交流激励下平板电容的容量计算

交流激励下平板电容的容量计算
交流激励下平板电容的容量计算

交流激励下平板电容的容量计算

一、研究的背景和意义

电容器是三大无源元件(电阻,电容器,电感)之一,在电子电器装置中几乎无处不在。电容看起来非常简单,就是有两个极板构成,但是,在实际应用中有很多问题都是出现在电容的选择与安装上。如果对电容器没有比较深刻的理解,选择不当,所设计制造的电子线路、电器装置就会出现这样或者那样的问题或故障。因此,需要根据应用的要求来选择电容器。由于电容器在电子设备中起着非常重要的作用,可进行滤波整流,为保证在电路中能正常的发挥它的作用,对其在电路中电容的容量计算显得尤为重要,我们一般计算的电容容量大多都是建立在静电场,低频电路计算的理论前提下进行的,随着科技的发展和社会的进步,原始的理论前提已经不能满足科技的发展,越来越多的电容器被应用在高频交流的电路中,由于电与磁的相互感生关系,使电容器容量的计算变的越来越复杂,电容器的标称值与实际电容值有了较大的差距,对高频交流电路中电容的容量计算变的至关重要。

二、研究内容和拟解决的关键问题

交流激励下平板电容的容量计算是建立在平板电容的基础上,首先我们要对平板电容的容量进行了解,电容最基本的物理性质即电容、电荷、电势差的关系。而平板电容器的电容与极板面积成正比、与极板间的距离成反比,并且与介质相对真空的介质系数成正比。了解平板电容的的一般性质后,只要保证其在交流激励的前提下就能计算出电容的容量,要研究的就是交流激励这个前提,了解交流激励与静电场之间的关系就是关键的问所在。这里就要应用到Lorentz变换来解决这个问题。

三、研究方案及措施

Lorentz 变换的原理

Lorentz是狭义相对论理论的最核心内容之一, 它给出了同一个物理事件在两个不同惯性系中的时空坐标间的变换关系, 集中地反映了狭义相对论的时空观。

1 Lorentz 变换群

设一物理事件在某一惯性系中的时空坐标, x 表示为

时空的度规张量取为

一般的, 一物理事件在2 个不同惯性的坐标间的Lorent z 变换可写为

其中, 为4 4 实阵, 满足条件也即

满足式( 4) 的变换L 构成一个群, 称为Lorent z 群, 并且由式( 4) 有

( 5)

其中行列式为1 和- 1 的分别称为正常和非正常Lorent z 变换。对于每一类又分为和这2 种情况。以上4 种情况互不连通, 构成Lorent z 群的4 个子集。的正常Lorent z 变换构成一

个子群, 称为真Lorent z 群。所有满足的Lorent z 变换构成的子群称为正时Lorent z 群。该文将主要讨论正时Lorent z 群它为6 参数Lie 群, 比如可选取相对速度个分量和转动角度( 如3 个Euler角等) 做为参数。Lorent z 群的无穷小元素可写为L = I + l , 其中是无穷小矩阵。由式( 4) , 式

( 5) l 应满足

由此, l 的一般形式应是

( 7)

其中参数

表征相对运动速度非零的两惯性参照系的Lorentz 变换, 而表征固定参

照系的空间转动变换。

2 正时Lorentz 变换的一般形式

常见的特殊形式Lorentz 变换, 取惯性系与

, 令其上的空

间坐标轴相互平行, 相对于的运动速度沿轴方向, 且2 个参照系坐标原点重合时记为零时

刻。这样Lorent z 变换可表示为

( 8)

其中,

。下面将式( 8) 中的变换推广。首先, 保持系与系的坐标轴相互平行, 但设

相对运动速度沿任意方向而不一定与轴方向平行。通过将变换式( 8) 分为与平行和垂直的分

量, 此时可将Lorentz 变换式( 8) 推广为

( 9)

