2003年第二十届全国中学生物理竞赛复赛试卷
2020年第37届全国中学生物理竞赛预赛及复赛试题真题

第37届全国中学生物理竞赛预赛试题一、选择题1. 有两个同样的梯子,其顶部用活页连在一起,在两梯中间某相对的位置用一轻绳系住,便形成了人字梯。
如图所示,将两个同样的人字梯甲、乙放置于水平地面上,甲梯用的绳更长一些。
当某人先、后站在甲、乙两梯顶端时,下述说法正确的是()A. 甲梯所受地面的支持力一定较大B. 甲、乙两梯所受地面的支持力一定相等C. 绳子被张紧时,甲梯所受地面的摩擦力一定比乙梯的大D. 绳子被张紧时,甲梯所受地面的摩擦力一定比乙梯的小2. 某飞机(见图a)起落架结构如简图b所示。
当驱动杆甲转动时,通过杆上螺纹带动连杆乙,实现轮子的收放。
忽略空气对轮子的阻力。
不考虑地球自转。
下述说法正确的是()A. 飞机在着陆瞬间,连杆乙、丙对轮轴的合力竖直向下B. 飞机在着陆瞬间,连杆乙、丙对轮轴的合力竖直向上C. 飞机沿直线匀速飞行时,连杆乙、丙对轮轴的合力竖直向上D. 轮子受到的重力与连杆乙、丙对轮轴的合力是一对作用力与反作用力3. 某电动汽车自重2.0 t,其电池额定容量为50kWh。
车行驶时受到的阻力约为车重的十分之一。
电池瞬时功率最高可达90kW,理论续航里程为400km。
国家电网的充电桩可在电池额定容量的30%~80%范围内应用快充技术(500V,50A)充电,而便携充电器(220V,16A)可将电池容量从零充至100%;不计充电电源的内阻。
当汽车电池剩余电量为其额定值的30%时,下列说法正确的是A. 汽车至少还能行驶130kmB. 用国家电网充电桩将电池容量充至其额定值的80%,理论上需要40minC. 用便携充电器将电池电量充至其额定值的80%,理论上需要7h以上D. 此电动汽车的最高行驶速度可超过130 km/ht 4. 甲、乙两车在同一平直公路上以相同速度30m/s同向行驶,甲车在前,乙车在后,两车距离100m。
从0时起,甲、乙两车的加速度随时间变化如图所示。
取运动方向为正方向,下面说法正确的是()A. t = 3s时刻两车距离最近B. t = 9s时刻两车距离为100mC. 3~9s内乙车做匀减速运动D. t = 9s时刻乙车速度为零5. 在生产纺织品、纸张等绝缘材料过程中,为了实时监控材料的厚度,生产流水线上设置如图所示的传感器,其中甲、乙为平行板电容器的上、下两个固定极板,分别接在恒压直流电源的两极上。
第39届全国中学生物理竞赛复赛试题及答案

第39届全国中学生物理竞赛复赛试题(2022年9月17日上午9:00-12:00)考生必读1、考生考试前请务必认真阅读本须知。
2、本试题共7道题,4页,总分为320分。
3、如遇试题印刷不清楚情况,请务必向监考老师提出。
4、需要阅卷老师评阅的内容一定要写在答题纸上;写在试题纸和草稿纸上的解答一律不能得分。
一、(40分)迈克尔逊干涉仪是光学干涉仪中最常见的一种,发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊。
最初设计迈克尔逊干涉仪的目的是为测量“以太”(假想的传播光的媒质)的漂移速度,目前它广泛应用于精密测量。
迈克尔逊干涉仪的光路图如图1a 所示:照明光为单色激光,入射光经过半反半透的镜子分为沿干涉仪的两个臂(反射臂和透射臂)传播的两束光。
半反半透镜与入射光轴方向之间的夹角为45°,反射臂和透射臂相互垂直。
在两个臂端上各放置与相应的臂垂直的反射镜,反射镜可以沿臂的方向移动。
反射和透射光线经反射镜反射,再次经过半反半透镜透射和反射,两束光在空间重叠,发生干涉。
如果照明光为发散光源,我们观察到的干涉条纹为同心圆环。
半反半透镜是在一个平整的石英基板上蒸镀一层薄金属膜制成,迈克尔逊干涉仪中参与叠加的两束光都经过半反半透镜的反射,一束光是在石英和金属界面上的反射,另一束光是在空气和金属界面上的反射。
因为反射界面不同,所以两束光反射时相位突变不同,两者的差异为ϕ∆,下面我们通过实验测量ϕ∆。
开始时,观察到干涉场中心是亮斑,干涉场最外侧是亮圆环,一共20个亮条纹(计及中心亮斑)。
现在缓慢调节一个臂的反射镜,让反射镜沿臂的方向平移,观察到干涉条纹发生明暗变化,并发现同心圆环条纹越来越稀疏。
干涉场中心明暗变化了23个周期,干涉场最外侧的明暗变化了20个周期。
(本题中,条纹数目均视为精确计数值,干涉仪两臂的长度在cm 量级。
)(1)求相位突变差异ϕ∆。
(2)反射镜移动后,可以观察到多少个干涉亮条纹(计及中心亮斑)?(3)使用此干涉仪测量某一透明液体的折射率,将扁平的石英空槽插入迈克尔逊干涉仪的一个臂,使得石英槽的表面与臂的方向垂直。
全国中学生高中物理竞赛集锦(力学)答案

T0-mg=ma(15)
T0=2T(16)
由(14)、(15)和(16)式得
(17)
托盘的加速度向上,初速度v2向下,设经历时间t2,托盘速度变为零,有
