题应用所学的理论知识加以解决,对学生的数学理论知识的运用与创新能力进行培养,最后达到提升学生数学素养的目标。
大学生的教学课程就包括高等数学课程,并且高校还建立了与改课程有关的专人培养内容,对应用数学的学习有助于学习其他的学科,想要学好其他的课程,应用数学的学习必不可少[2].高校建立应用数学课堂,这样学生就能掌握数学的理论知识,学生的学习数学能力将会得到培养,同时增加学生的学习兴趣,学生的数学素养也会得到提高。
2.2 高校数学中出现的问题(1)在教学内容上有问题存在。
高校数学教学的内容上涵盖性较强,很多专业学生对数学的学习知识为基础理论,根本不能联系数学实践,所以,教学的领域根本不符合教学要求,并且,学生在整个学习的过程中对所有理论知识都不能深刻的理解,这都阻碍了学生积极主动的学习数学理论知识的想法。
数学与应用数学专业毕业论文选题指南

数学与应用数学专业毕业论文选题指南一、引言毕业论文是数学与应用数学专业本科生在毕业阶段完成的一项重要学术任务。
论文选题的好坏直接关系到后续研究工作的展开和论文的质量,因此选题是毕业论文写作过程中的关键步骤。
本指南旨在为数学与应用数学专业的学生提供选题方向和思路,帮助他们找到合适的论文选题,并提供相关的写作指导。
二、选题方向1. 应用数学在应用数学领域,有许多热门的选题方向可供选择。
其中一些方向包括:金融数学、精算学、组合优化、算法设计与分析、数据挖掘与机器学习等。
学生可以选择与自己感兴趣的领域相关的选题,并深入研究该领域中的一个具体问题。
2. 数值计算数值计算是数学与应用数学专业中的重要方向。
在这个领域,有很多有趣和有挑战性的问题可以作为毕业论文的选题,比如:数值解常微分方程、数值微分方程组中的稳定性与收敛性、计算流体力学中的数值模拟等。
学生可以根据自己的研究兴趣和能力选择一个适合的数值计算选题。
3. 纯数学纯数学是数学与应用数学专业中最基础也是最抽象的领域。
在纯数学中,有许多经典和有意思的问题可以作为毕业论文的选题,比如:代数学、几何学、拓扑学等。
学生可以选择一个自己感兴趣的领域,并深入研究该领域中的一个具体问题。
三、选题思路选择一个好的论文选题需要学生充分考虑以下几个方面:1. 兴趣和热情选择一个自己感兴趣的选题是非常重要的,因为在毕业论文的写作过程中需要投入大量的时间和精力。
如果选取一个自己兴趣的选题,不仅可以提高学生的学术研究积极性,还可以使其对该领域的知识有更深入的理解。
2. 研究前沿选择一个研究前沿的选题可以提高论文的学术价值和创新性。
学生可以通过查阅相关文献和与导师交流来了解当前领域的研究进展,选择一个有研究价值的选题进行深入研究。
3. 研究可行性选择一个研究可行的选题是非常重要的,学生在选择选题时应充分考虑自己的时间和能力,并与导师进行充分的讨论。
选择一个研究可行的选题可以保证毕业论文能够按时完成并具备一定的研究成果。
数学与应用数学本科毕业范文范德蒙行列式及其应用

本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。
数学专业本科毕业论文题目

★最新★数学毕业论文题目1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境"17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享—-从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用“1”的妙用“数形结合”在解题中的应用“数学化”及其在数学教学中的实施“一题多解与一题多变”在培养学生思维能力中的应用《几何画板》与数学教学《几何画板》在圆锥曲线中的应用举例Cauchy中值定理的证明及应用Dijkstra最短路径算法的一点优化和改进Hamilton图的一个充分条件HOLDER不等式的推广与应用n阶矩阵m次方幂的计算及其应用R积分和L积分的联系与区别Schwarz积分不等式的证明与应用Taylor公式的几种证明及若干应用Taylor公式的若干应用Taylor公式的应用Taylor公式的证明及其应用Vandermonde行列式的应用及推广艾滋病传播的微分方程模型把数学和生活融合起来伴随矩阵的秩和特殊值保持函数凸性的几种变换变量代换在数学中的应用不变子空间与若当标准型之间的关系不等式的几种证明方法及简单应用不等式的证明方法探索不等式证明的若干方法不等式证明中导数有关应用不同型余项泰勒公式的证明与应用猜想,探求,论证彩票中的数学常微分方程的新的可解类型常微分方程在一类函数项级数求和中的应用抽奖活动的概率问题抽屉原理及其应用抽屉原理及其应用抽屉原理思维方式的若干应用初等变换在数论中的应用初等数学命题推广的几种方式传染病模型及其应用从趣味问题剖析概率统计的解题技巧从双曲线到双曲面的若干性质推广从统