其中, i , j = 1, 2, 3, 是在系上三个空间坐标轴上的投影值。进一步, 再

去掉与系中坐标轴平行的限制。设上的坐标系中空间坐标

经三维正交变换后得到的新坐标系与系中的坐标轴相应平行, 则这种推广后的Lorent z 变换成为

( 10)

当D 是一般的三维正交变换时, 式( 10) 给出了正时Lorent z 群元的一般4 4 矩阵表达式。它同时包含

了两个相对运动速度为的惯性系之间的时空坐标变换和三维坐标系之间的正交变换。

3 一般形式Lorentz 变换研究的必要性

在研究电场强度和磁感应强度的三维张量性质时, 在电磁场理论的3 维形式中, 电场强度E 和磁

感应强度B 均为矢量, 但它们的张量性质是不同的, E 是真矢量, 而B 则是所谓的赝矢量。然而, 此2

矢量存在着这种性质差异的内在原因在3 维理论中却是不容易说清楚的。下面内容通过应用变换式

( 10) , 给出这种差异的4 维理论根源, 而这种结果利用特殊Lorent z 变换式( 8) 甚至是式( 9) 都是无法得

到的。

在狭义相对论理论的 4 维框架下, 电场强度磁感应强度

构成了

4 维空间的反对称电磁场张量

( 11)

在Lorentz 变换下, 其变换规律为

( 12)

首先考查在纯旋转变换下E 和B 的变换性质。在纯旋转(= 0) 变换下, 式( 10) 中变换矩阵L 成

( 13)

并满足条件

, ( 14)

将式( 11) , 式( 13) 代入式( 12) 得到E 和B 的如下的变换关系

, ( 15)

其中用到了关系式( 14) , 式( 15) 表明电场强度E 和磁感应强度B 确实具有3 维空间的矢量性质。下面考虑空间反演时的情况, 此时Lorentz 变换矩阵L 成为

( 16)

将此式代入式( 12) 后, 则得

( 17)

在3 维语言中, 式( 15) 和式( 17) 两式明显说明是3 维矢量, 而

是3 维赝矢量, 以上讨论则表明, 这些 3 维赝矢量可以在 4 维理论中找到根据。

实施计划

2011/3/27前:通过阅读相关文献资料,实际到网上进行搜索其他解决方案的进行调研。具体要了解如何平板电容的计算方法,了解洛仑兹变换在电场磁场中的应用。

2011/4/25前:用洛仑兹变换对磁场和电场进行变换,计算交流激励下平板电容的各个重要因数。

2011/4/25前:将所得的各因数结合实际的电路,推导出交流激励下平板电容容量计算。

四、主要参考文献

[1] 刘兵. 电力电容器技术现状及发展趋势[J]. 电力设备, 2007,(06)

[2] 电容器市场发展现状[J]. 电器工业, 2009,(03)

[3] 赵吉祥;王伟;. 动态激励下电容的计算研究[J].2007

[4] 陈永真;李锦.电容器手册[M].2008

[5] 刘慧杰, 魏晓光. 研究Lorentz 变换的一般形式的必要性[J] 2009,(04)

[6] Joseph R. Mautz Department of Electrical Engineering and Computer Science Syracuse University Syracuse, NY 13244-1240

[7]赵素琴.电容器电容的广义定义和计算方法[J].德州学院学报,2006,06.

[8]王振宇;范文涛. Lorentz 变换的四元数表示 [J]数学物理报,2010.

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

电容补偿的计算公式

电容补偿的计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电容补偿的计算公式未补偿前的负载功率因数为COS∮1。负载消耗的电流值为I1。 负载功率(KW)*1000 则I1=---------------------- √3*380*COS∮1 负载功率(KW)*1000 则I2=---------------------- √3*380*COS∮2 补偿后的负载功率因数为COS∮2,负载消耗的电流值为I2 则所需补偿的电流值为:I=I1-I2 所需采用的电容容量参照如下: 得到所需COS∮2每KW负荷所需电容量(KVAR) 例: 现有的负载功率为1500KW,未补偿前的功率因数为COS∮1=,现需将功率因数提高到COS∮2=。则