v2=at2(18)
由(7)、(12)、(17)和(18)式,得
(19)
即砝码1自与弹簧分离到速度为零经历的时间与托盘自分离到速度为零经历的时间相等。由对称性可知,当砝码回到分离位置时,托盘亦回到分离位置,即再经历t1,砝码与弹簧相遇。题中要求的时间
(23)
评分标准:本题20分。
第一小问13分:求得式(15)、(16)各3分,式(17)2分,求得式(19)并说明“ ”取“+”的理由给5分。第二小问7分:式(20)2分,式(22)2分,式(23)3分。
第二十届复赛
三、参考解答
位于通道内、质量为 的物体距地心 为 时(见图复解20-3),它受到地球的引力可以表示为
(1)
(2)
因而
(3)
由能量守恒
(4)
由(3)、(4)两式及mB=2mA得
(5)
(6)
评分标准:
本题(15)分.(1)、(2)式各3分,(4)式5分,(5)、(6)两式各2分。
九、设从烧断线到砝码1与弹簧分离经历的时间为△t,在这段时间内,各砝码和砝码托盘的受力情况如图1所示:图中,F表示△t时间内任意时刻弹簧的弹力,T表示该时刻跨过滑轮组的轻绳中的张力,mg为重力,T0为悬挂托盘的绳的拉力。因D的质量忽略不计,有
要求作斜抛运动的摆球击中 点,则应满足下列关系式:
,(5)
(6)
利用式(5)和式(6)消去 ,得到
(7)
由式(3)、(7)得到
(8)
020B上海市第二十届初中物理竞赛复赛试题

上海市第二十届初中物理竞赛(大同中学杯)复赛试题(2006年)说明:1.本试卷共有五大题,答题时间为120分钟,试题满分为150分2.答案及解答过程均写在答卷纸上。
其中第一~第二大题只要写出答案,不写解答过程;第三~第五大题按题型要求写出完整的解答过程。
解答过程中可以使用计算器。
3.考试完毕只交答卷纸,试卷可以带回。
4.本试卷中常数g取lON/kg,水的比热容4.2 x 103J/kg。
一、选择题(以下每题只有一个选项符合题意,每小题4分,共32分)1.有经验的养蜂人根据蜜蜂的嗡嗡声就可以知道它们是否采到了蜜。
这是由于蜜蜂在带蜜和不带蜜时,翅膀振动发出的声音会有差异,这种差异主要是()(A)响度(B)音调 (C)音色(D)传播方向2.现有长度均为O.1m的两根弹簧A和B,已知弹簧A和B的劲度系数分别为100N/m和200N /m。
为了制成一个长度也是O.1m.劲度系数却为1 50N/m的新弹簧,可以分别在弹簧A和B上截取一段,然后将这两段串联成一个弹簧即可。
则在弹簧A和B上截取的长度分别为( )(A)0.025m和0.075m (B)O.033m和0.067m(C)0.050m和O.050m (D)0.075m和0.025m3.有A、B、C三个由同种材料制成的金属球,它们的质量分别为128g、400g、60g,体积分别为16cm3、50cm3、12cm3。
则( )(A)A球一定是空心的 (B)B球一定是空心的(C)C球一定是空心的 (D)它们一定都是实心的4.一容器装满水后.容器和水总质量为m1;若在容器内放一质量为m的小金属块A后再加满水,总质量为m2;若在容器内放一质量为m的小金属块A和一质量也为m的小金属块B 后再加满水.总质量为m3,则金属块A和金属块B的密度之比为( )(A)m2:m3 (B)(m2-m1):(m3-m1)(C)(m3-m2):(m2-m1) (D)(m2+m-m3):(m1+m-m2)5.有两只温度和质量都相同的金属球A和金属球B,先将球A放入盛有热水的杯中,热平衡后水的温度降低了3℃;把球A取出,再将球B放这个杯中,热平衡后,水的温度又降低了3℃,则球A和球B的比热容大小关系为( )(A)球A大 (B)球B大 (C)一样大 (D)无法确定6.如图所示,在一个带正电的小球附近有一根原来不带电的金属棒。
32届中学生物理竞赛复赛试题(含答案)_

32届中学生物理竞赛复赛试题(含答案)_32届中学生物理竞赛复赛试题(含答案)32届中学生物理竞赛复赛试题(含答案)第32届全国中学生物理竞赛复赛理论考试试题讲明:所有解答必须写在答题纸上,写在试题纸上无效。
一、〔15分〕在太阳内部存在两个主要的核聚变反响经过:碳循环和质子-质子循环;其中碳循环是贝蒂在1938年提出的,碳循环反响经过如下图。
图中p、+e和eν分别表示质子、正电子和电子型中微子;粗箭头表示循环反响进行的先后次序。
当从循环图顶端开场,质子p与12C核发生反响生成13N 核,反响按粗箭头所示的次序进行,直到完成一个循环后,重新开场下一个循环。
已知+e、p和He核的质量分别为0.511MeV/c2、1.0078u和4.0026u 〔1u≈931.494MeV/c2〕,电子型中微子eν的质量能够忽略。
〔1〕写出图中X和Y代表的核素;〔2〕写出一个碳循环所有的核反响方程式;〔3〕计算完成一个碳循环经过释放的核能。