一方程看抛物线、椭圆和双曲线的关系存贮模型的若干讨论带peano余项的泰勒公式及其应用单调有界定理及其应用导数的另外两个定义及其应用导数在不等式证明中的应用导数在不等式证明中的应用导数在不等式证明中的应用等价无穷小在求函数极限中的应用及推广迪克斯特拉(Dijkstra)算法及其改进第二积分中值定理“中间点”的性态对均值不等式的探讨对数学教学中开放题的探讨对数学教学中开放题使用的几点思考对现行较普遍的彩票发行方案的讨论对一定理证明过程的感想对一类递推数列收敛性的讨论多扇图和多轮图的生成树计数多维背包问题的扰动修复多项式不可约的判别方法及应用多元函数的极值多元函数的极值及其应用多元函数的极值及其应用多元函数的极值问题多元函数极值问题二次曲线方程的化简二元函数的单调性及其应用二元函数的极值存在的判别方法二元函数极限不存在性之研究反对称矩阵与正交矩阵、对角形矩阵的关系反循环矩阵和分块对称反循环矩阵范德蒙行列式的一些应用方差思想在中学数学中的应用及探讨方阵A的伴随矩阵放缩法及其应用分块矩阵的应用分块矩阵行列式计算的若干方法分析近年三角各种题型,提高学生三角问题解决能力分形几何进入高中数学课程的尝试辅助函数的应用辅助函数在数学分析中的应用辅助元法在中学数学中的应用复合函数的可测性概率的趣味应用概率方法在其他数学问题中的应用概率论的发展简介及其在生活中的若干应用概率论在彩票中的应用概率统计在彩票中的应用概率统计在实际生活中的应用概率在点名机制中的应用概率在中学数学中的应用高等几何知识对初等几何的指导作用高等数学在不等式证明中的应用高观点下的中学数学高阶等差数列的通项,前n项和公式的探讨及应用高中数学教学中的类比推理高中数学开放题及其编制问题高中数学实践“问题解决"的几点思考高中数学研究性学习的课题选择高中数学研究性学习教学及其设计给定点集最小覆盖快速近似算法的进一步研究及其应用构建数学建模意识培养创新思维构造的艺术关联矩阵的一些性质及其应用关于2004年全国高教杯大学生数学建模竞赛题的探究与拓展关于2循环矩阵的特征值关于Gauss整数环及其推广关于g-循环矩阵的逆矩阵关于不等式在中学的选修的处理关于不等式证明的高等数学方法关于传染病模型的建立与分析关于二重极限的若干计算方法关于反函数问题的讨论关于非线性方程问题的求解关于函数一致连续性的几点注记关于矩阵的秩的讨论 _关于两个特殊不等式的推广及应用关于幂指函数的极限求法关于扫雪问题的数学模型关于实数完备性及其应用关于数列通项公式问题探讨关于椭圆性质及其应用地探究、推广关于线性方程组的迭代法求解关于一类非开非闭的商映射的构造关于一类生态数学模型的几点思考关于圆锥曲线中若干定值问题的求解初探关于置信区间与假设检验的研究关于中学数学中的图解方法关于周期函数的探讨哈密尔顿图初探函数的一致连续性及其应用函数定义的发展函数级数在复分析中与在实分析中的关系函数极值的求法函数幂级数的展开和应用函数项级数的收敛判别法的推广和应用函数项级数一致收敛的判别函数最值问题解法的探讨蝴蝶定理的推广及应用化归中的矛盾分析法研究环上矩阵广义逆的若干性质积分中值定理的再讨论积分中值定理正反问题‘中间点’的渐近性基于高中新教材的概率学习基于集合论的中学数学基于最优生成树的海底油气集输管网策略分析级数求和的常用方法与几个特殊级数和级数求和问题的几个转化极限的求法与技巧极值的分析和运用极值思想在图论中的应用集合论悖论几个广义正定矩阵的内在联系及其区别几个特殊不等式的巧妙证法及其推广应用几个学科的孙子定理几个重要不等式的证明及应用几个重要不等式在数学竞赛中的应用几何CAI课堂教学软件的设计几何画板与圆锥曲线几何画板在高中数学教学中的应用几类数学期望的求法几类特殊线性非齐次微分方程的特殊解法几种特殊矩阵的逆矩阵求法假设检验与统计推断简单平面三角剖分图交错级数收敛性判别法及应用交通问题中的数学模型解题教学换元思想能力的培养解析几何中的参数观点经济学中蛛网模型的数学分析居民抵押贷款购房决策模型矩阵变换在求多项式最大公因式中的应用矩阵的单侧逆矩阵方幂的正反问题及其应用矩阵分解矩阵可交换成立的条件与性质矩阵秩的一些性质与某些数学分支的联系矩阵中特征值、特征向量的几个问题的思考具有不同传染率的SI流行病模型的研究均值不等式在初高等数学中的应用均值极限及stolz定理开放性问题编制的原则柯西不等式的推广及其应用柯西不等式的应用与推广柯西不等式的证明及妙用柯西不等式的证明及应用空间曲线积分与曲面积分的若干计算方法空间旋转曲面面积的计算拉格朗日中值定理n元上推广立体几何的平面化思考利用导数解题的综合分析与探讨连锁经营企业效益模型邻接矩阵在判断Hamilton性质中的一些应用留数定理及应用论辅助函数的运用论概率论的产生及概率对实际问题解释和应用论数学分析课程对中学数学的功能及应用论数学史及其应用罗尔定理的几种类型及其应用幂级数与欧拉公式幂零矩阵的性质和应用幂零矩阵的性质及其应用幂