1500*1000 则I1=-----------------=3802(安培) √3*380* 1500*1000 则I2=------------------=2376(安培) √3*380* 即未进行电容补偿的情况下,功率因数COS∮1=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I1=3802安培。 进行电容补偿后功率因数上升到COS∮2=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I2=2376安培。 所以功率因数从0.60升到。所需补偿的电流值为I1-I2=1426安培 查表COS∮1=,COS∮2=时每KW负载所需的电容量为,现负载为1500KW,则需采用的电容量为1500*=1560KVAR。现每个电容柜的容量为180KVAR,则需电容柜的数量为 1500÷180=个即需9个容量为180KVAR电容柜。

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

电容电流计算

Y型时的电流: I相=Qc/(1.732×U相) △型时的电流: I线=Qc/(1.732×U线) (Qc=三相电容额定总量,单位:KVAR,U=电容额定电压,单位:KV) 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 回答人的补充 2009-11-30 16:54 计算单台电容器额定电流注意要点 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法, U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。

否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv , U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称 Karv 值。如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。 信息来源: https://www.360docs.net/doc/fe14951350.html, 三、综上所述单台电容器计算电流时分以下三种情况: 1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。 I=P/√3U P为电容器额定容量Karv ,U为电网线电压KV。 2、电容器为单相时: a、当标称电压为U/√3时 I=P/(U/√3)即I=√3(P/U) P为电容器额定容量Karv ,U为电网线电压KV。 b、当标称电压为U时 I=P/U P为电容器额定容量Karv ,U为电网线电压KV。

电容器的定义以及相关的公式介绍

[知识学堂] 电容器的定义以及相关的公式介绍 定义 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容与电池容量的关系: 1伏安时=25法拉=3600焦耳 1法拉=144焦耳 相关公式 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电

容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S 为极板面积,d为极板间的距离。) 定义式C=Q/U 电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

电容补偿柜的电容容量如何计算

电容补偿柜的电容容量如何计算 电容补偿柜的电容容量如何计算?(此文章讲的很透彻,很好的一篇文章)电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。 补偿电容器:主要用于低压电网提高功率因数,减少线路损耗,改善电能质量 电容器容量的换算公式为(指三相补偿电容器): Q=√3×U×I ; I=×C×U/√3 ; C=Q/×U×U) 上式中Q为补偿容量,单位为(Kvar),U为额定运行电压,单位为(KV),I为补偿电流,单位为(A),C为电容值,单位为(F)。式中=2πf/1000。 1. 例如:一补偿电容铭牌如下: 型号: , 3: 三相补偿电容器; 额定电压:; 额定容量:10Kvar ; 额定频率:50Hz ; 额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。额定电流: 代入上面的公式,计算,结果相符合。 2. 200KVA变压器无功补偿柜匹配电容多少最合理? 一般来说,对于电动机类型的功率负荷,补偿量约为40%,对于综合配电变压器,补偿量约为20%. 如果知道未补偿前的功率因数,那么根据公式即可以算出具体的补偿量。 3. 例如:有电机12台,的电机4台,11KW的电机2台,500型电焊机15台,由于有用电高峰和低谷,在低谷时动力可下降30%,我现在用无功补偿柜里的电容器有4块14Kvar的,6块40Kvar的。据说匹配不合理,怎么样才能匹配合理。另外补偿器的读数在多少时最合适时没有罚款有奖励。 一般来说,配电变压器的无功补偿容量约为变压器容量的20%~40%,对于200KVA的配电变压器,补偿量约为40Kvar~80Kvar。准确计算无功补偿容量比较复杂,且负荷多经常变化,计算出来也无太大意义。一般设计人员以30%来估算,即选取60Kvar为最大补偿容量,也就是安装容量。电容器补的太少,起不到多大作用,需要从网上吸收无功,功率因数会很低,计费的无功电能表要“走字”,记录正向无功;电容器补的太多,要向网上送无功,网上也是不需要的,计费的无功电能表也要“走字”,记录反向无功;供电企业在月底计算电费时,是将正