二、〔15分〕如图,在光滑水平桌面上有一长为L的轻杆,轻杆两端各固定一质量均为M的小球A和B。
开场时细杆静止;有一质量为m的小球C以垂直于杆的速度0v运动,与A球碰撞。
将小球和细杆视为一个系统。
〔1〕求碰后系统的动能〔用已知条件和球C碰后的速度表出〕;〔2〕若碰后系统动能恰好到达极小值,求此时球C的速度和系统的动能。
三、〔20分〕如图,一质量分布均匀、半径为r的刚性薄圆环落到粗糙的水平地面前的霎时,圆环质心速度v0与竖直方向成θ〔π3π22θ32届中学生物理竞赛复赛试题(含答案)32届中学生物理竞赛复赛试题(含答案)VpcdV13V1p3pc'2p5V1〔3〕已知0sRL>>,求从C先到达P点、直至B到达P 点经过中最大频移与最小频移之差〔带宽〕,并将其表示成扇形波束的张角θ的函数。
已知:当1y≥。
光在薄膜层1里来回反射,沿锯齿形向波导延伸方向传播。
图中,ijθ是光波在介质j外表上的入射角,tjθ是光波在介质j外表上的折射角。
07-10年全国初中物理竞赛复赛题及答案

2007年第十七届全国初中应用物理知识竞赛复赛试题一、(10分)表1中提供的是明湖中学使用的一台数学投影仪的有关数据,请根据其中的数据,通过计算回答:1、这台投影仪的耗电总功率是多大?2、如果投影仪的光源采用串联电阻降压的话,所有电阻的阻值应该多大?该电阻消耗的功率为多大?3、这台投影仪的光源采用上述串联电阻降压的方法可行吗?为什么?4、如果上述方法不可行,请你提出一种可以使投影仪正常工作的方案。
(要求定性说明即可)二、(10分)李老师的家离学校大约10km,为了便于上下班,他购买一部轻便摩托车来代步,使用的燃料为93#汽油,根据表2提供的数据,请回答:1、如果李老师上班时骑车的平均速度为36km/h,试根据表2中所提供的有关信息,为李老师计算一下,他骑车从家到学校至少需花多少油费?2、小洪同学学过物理以后,给李老师建议:在上述条件不变的情况下,采用加快车速缩短时间的办法,就一定可以省油费。
请你根据自己掌握的知识,分析说明这种方法是否可行。
距离。
因为,驾驶员从发现某一异常情况到采取制动动作的“反应时间”里(设同一人,不同速度下的“反应时间”是相同的),汽车要通过一段距离(称为思考距离);而从采取制动力作到汽车完全停止,汽车又要通过一段距离(称为制动距离)。
表3中给出了某辆汽车在同一段路面上行驶过程中,在不同速度下的思考距离和制运距离等部分数据。
1、根据表3中已给的数据,分析计算并填写尚缺的三个数据,完成表格。
2、根据表3中的数据,分析或通过计算说明超速和酒后驾车的危害。
表3四、(12分)有一种电脑电源适配器(即充电器)的铭牌如图1所示。
这款国产充电器,有九个国家或地区的认证标志,其中已经标出了八个。
1、请你在第一个标志前的方框中填入所代表的国家名称及其英文名,并在铭牌下面的另三个图案下填写所表示的含意。
2、根据给出的数据:说明此电源适配器所适用的电源条件是什么。
3、用它与配套的笔记本电脑供电使用时的耗电功率大约在什么范围?4、试估算它为笔记本电脑供电时的效率大约在什么范围?5、有人说:“如果适配器只是输入端插入电源,输出端不接用电器时就不耗电”,你认为对吗?请简要说明理由。
第29届全国中学生物理竞赛复赛试卷及答案(完整Word版)
第29届全国中学生物理竞赛复赛试卷本卷共8题,满分160分。
一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下底面和湖水表面恰好相接触。
已知湖水密度为ρ;物块边长为b ,密度为'ρ,且ρρ<'。
在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。
解: 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为2b f b x g ρ= (x b ≤) (1)式中g 为重力加速度.物块的重力为3g f b g ρ'= (2)设物块的加速度为a ,根据牛顿第二定律有3g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得g a x b b ρρρρ'⎛⎫=-- ⎪'⎝⎭ (4) 将x 系坐标原点向下移动/b ρρ'而建立新坐标系,简称X 系. 新旧坐标的关系为X x b ρρ'=-(5) 把(5)式代入(4)式得g a X bρρ=-'(6)(6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置.由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为0x b ρρ'= (7) 物块运动方程在X 系中可写为()()cos X t A t ωϕ=+ (8) 利用参考圆可将其振动速度表示为()()sin V t A t ωωϕ=-+ (9) 式中ω为振动的圆频率ω=(10) 在(8)和(9)式中A 和ϕ分别是振幅和初相位,由初始条件决定. 