零矩阵的性质及其应用模糊集合与经典集合的简单比较模糊数学在学校教学评估中应用平面和空间中的Pick定理齐次马尔柯夫链在教学评估中的应用浅谈导数在中学数学教学中的应用浅谈分类讲座及其解题应用浅谈极值问题及其解法浅谈在解题中构造“抽屉浅谈中学生数学解题能力的培养求极限的若干方法求极值的若干方法全概率公式的推广与应用全概率公式的优化及应用人口性别比例的统计和概率分析若干问题的概率解法若干问题的概率论解法的探索三对角行列式及其应用三角函数的解题应用三角函数最值问题的研究三种积分概念的极限式定义和确界式定义的比较山核桃造林及管理的数学模型上、下极限的定义、性质及其应用实变方法在经典微积分中的应用实分析计算中的几种方法实际问题解决中数学语言能力的培养实数完备性定理的等价性证明及其应用试论四分块矩阵试以斐波那契数列为例谈谈中学生数学兴趣的培养输电阻塞模型的灵敏度分析及算法的改进树在数据结构中的简单应用数理统计在教育管理中的应用数理统计在生产质量管理中的两个应用数列求和问题的探讨数学变式教学的认识和实践数学猜想及其培养途径数学的对称美及其在中学数学解题中的应用数学分析中的化归思想数学分析思想在中学数学解题中的应用数学分析在初等数学中的应用数学分析中求极限的方法数学高考内容分布及命题趋向数学归纳法的初探数学归纳法的七种变式及其应用数学归纳法的原理推广及应用数学归纳法及其一些非常见形式和归纳途径数学建模在生物领域的应用(没做)数学建模中的排队论模型数学竞赛的解题策略数学竞赛中的抽屉原理数学竞赛中的图论问题数学开放题的设计与教学建议数学开放性问题的编拟与解决数学课程改革和教师观念的转变数学模型方法在教学中的应用及其价值数学模型在人口问题中的应用数学认知结构与数学教学数学史对数学教育的启示数学史上对方程求根公式的探索及其现代意义数学史在中学数学教学中的运用数学文化在中学数学教学中的渗透数学问题提出与CPFS结构关系的研究数学游戏及其价值数学中的游戏因素及其对于数学的影响四面体中不等式的探究泰勒公式的应用泰勒公式及其应用泰勒公式及其应用泰勒公式在若干数学分支中的应用泰勒展开的应用探讨导数在函数单调性中的应用探讨平面三角的实际应用探讨线性规划最优整数解的解法特殊欧拉图的判定同余理论在数学竞赛中的应用头脑风暴法及其在数学课堂教学的运用凸函数的若干性质凸函数的拓展凸函数的性质及其应用凸函数的性质与应用凸函数及其在不等式证明中的应用凸函数以及一类内积表达的函数的凸性凸函数在不等式中的一个特殊应用图的余树是树的条件研究图和矩阵的运算图解法在资源分配中的应用浅析图论在高中数学中的若干应用图论在数学模型中的应用图论在中学数学竞赛中的应用椭圆的几个特征及其在天体、物理中的应用网络可靠度计算新法微分方程平衡点的稳定性及在力学中的应用微分中值定理的背景及证明微分中值定理的逆问题及其渐近性微分中值定理的探讨及应用微分中值定理的推广及其应用微分中值定理的证明及其应用微积分的某些实际应用微积分理论在中等数学中的影响及其应用微积分在行列式计算中的应用、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享-—从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用7、坐标方法在中学数学中的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、的变形推广及应用19、网络优化20、泰勒公式及其应用21、浅谈中学数学中的反证法22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策28、中学数学教学中的创造性思维的培养29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型31、中学数学教学设计前期分析的研究32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;75、中学数学教育中的素质教育的内涵;76、数学中的美;77、数学的和谐和统一————谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;85、中学数学教学与学生应用意识培养;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;92、在中学数学教学中的应用93、最优增长模型94、学生数学素养的培养初探95、浅析先行中学数学教育的弊端96、城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、多媒体课件教学设计-——-若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研104、对中学数学研究性学习开展过程及其途径的思考105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx 111、数学竟赛中的数论问题112、新旧教材的对比与研究113、近世代数在中学数学中的应用114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义117、中学数学竞赛中参数问题118、例谈培养数学思维的深刻性119、圆周率与中学数学史120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养124、数学高考试题的演变看中学数学教育改革125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明138、直觉思维在中学数学中的应用139、高等数学在中学数学中的应用140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩————-数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用146、中学数学教学中创新思维的培养策略147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用151、复均方可积随机变量空间的讨论152、浅谈中学数学的等价转换153、车灯线光源的优化设计模型154、中学数学中的变式教学设计155、欧几里得第五公设产生背景及其对数学发展影响156、中学数学问题解决的学习策略研究分法157、抽屉原理的应用及推广158、浅议函数迭代及其表达式159、加强数形结合,提高解题能力160、函数性质的应用161、初等函数的值域162、中学数学应用意识的研究163、中数学新课程空间与图形学习策略与研究164、谈分类讨论及解题应用165、排序方法及其应用166、数学应用意识的培养看数学基础教育改革167、函数的凸性及其在不等式中的应用168、建构主义理论指导下的数学教学案例169、中学课程数学教学思想方法教学初探170、大学生数学素质教育思考171、数学归纳法教学探究172、师范学生高等数学课程内容设置的探讨173、统计学在证券市场中的应用174、关于全概率公式及其应用的研究175、数学开放式教学的基本理念与策略176、变量代换法与常微分方程的求解177、奥赛中组合计算方法及应用178、代数结构中同态及同构的性质179、综述十八世纪著名数学家及其工作180、谈谈不定方程181、从不定方程到孙子兵法。
高等数学毕业论文范文

高等数学毕业论文范文篇一:数学归纳法原理及其在代数中的应用数学归纳法是一种非常重要的证明方法,它可以用来证明与n个正整数有关的命题,通过“递推”的方法,用“有限”来解决“无限”的问题,实现由特殊到一般的转化。
数学归纳法证明的一般步骤是:1o n1是对命题适当的第一个正整数n1,证明n=n1时命题成立;2o假设n=k(或n≤k,n∈N*,k≥n1)时命题成立,证明n=k+1时命题也成立。
运用数学归纳法解题时,以上两个步骤缺一不可,其中步骤1o是整体的奠基步骤,步骤2o是数学归纳法的递推步骤,反映了无穷递推的关系。
数学归纳法在代数中有着广泛的应用,在高等代数中的应用尤为突出,这和高等代数的内容体系密切相关,因为高等代数中的许多定理和习题都与行列式、矩阵的阶数n或多项式的次数n或向量空间V的维数n有关。
中学阶段,学生已接触过数学归纳法,且能用其解决一定的实际问题,该阶段把数学归纳法简单的概括为:“1对,假设n对,那么n+1也对”。
然而,到了高等教育阶段,对许多刚接触到高等代数的同学来说,并不知晓数学归纳法原理的本质,甚至感到陌生和抽象。
因此,现在流行的诸多高等代数教材中,一般都在第一章介绍第一、第二数学归纳法,但这些教材没有给出第二数学归纳法的证明,缺少与第二数学归纳法有关的例题与习题,也没有给出最小数原理、第一、第二数学归纳法三者之间的关系。
本文将证明第二数学归纳法原理,介绍最小数原理、第一、第二数学归纳法三者之间的关系,分别利用两种归纳法解决若干高等代数中常见的问题,以便于帮助学生对两种数学归纳法比较、理解和运用,同时对教师的教学也有一定的启发。
2 学习者的困惑学习者理解数学归纳法思想内涵时,往往会有“不放心”的感觉,认为数学归纳法只是一种形式,采不采用这种方法论证对结果影响不大。
在日常教学调查中发现,学习者理解数学归纳法时产生的疑问集中体现在以下三个方面:(1)学习者不能真正理解数学归纳法中的“n=1时命题成立”,怀疑是不是需要再多验证几个数。
数学专业本科毕业论文--矩阵求逆的若干方法

数学专业本科毕业论文--矩阵求逆的若干方法矩阵求逆摘要本文在借鉴参考文献的基础上,对高等代数学这门课程中的一些有关矩阵求逆的内容简要地进行了分析、研究和总结。