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容器的串并联的计算方法

电容器的串并联的计算方 法 Final revision on November 26, 2020

电容器的串并联的计算方法 电容器并联时,相当于电极的面积加大,电容量也就加大了。并联时的总容量为各电容量之和:C并=C1+C2+C3+…… 顺便说说电容器的串联。若三个电容器串联后外加电压为U, 则U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而电荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可见,串联后总电容量减小。 电容器串联时,要并联阻值比电容器绝缘电阻小的电阻,使各电容器上的电压分配均匀,以免电压分配不均而损坏电容器。 又可知,电容的串、并联计算正好与电阻的串、并联计算相反。 电压是充电时的电压,容量与电流,电压的关系和功率相似,和负载有关,电压和容量为定量时,负载电阻越小,电流越大,时间越短电压和负载为定量时,容量越大,电流不变,时间越长但实际放电电路中,一般负载是不变的,电容的电压是逐渐下降的,电流也就逐渐下降。 1.电容量(uf)=电流(mA)/15 限流电阻(Ω)=310/最大允许浪涌电流 放电电阻(KΩ)=500/电容(uf) 2.计算方式C=15×IC为电容容量单位微法i设备为工作电流单位为安 如一个灯泡的电阻为0.6安电容就选择15×0.6=9微法在电路里串连9微法的电容就可以了 3.经验公式,1uF输出50mA(如果是线性的话,10000F的超级电容可以达到500兆安培的浪涌电流) 还有 4.半波整流方式计算应该是每uF电容量提供约30mA电流,这是在中国的50Hz220V线路上的参考。 全波整流时电流加倍,即每uF可提供60mA电流。 而我比较清楚的是,书本上的公式:R*C≥(3~5)*T/2,需要知道纹波成份中的频率最低信号的频率是多少(即最大的T),然后来确定C的值。 电容的容量。

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与

其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电容器参数的基本公式

电容器参数的基本公式 1、容量(法拉) 英制:C = ( 0.224 ×K ·A) / TD 公制:C = ( 0.0884 ×K ·A) / TD 2、电容器中存储的能量 E = ? CV2 3、电容器的线性充电量 I = C (dV/dt) 4、电容的总阻抗(欧姆) Z = √[ R S2+ (X C–X L)2] 5、容性电抗(欧姆) X C= 1/(2πfC) 相位角Ф 理想电容器:超前当前电压90o 理想电感器:滞后当前电压90o 理想电阻器:与当前电压的相位相同 7、耗散系数(%) D.F. = tg δ(损耗角) = ESR / X C = (2πfC)(ESR) 8、品质因素 Q = cotan δ= 1/ DF 9、等效串联电阻ESR(欧姆) ESR = (DF) XC = DF/ 2πfC 10、功率消耗 Power Loss = (2πfCV2) (DF) 11、功率因数 PF = sin δ(loss angle) –cos Ф(相位角) 12、均方根 rms = 0.707 ×V p 13、千伏安KVA (千瓦) KVA = 2πfCV2×10-3 14、电容器的温度系数 T.C. = [ (C t–C25) / C25(T t–25) ] ×106

15、容量损耗(%) CD = [ (C1–C2) / C1] ×100 16、陶瓷电容的可靠性 L0/ L t= (V t/ V0) X (T t/ T0)Y 17、串联时的容值 n 个电容串联:1/C T= 1/C1+ 1/C2+ …. + 1/C n 两个电容串联:C T= C1·C2/ (C1+ C2) 18、并联时的容值 C T= C1 + C2+ …. + C n 19、重复次数(Againg Rate) A.R. = % ΔC / decade of time 上述公式中的符号说明如下: K = 介电常数 A = 面积TD = 绝缘层厚度V = 电压t = 时间RS = 串联电阻 f = 频率L = 电感感性系数δ= 损耗角Ф= 相位角L0 =使用寿命Lt = 试验寿命 V t= 测试电压V0 = 工作电压T t= 测试温度T0= 工作温度 X , Y = 电压与温度的效应指数。 电容的等效串联电阻ESR 普遍的观点是:一个等效串联电阻(ESR)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。但是,有时这样的选择容易引起稳压器(特别是线性稳压器LDO)的不稳定,所以必须合理选择小容量和大容量电容的容值。永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。 由于DC/DC 转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于DC/DC 转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的Dasheet 规定之内。 高频转换中,小容量电容在0.01μF 到0.1μF 量级就能很好满足要求。表贴陶瓷电容或者多层陶瓷电容(MLCC)具有更小的ESR。另外,在这些容值下,它们的体积和BO M 成本都比较合理。如果局部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。用ESR 大的电容并联比用ESR 恰好那么低的单个电容当然更具成本效益。然而,这需要你在PCB 面积、器件数目与成本之间寻求折衷。