在物块刚被释放时,即0t =时刻有x =0,由(5)式得(0)X b ρρ'=- (11)(0)0V = (12) 由(8)至(12)式可求得A b ρρ'=(13) ϕ=π(14)将(10)、(13)和(14)式分别代人(8)和(9)式得()()cos X t b t ρωρ'=+π (15)()()V t t ω=+π (16) 由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中.若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定.为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在x 系中看,物块下底面坐标为b 时,物块刚好被完全浸没;由(5)式知在X 系中这一临界坐标值为b 1X X b ρρ'⎛⎫==- ⎪⎝⎭(17)即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下b X 处. 注意到在振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠A ,下面分两种情况讨论:I .b A X ≤. 由(13)和(17)两式得ρρ'≥2 (18)在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期22T ωπ== (19)物块从初始位置出发往返一次所需的时间I 2t T == (20) II .b A X >. 由(13)和(17)两式得 2ρρ'< (21)在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下.设从初始位置起,经过时间1t 物块刚好全部浸入湖水中,这时()1b X t X =. 由(15)和(17)式得()1cos 1t ρρωρρ''+π=- (22) 取合理值,有1arccos 1t ρπρ⎤⎛⎫=--⎥ ⎪'⎝⎭⎦(23)由上式和(16)式可求得这时物块的速度为1()V t = (24)此后,物块在液体内作匀减速运动,以a '表示加速度的大小,由牛顿定律有a g ρρρ'-'=' (25)设物块从刚好完全浸入湖水到速度为零时所用的时间为2t ,有()120V t a t '-= (26)由(24)-(26)得2t (27)物块从初始位置出发往返一次所需的时间为II 122()arccos 1t t t ρπρ⎤⎛⎫=+=--+⎥ ⎪'⎝⎭⎦(28)评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分.二、(23分)设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星高度R (从地心算起)延伸到太空深处。
2003第二十届 全国 初中数学联赛(含答案)
读万卷书 行万里路12003第二十届全国初中数学联赛第一试一、选择题(本题满分42分,每小题7分)1.232217122-- )A .542-B .421C .5D .12.在凸10边形的所有内角中,锐角的个数最多是( )A .0B .1C .3D .53.若函数(0)y kx k =>与函数1y x=的图象相交于A ,C 两点,AB 垂直x 轴于B ,则ABC △的面积为( )A .1B .2C .3D .44.满足等式2003200320032003x y x y x y xy -=的正整数对()x y ,的个数是( )A .1B .2C .3D .4yxCB AEDCBA读万卷书 行万里路25.设ABC △的面积为1,D 是边AB 上一点,且13AD AB =.若在边AC 上取一点E ,使四边形DECB 的面积为34,则CE EA的值为( ) A .12B .13C .14D .156.在平行四边形ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切.若4AB =,5BE =,则DE 的长为( )A .3B .4C .154D .165二、填空题(本题满分28分,每小题7分)1.抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C .若ABC △是直角三角形,则ac =_________.2.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m =_________. 3.如图,AA ',BB '分别是EAB ∠,DBC ∠的平分线.若AA BB AB ''==,则ABC ∠的度数为________.4.