笔者在参考的各种不同版本的教材中发现,大多教材给出矩阵的求逆的方法无非三种,即:定义法,初等变换法,伴随矩阵法。
其中初等变换包括初等行变换和初等列变换。
这三种方法虽然在大多情况下都能很好解决问题,但有时候使用这些方法就会显得很繁琐。
比如,对于阶数大于4的矩阵我们用初等变换和伴随矩阵就会显得很麻烦,而且容易出错。
本文在这里详细讨论了6种逆矩阵的求解方法,首先介绍了常用的那三种矩阵求逆方法,而且对于初等变换法,本文做了进一步的探讨,给出了同时初等行变换与列变换法。
然后又介绍了分块矩阵法、分解矩阵法、Hamilton-Caylay定理法等方法,其中分块矩阵法中又包括三角矩阵的分块求逆法和非三角矩阵的分块求逆法。
本文对于每一种方法不仅给出了这些方法的理论依据并给出了具体应用,有的还给出了具体方法步骤,就是为了使读者明白各种方法的特点,在使用的时候能够选择合适的方法进行快速解题。
关键字逆矩阵;初等变换;伴随矩阵;分块矩阵;Hamilton-Caylay定理Six methods to find inverse matrixAbstract In this paper, on the basis of reference, some relevant content of the inverse matrix in the course of higher algebra is analyzed, researched and summarized briefly. There are only three methods of inverse matrix in most different teaching materials referred. The methods are definition method, adjoint matrix methodand elementary transformation method. The elementary transformation method Includes elementary row transformation and elementary column transformation. Though the three methods can well solve problem in most cases, sometimes these methods will appear very complicated. As for the matrix whose rank is more than four, if we use adjoint matrices or elementary transformation, it will be very troublesome, and error-prone. Six kinds of inverse matrix solution was discussed in this paper in detail. Firstly we introduces the three frequently-used methods, and also makes a further discussion for elementary transformation method, giving elementary row transform and column transform method. Then this paper introduces the partitioned matrix method, the decomposition of matrix method, Hamilton - Caylay theorem method. The partitioned matrix method includes the partitioned matrix method of triangle matrix and the partitioned matrix method of common matrix. In this paper every method not only includes the theoretical basis and the specific application, but also includes the concrete steps, the purpose is to make the reader understand the characteristics of every methods, and can choose appropriate methods to solve problems quickly. Keywords Inverse matrix; elementary transformation;adjoint matrix; partitioned matrix; Hamilton-Caylay theorem矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。