电容的模型、选型、容值计算与PCB布局布线

1电容结构及模型 1.1模型 电容的基本公式是: 式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。 1.2寄生参数与阻抗的频率特性 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。

1.2.1降低去耦电容ESL的方法 去耦电容的ESL是由于内部流动的电流引起的,使用多个去耦电容并联的方式可以降低电容的ESL影响,而且将两个去耦电容以相反走向放置在一起,从而使它们的内部电流引起的磁通量相互抵消,能进一步降低ESL。(此方法适用于

任何数目的去耦电容,注意不要侵犯DELL公司的专利) 1.3不同电容的参数特性 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,所以只能使用在低频滤波上。同时,大电容还可以起到局部电荷池的作用,可以减少局部干扰通过电源耦合出去。 钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。 瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。 1.4电容并联改善特性 为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图 3 是多个不同特性的电容器并联后阻抗改善的效果。

1.4.1电容并联时注意封装 在为每个电容选择封装类型时必须谨慎。通常BOM表中会规定所有的无源元器件都要选用相同的尺寸,如都用0805电容。图10为三只电容并联后的阻抗与频率关系。 由于每只电容采用相同的封装,故它们的高频响应相同。实际上,这就抵消了更小电容的采用!相反,封装尺寸应该随同电容值一起微缩,见图11。 2电容器的并联和反谐振 2.1反谐振 当电容器的电容不足,或者目标阻抗以及插入损耗由于高 ESL 和 ESR 难以实现时,可能需要并联多个电容器,如图 10 所示。在这种情况下,必须注意出

电容单位换算及电容器计算公式

电容单位换算及电容器计算公式 电容器Q容量Kvar换算C容值uF公式 I=0.314×C×U C=Q / 0.314×U×U Q容量=单位Kvar C容值=单位uF 1F=1000000μF I为补偿电流,单位为A, 式中0.314=2πf/1000 U电压单位=KV 补充 C=Q/U 式中C——电容器的电容,单位为法拉(F) Q——电容器所带电荷,单位为库仑(C) U——电容器两级间的电势差,单位为伏特(V) 1F=1000000 uf (6个0) =1000000000000 PF(12个0) 当给电容器两端施以正弦交流电压时,它发出的无功功率称为无功容量。用如下公式表示: Q=UU/Xc=2 π fCUU 例如:1Kvar 额定电压为0.4KV 计算容值uf Q=2πfCUU C=Q/2πfUU C(F)=1000(var)/2×3.14×50×400(V)×400(V) C=1000/50240000 C=0.00001990445 0.00001990445(F)×1000000=19.90445(uf) 简化公式为 C=Q / 0.314×U×U 其实0.4 KV电容Kvar换算uf 乘以系数就好,误差也不大,系数为20

还可以口算就能算出来(系数可以自已多算几个电压等级的) 1Kvar×20=20 uf 10Kvar×20=200 uf 20Kvar×20=400uf 电容定义: 电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫 做电容器的电容。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF) 和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的面积,d为电容极 板的距离,k则是静电力常量。 电容器的电势能计算公式:E=CU^2/2