已知正整数a ,b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a ,b 中较大的数是________.第二试(A )B'A'EDCBA读万卷书 行万里路3考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.二、(本题满分25分)在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .设线段PA ,PB 的中点分别为M ,N .求证:⑴DEM DFN △≌△;⑵PAE PBF ∠=∠.三、(本题满分25分)已知实数a ,b ,c ,d 互不相等,且1111a b c d x b c d a+=+=+=+=,试求x 的值.第二试(B )考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.FEDC B A读万卷书 行万里路4二、(本题满分25分)在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .求证:PAE PBF ∠=∠.三、(本题满分25分)已知四边形ABCD 的面积为32,AB ,CD ,AC 的长都是整数,且它们的和为16.⑴这样的四边形有几个?⑵求这样的四边形边长的平方和最小值.第二试(C )考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)已知实数a ,b ,c ,d 互不相等,且1111a b c d x b c d a+=+=+=+=,试求x 的值. 二、(本题满分25分)NMA B C D EF读万卷书 行万里路5在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .求证:PAE PBF ∠=∠.三、(本题满分25分)已知四边形ABCD 的面积为32,AB ,CD ,AC 的长都是整数,且它们的和为16.⑴这样的四边形有几个?⑵求这样的四边形边长的平方和最小值.2003第二十届全国初中数学联赛BA读万卷书 行万里路6试 题第一试一、选择题1.D【解析】 本题应该利用配方法:原式()()2221322222321=--=+-.故选择D .【点评】 这是一道比较简单的二次根式的配方,注意去掉根号时要注意符号.2.C【解析】 凸10边形的外角和是360o ,所以最多有3个钝角,也就是内角最多3个锐角.故选择C .【点评】 这道题要从外角来考虑,因为对于任何凸多边形外角和都是360o ,这是一个隐含的条件,在很多的四边形的题中都要从这一点出发来考虑.读万卷书 行万里路73.A【解析】 如图,求ABC △的面积,可以将AB 当作三角形的底边,而AC 的水平距离就是ABC △的高.y kx =,1y x=, 所以有:1kx x =,21x k =,x k=, 故ABC △的高为x k =,而当x k=时,y k =, 也就是AB k 112ABC S k k=△.所以选A .【点评】 对于函数图像与几何结合的题型,尤其是一元二次方程,二次函数图像以及几何面积等结合的时候,要掌握的重点是两交点之间的水平距离为21x x -,可以通过韦达定理即根与系数的关系求出,而不必要去解带字母系数的一元二次方程.4.B【解析】 将2003移到等号左边并变形得到:)200320030xy x y =,20030xy ,即2003xy =,又2003是质数,所以共有2003x =,1y =;1x =,2003y =两组解.AB Cxy读万卷书 行万里路8故选择B .【点评】 这道题的考点是恒等变形,需要将原来很复杂的根式变成比较简单的形式,然后再求解.在变换过程中也要注意要解的方程里含两个未知数,一般情况下是无法解的,但是有整数这个条件下的约束,我们可以通过将方程表示成两个多项式的乘积等于零的形式再求解.5.B【解析】 显然由正弦定理可知:sin sin ADE ABC S AD AE BACS AB AC BAC⨯⨯∠=⨯⨯∠△△, 所以13134ADE ABC S AD AE AE S AB AC AC ⨯==⋅=-⨯△△,故:34AE AC =, 所以13CE EA =, 应该选B .【点评】 应该了解算三角形面积的三种不同的算法,正弦定理、底乘高的公式以及利用三角形内切圆半径和周长算三角形面积的方法.其中对于利用正弦定理来算三角形面积的方法可以直接转化成两对边比例的乘积,在作填空选择的时候可以直接利用.ABCDE读万卷书 行万里路96.D【解析】 连接CE ,由于ABCE 四点共圆,所以:DEC CBA ∠=∠,在平行四边形ABCD 中,D ABC ∠=∠,所以有DEC D ABC ∠=∠=∠,同时,CD 平行于AB ,且DC 与圆相切,可知:C 为弧AB 中点,所以CEB CBA ∠=∠,且DCE CBE ∠=∠,故由DEC D ∠=∠可知DEC △为等腰三角形,4CD CE AB ===,由DCE CBE ∠=∠和D ABC CEB ∠=∠=∠可知CDE △相似于BCE △,所以:CE BEDE CE=, 故:2165CE DE BE ==,选D .