数学(本科)毕业论文题目汇总

数学毕业(学位)论文题目汇总一、数学理论1。
试论导函数、原函数的一些性质。
ﻫ2。
有界闭区域中连续函数的性质讨论及一些推广。
ﻫ3。
数学中一些有用的不等式及推广.4。
函数的概念及推广.ﻫ5。
构造函数证明问题的妙想。
6.对指数函数的认识。
ﻫ7。
泰勒公式及其在解题中的应用。
8。
导数的作用。
9。
Hilbert空间的一些性质。
ﻫ10。
Banach空间的一些性质。
ﻫ11。
线性空间上的距离的讨论及推广。
12。
凸集与不动点定理.ﻫ13。
Hilbert空间的同构.ﻫ14。
最佳逼近问题。
ﻫ15。
线性函数的概念及推广.ﻫ16.一类椭圆型方程的解.18.线性赋范空间上的模等价。
17。
泛函分析中的不变子空间。
ﻫ19.范数的概念及性质.20。
正交与正交基的概念。
22。
隐函数存在定理的再证明。
ﻫ23.线性空间的等距同构。
21。
压缩映像原理及其应用.ﻫ24。
列紧集的概念及相关推广。
25。
Lebesgue控制收敛定理及应用。
26。
Lebesgue积分与Riemann积分的关系。
27。
重积分与累次积分的关系.28。
可积函数与连续函数的关系。
29。
有界变差函数的概念及其相关概念。
ﻫ30。
绝对连续函数的性质。
31.Lebesgue测度的相关概念。
33。
可测函数的定义及其性质。
ﻫ34.分部积分公式的32。
可测函数与连续函数的关系。
ﻫ推广。
35。
Fatou引理的重要作用。
36.不定积分的微分的计算。
ﻫ37。
绝对连续函数与微积分基本定理的关系。
ﻫ38。
Schwartz 不等式及推广。
39。
阶梯函数的概念及其作用.40。
Fourier级数及推广。
ﻫ41.完全正交系的概念及其作用。
ﻫ42。
Banach空间与Hilbe rt空间的关系。
44。
数学分析中的构造法证题术,43。
函数的各种收敛性及它们之间的关系。
ﻫ45。
用微积分理论证明不等式的方法46.数学分析中的化归法47。
微积分与辩证法49。
在上有界闭域的D中连续函数的性质48. 积分学中一类公式的证明ﻫ51。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
师大学继续教育院 毕业论文 论文题目:七年级学生数学解题能力的培养
函 授 站: 专 业: 数学与应用数学 级 别: 姓 名: 学 号: 联系地址: 联系: 电子: 指导教师:
目 录
摘要.............................................................1 第一章 七年级学生解题能力培养的意义...........................3 第二章 培养数学解题能力的方法.................................3 2.1 重视基本概念和基础知识的掌握...............................3 2.2 培养学生审题能力...........................................4 2.3 通过变式训练提高学生解题能力...............................5 2.4 重视数学思想方法的数学.....................................6 2.5 加强学生数学解题的规的教学...............................6 2.6 不归纳总结,增强解题功效...................................6 致...........................................................8 参考文献.............................. ........................9
七年级学生数学解题能力的培养 摘 要 学生数学解题能力是数学知识在更高层次上的抽象与概括,单纯的数学知识只能是学生的知识积累,而数学解题能力的培养是一种授之以渔的过程.七年级学生从小学单纯的数字计算到初中代数的引入,以及几何知识的扩展,他们掌握数学知识的广度和深度都有了不同程度的增加,因此培养学生的解题能力是必不可少的教学环节.教师在课堂中应重视数学思想方法的教学,加强学生数学解题的规性,不断归纳总结,增强解题效果.学生在解题时会从不同角度考虑和分析问题,学会一题多解、一题多变、一题多得,从而巩固了所学知识.解题能力的培养对发展学生创造性思维能力具有重要意义.