超级电容选用计算

二、超级电容的主要特点、优缺点 尽管超级电容器能量密度是蓄电池的5%或是更少,但是这种能量的储存方式可以应用在传统蓄电池不足之处与短时高峰值电流之中。相比电池来说,这种超级电容器有以下几点优势: 1.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极,与电解液接触的面积大大增加,根据电容量的计算公式,两极板的 表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容量可达5000F。 2.充放电寿命很长,可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次;可以提供很高的放电电流,如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流,一些高放电电流的蓄电池在如 此高的放电电流下的使用寿命将大大缩短。 3.可以数十秒到数分钟内快速充电,而蓄电池在如此短的时间内充满电将是极危险的或是几乎不可能。 4.可以在很宽的温度范围内正常工作(-40℃~+70℃),而蓄电池很难在高温特别是低温环境下工作;超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池均具有毒性;而且,超级电容器可以任意并联使用来增加电容量,如采取均压措施后,还可以串联使用。 因此,可以用简短的词语总结出超级电容的优点: ● 在很小的体积下达到法拉级的电容量; ● 无须特别的充电电路和控制放电电路 ● 和电池相比过充、过放都不对其寿命构成负面影响; ● 从环保的角度考虑,它是一种绿色能源; ● 超级电容器可焊接,因而不存在象电池接触不牢固等问题。 缺点:

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

电力电容器实际输出容量计算及电容计算汇总

一:补偿容量的确定 补偿容量的确定可以根据负荷的最大功率、补偿前的功率因数及要求补偿后达到的功率因数,用下式计算确定: Q =α*P*(tanφ1—tanφ2) 式中:Q — 所需补偿的总无功功率,kvar; α— 平均负荷系数,取0.7~0.8; P — 用户最大负荷,kW; tanφ1—补偿前平均功率因数角 tanφ2—补偿后平均功率因数角 或 Q =α*P*q q —补偿率,kvar / kW (可从附表中查取)

二:串联电抗器后电容器实际输出容量 UC=U/(1-K) UC:电容器实际运行电压 U:电容器所处系统电压,一般取400V K:串联电抗器电抗率 Qc=β2 Qe Qc:电容器实际输出容量 Qe为电容器额定容量 β:电容器实际运行电压与电容器额定电压之比Uc/Un 配7%电抗率的电容器(Un=AC480V),实际输出容量:Qc=0.80 Qe 配14%电抗率的电容器(Un=AC525V),实际输出容量:Qc=0.78 Qe

三:电容单位换算(KV AR=>UF) 单相: Qc=Ue*Ic*1000=Ue*(Ue/Xc)*1000=Ue2*2πfC*1000 Ic=Ue*2πfC {X C=1/2πfC; IcX C=Ue;} 三相: kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器): Qc=√3×Ue×Ic Ic=0.314×C×Ue/√3 {√3×(1/2πfC)×Ic = Ue } C=Qc/(0.314×Ue×Ue) 补充 C=Q/U C:电容器的电容,单位为法拉(F) Q:电容器所带电荷,单位为库仑(C) U:电容器两级间的电势差,单位为伏特(V) 1F=1000000 uf (6个0) =1000000000000 PF(12个0) 上式中Qc为补偿容量,单位为Kvar,U为运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为uF。式中0.314=2πf/1000。 例如:一补偿电容铭牌如下: 型号:BZMJ0.4-10-3 (3三相补偿电容器)。 额定电压:0.4KV 额定容量:10Kvar · 额定频率:50Hz 额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。 额定电流:14.4A 代入上面的公司,计算,结果基本相付合。 补偿电容器:主要用于低压电网提高功率因数,电少线路损耗,改善电能质量。 BSMJ型补偿电容器,是国家推荐使用的新型节能产品,使用环境应无谐波冲击。最高允许过电流小于1.30倍额定电流。 ASMJ型滤波电容器:拥有BSMJ所有用途以外,可滤除电路中高次谐波,稳定电路质量,保护用电设备,最高允许电流大于2倍额定电流。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的面积,d为电容极板的距离,k则是静电力常量。 电容器的电势能计算公式:E=CU^2/2

相关文档
最新文档