【点评】 注意弦切角的应用,以及圆周角与弧之间的联系.二、填空题E D CBA读万卷书 行万里路101.1-【解析】 由于ABC △是直角三角形,所以抛物线与x 轴的交点必然在y 轴两边,所以0ca<,再由射影定理得到2c c a =.得到1ac =,有0ca<,所以1ac =-. 【点评】 这是一道几何与代数的综合题,需要利用给出的几何条件得到二次函数的性质,要掌握的重点是两交点之间的水平距离为21x x -,可以通过韦达定理即根与系数的关系求出,而要去解方程.2.4【解析】 解法一:考虑二次函数232y x mx =+-与二次函数的两个交点,由于3大于0,图像开口向上.由于两个交点都在95-和37之间,所以从图像可以看出,905y ⎛⎫-> ⎪⎝⎭,307y ⎛⎫> ⎪⎝⎭.得到813342125m <<,所以m 的值为4. 【点评】 直接从已知条件不好下手,而利用二次函数与一元二次方程的关系,从二次函数的图像考虑就比较容易得到结果,利用二次函数的图像是一种很重要的方法.3.12︒11【解析】 本题考察的是角度计算的知识,令B α'∠=,由于AB BB '=,所以有:B AB B α''∠=∠=,对于三角形B BA '的一个外角和等于不相邻的的两内角之和,故:2B BD B AB B α'''∠=∠+∠=,又BB'为CBD ∠的角平分线,所以: 24CBD B BD α'∠=∠=,又由对顶角相等可知:4ABA CBD α'∠=∠=,由AA AB '=可知:4AA B ABA α''∠=∠=,故:1801808BAA AA B ABA α'''∠=-∠-∠=-o o ,同时AA '为BAE ∠的角平分线,故:236016BAE BBA α'∠=∠=-o ,则:36016180BAE CAB αα∠+∠=-+=o o ,解得:12α=o ,12BAC α∠==o .【点评】 对于很多的角的计算时一般设一个最小的角便于计算,同时还应该注意三角形中外角、对顶角等的性质.B'A'EDCBA读万卷书 行万里路4.225【解析】 设两个数的最大公约数为d ,大数为md ,小数为nd ,其中m ,n 互质,则最小公倍数为mnd .由已知得105mn =,()120m n d -=.由于m n >,所以m 只可能是105,35,21,15.对应的n 分别为1,3,5,7.只有在15m =,7n =时d 为整数,15d =.所以大数为225md =.【点评】 这道题的考点是最大公约数与最小公倍数的性质,利用其性质列出整数方程就很容易求解了.第二试(A )一、【解析】 设这两个两位数分别为x ,y ,则()2100x y x y +=+,即()()222500x y x y y +-+-=,旗开得胜13为使方程有正整数根要求()()()2245044250099y y y y ∆=---=-是正整数.经试验得到25y =时∆是完全平方数,解出20x =或30,即2025或者3025满足题意.【点评】 本题的关键是根据自然数的性质列出方程,再结合一元二次方程求出结果,这种题目在二试中经常出现.二、【解析】 连接DE ,EM ,MD ,DN ,NF ,FD ,在直角AEP △和CFP △中,M 、N 分别是它们斜边上的中点,所以:EM MA MP ==,CN NF NP ==,在APC △中,D 、M 、N 分别为各边的中点,故DM ,DN 均为APC △的中位线,所以有EM MA MP DN ===,CN NF NP DM ===,同时,由于D 为AC 边中点,所以AD DC =,因此DME FND △≌△,命题得证:由DME FND △≌△可知:EMD DNF ∠=∠,PF EDCBAMN又由于DM,DN均为三角形APC的中位线,所以AMD DNC∠=∠,则有:EMD AMD DNF DNC∠-∠=∠-∠,即:AEM FNC∠=∠,同时,AME△为等腰三角形,△和FNC所以,PAE PBF∠=∠,【点评】对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】由已知有:1a x+=;①b1b x+=;②c1c x+=;③d1d x+=.