关键词:七年级;数学题;解题能力;创造性思维 The Development of Seventh Grade Students’ Mathematics Problem-solving Ability
Zan hanjun
Mathematics department of Qinghai Normal Uninersity,11A class,Qinghai Xingning,810008
ABSTRACT
Students’ mathematics problem-solving ability is a higher level of abstraction and generalization of mathematics knowledge, pure mathematics knowledge is only the students' knowledge accumulation, and the training of mathematical problem solving ability is a kind of method. Seventh grade students had gone through from simple digital computing in elementary school to algebra introduction and extension of geometrical knowledge in junior high school, the breadth and depth of knowledge has increased in different levels, so it is needed to develop the students' ability of problem solving. The teacher should focus on teaching the method and the math thoughts, standard the solving process and always generalize to improve the effect of solving problems. By doing this we will make the students think in different ways when they facing the problem and analysis problem, learn to find more than one solution, and adapt the changes of the problem, that makes what they have learned been reviewed. So, developing the problem solving ability is important to improve the students’ creativity. Key words:Mathematical problem solving ability;Seventh grade;
Creativity 第一章 七年级学生解题能力培养的意义 七年级数学是初中学习中关键的基础,它不仅是小学和初中数学知识衔接的重要阶段,更是学生获得知识,同时更是思维能力、情感态度与价值观方面得到进步和发展的时期,所以了解七年级数学的学习特点是很重要的. 七年级数学是在小学数学知识的基础上进行拓展和延伸的.难度比较适中,宽度有所加大.它与小学数学的最大的不同点是七年级数学的概念有显著的增加.对于小学的概念读懂就可以了,而七年级的数学概念需要牢牢记住和掌握,在学习的过程中须有一种敢于挑战的精神,抓住知识的本质,细抠所学容,在理解的基础上掌握概念、运用概念,这写方法贯穿中学数学学习的始终. 小学数学的计算与中学比较相对简单,中学数学的计算比较繁杂.想要学好中学数学知识必须培养准确而迅速的计算习惯.首先需要对所学的概念和定义深层的理解和熟练的掌握,其次还需要在做题的过程中专心的审题和细致检查,严格要求自己不能在基本的计算上粗心而出错误,并以此为考试成绩不高找借口,养成凡事认真仔细的习惯. 在小学知识与学习习惯的基础上,培养自己独立完成习题并且敢于克服难题的能力.中学的学习到类似于小学奥数一样的难题,一定要发扬敢于接受挑战的精神,在习题的过程中养成一中也会遇题多解、多题一解、一题多变的习惯,注重培养发散思维与做题技巧. 因此在小学升入七年的数学学习中,培养较好的解题能力是学好中学数学知识的关键,是为以后的数学学习打下牢靠基础的保证. 第二章 培养数学解题能力的方法
2.1重视基本概念和基础知识的掌握 数学中的定义、公式、定理、命题等,是解题的依据,对于这些基本概念和基础知识,教师教学时不应忽视,并能熟练地将不仅要讲解来龙去脉,还要指导学生透过表面抓住本质,其应用. 例1 已知a,b,c的位置如图1,化简:_____accbba.
解答时,先根据数轴上的大小关系确定绝对值符号代数式的正负情况知:0ba,0cb,0ac,再根据绝对值的性质去掉绝对值符号进行有理数
的运算就可以求解出来了.此题考查了数轴、绝对值的基本概念及定义以及有理数加法. cba0 图1 例2 8xx是分式吗?
很多学生由于对分式的概念不清而做错这道题,一看这个式子是可以约分的,约分之后是8,那这个式子就不是分式了.先看分式的概念:形如BA,BA、是整
式,B中含有未知数且B不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.教师在讲解的过程中一定要让学生注意:(1)分式是一个式子,只要形如BA就是分式了,不能急着先化简再去判断,(2)分式的分母中必须含有未
知数.(3)分母的值不能为零,如果分母的值为零,那么分式无意义. 通过上述题目以及分析看出,对书中基本概念、基本知识的熟练掌握是提高做题能力的必须.对于刚步入初中的学生来说,中学概念的大量增加是一个较大的挑战,所以教师要注重培养学生对基本概念和基础知识的掌握,严格要求学生牢记定义,概念.在上课,要反复回顾这节课的概念、定义;下课后,布置关于基本概念的习题,在做题的过程中,学生就会应用学过的概念去做题,通过不断的训练,来加强基本概念的记忆与理解.
2.2培养学生审题的能力 七年级学生解数学题时,普遍存在着见题就解的习惯.当遇见条件明显的题时,这种现象尤为显著.这是提高学生解题能力的一大障碍.为改正这种不良习惯,教师需要通过详细分析题意,找出简捷易懂的解题方法,让学生体会到仔细审题的优越之处,逐步形成分析题目的习惯,从而提高学生的解题能力. 例如某校七年级学生的一次测评试卷中有这样一道计算题, 例3 求解2014201220132的结果. 其中发现有个别同学在拿到题目后就开始老老实实的计算,即220134052169,201220144052168,然后得出计算结果为1,然而有更多的
同学是通过仔细观察这个算式后,选用另一种方法解题的,即 原式2222013(20131)(20131)2013(20131)1.
通过比较,显然第二种方法比第一种方法在运算量上要小的多. 另外在解数学应用题时,要做到三点:“一读、二画、三复述”.