④a读万卷书行万里路15由式①解出:1b x a=-, ⑤将⑤代入②式可得:21x ac x ax -=--,⑥将⑥代入③式可得:211x a x x ax d-+=--,即:()()321210dx ad x d a x ad -+--++=,⑦由④式得:1ad ax +=,代入⑦式得:()()320d a x x --=,由已知0d a -≠,所以:320x x -=,若0x =,则由式⑥可得a c =,矛盾,故有22x =,即2x =±【点评】 本道题只能是通过代数式的变换来解题,在代数式的变换中注意到共有四个等式,有a ,b ,c ,d 四个字母,也就是可以通过消元最后得到x 和其中一个字母的关系,但是这样我们得到的是一个三次式,不利于解题.实际上不管最后得出的式子含有多少个未知数,只要可以表示成几个多相式的乘积为零,就能得到结果,实际解题中应该从这方面着手.第二试(B )一、读万卷书 行万里路【解析】 设这两个两位数分别为x ,y ,则()2100x y x y +=+,即()()222500x y y y +-+-=,为使方程有正整数根要求()()()2245044250099y y y y ∆=---=-是正整数,经试验得到25y =时∆完全平方数,解出20x =或30,即2025或者3025满足题意.【点评】 本题的是根据自然数的性质列出方程,再结合一元二次方程求出结果,这种题目在二试中经常出现.二、【解析】 连接DE 、EM 、MD 、DN 、NF 、FD ,在直角三角形AEP 和CFP 中,M 、N 分别是它们斜边上的中点,所以:EM MA MP ==,CN NF NP ==在APC △中,D 、M 、N 分别为各边的中点,故DM ,DN 均为APC △的中位线,所以有EM MA MP DN ===,CN NF NP DM ===,同时,由于D 为AC 边中点,所以AD DC =,因此DME FND △≌△,命题得证:PF EDCBA MN17由DME FND △≌△可知:EMD DNF ∠=∠,又由于DM ,DN 均为三角形APC 的中位线,所以AMD DNC ∠=∠,则有:EMD AMD DNF DNC ∠-∠=∠-∠,即:AEM FNC ∠=∠,同时,AME △和FNC △为等腰三角形,所以,PAE PBF ∠=∠,【点评】 对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】 如图,设AB a =,CD b =,AC l =并设的边AB 上的高为2h ,边DC 上的高为1h ,则:()()121122ABC ADCABCD S S S h a h b t a b =+=++△△≤平行四边形, 仅当121h h ==,等号成立,即在四边形ABCD 中,当AC 垂直于AB ,AC 垂直于CD 时等号成立.由已知可得:()64l a b +≤,又由题设16a b l +=-,可得:()()26464864l a b l +--≤≤≤,h 2h 1AB读万卷书 行万里路于是:8l =,8a b +=,且这时AC 垂直于AB ,AC 垂直于AD .因此,这样的四边形有如下4个:1a =,7b =,8l =;2a =,6b =,8l =;3a =,5b =,8l =;4a =,4b =,8l =;它们都是以AC 为高的梯形或平行四边形.又由AB a =,8CD a =-,则2228BC a =+,()22288AD a =--,因此,这样的四边形的边长的平方和为:()()22222812844192a a a +-+=-+.故当4a b ==时,平方和最小,且为192.【点评】 本题是一道综合性很强的题目,其中运用到了面积法,不等式,四边形知识,需要同学们对这些知识掌握得很好,并能够融会贯通.第二试(C )一、【解析】 由已知有:191a x b+=; ①1b xc +=; ②1c x d+=; ③1d x a+=. ④由式①解出:1b x a=-, ⑤将⑤代入②式可得:21x ac x ax -=--,⑥将⑥代入③式可得:211x a x x ax d-+=--,即:()()321210dx ad x d a x ad -+--++=,⑦由④式得:1ad ax +=,代入⑦式得:()()320d a x x --=,由已知0d a -≠,所以:320x x -=,若0x =,则由式⑥可得a c =,矛盾,故有22x =,即2x =±【点评】 本道题只能是通过代数式的变换来解题,在代数式的变换中注意到共有四个等式,有a ,b ,c ,d 四个字母,也就是可以通过消元最后得到x 和其中一个字母的关系,但是这样我们得到的是一个三次式,不利于解题.实际上不管最后得出的式子含有多少个未知数,只要可以表示成几个多相式的乘积为零,就能得到结果,实际解题中应该从这方面着手.二、【解析】连接DE、EM、MD、DN、NF、FD,在直角三角形AEP和CFP中,M、N分别是它们斜边上的中点,所以:EM MA MP==,CN NF NP==在APC△中,D、M、N分别为各边的中点,故DM,DN均为APC△的中位线,所以有EM MA MP DN===,CN NF NP DM===,同时,由于D为AC边中点,所以AD DC=,因此DME FND△≌△,命题得证:由DME FND△≌△可知:EMD DNF∠=∠,又由于DM,DN均为三角形APC的中位线,所以AMD DNC∠=∠,则有:EMD AMD DNF DNC∠-∠=∠-∠,即:AEM FNC∠=∠,PF EDCBAM N读万卷书行万里路读万卷书 行万里路21同时,AME △和FNC △为等腰三角形,所以,PAE PBF ∠=∠,【点评】 对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】 如图,设AB a =,CD b =,AC l =并设的边AB 上的高为2h ,边DC 上的高为1h ,则:()()121122ABC ADC ABCD S S S h a h b t a b =+=++△△≤平行四边形, 仅当121h h ==,等号成立,即在四边形ABCD 中,当AC 垂直于AB ,AC 垂直于CD 时等号成立.由已知可得:()64l a b +≤,又由题设16a b l +=-,可得:()()26464864l a b l +--≤≤≤, 于是:8l =,8a b +=,且这时AC 垂直于AB ,AC 垂直于AD .因此,这样的四边形有如下4个:1a =,7b =,8l =;2a =,6b =,8l =;h 2h 1A BCD读万卷书 行万里路22 3a =,5b =,8l =;4a =,4b =,8l =;它们都是以AC 为高的梯形或平行四边形.又由AB a =,8CD a =-,则2228BC a =+,()22288AD a =--, 因此,这样的四边形的边长的平方和为:()()22222812844192a a a +-+=-+. 故当4a b ==时,平方和最小,且为192.【点评】 本题是一道综合性很强的题目,其中运用到了面积法,不等式,四边形知识,需要同学们对这些知识掌握得很好,并能够融会贯通.。
2004年第21届物理竞赛_复赛_试题+答案+评分标准
第21届全国中学生物理竞赛复赛试卷本卷共七题,满分140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数dPStk N ∆=,其中t 为渗透持续时间,S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ).二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示)三、(15分)μ子在相对自身静止的惯性参考系中的平均寿命s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反应产生一批μ子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中τ为相对该惯性系粒子的平均寿命.若能到达地面的μ子数为原来的5%,试估算μ子产生处相对于地面的高度h .不考虑重力和地磁场对μ子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的要求,对光束进行必需的变换(或称整形).如果能把一个半导体激光二极管条发出的光变K 3K 2P 1 V 1CC ΄ P 0 V 0FGI HK 1换成一束很细的平行光束,对半导体激光的传输和应用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明.如图,S 1、S 2、S 3 是等距离(h )地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan ()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能全部投射到这个组合透镜上,且经透镜折射后的光线能全部会聚于z 轴(以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线)上距离S 2为 L = 12.0 h 处的P 点.(加工时可对透镜进行外形的改变,但不能改变透镜焦距.)1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜应如何加工和组装,并求出有关数据.五、(20分)如图所示,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感应与静电屏蔽可知:导体空腔内表面将出现感应电荷分布,感应电荷电量等于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内表面上的感应电荷共同产生的.由于我们尚不知道这些感应电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感应电荷对腔内电场的贡献,可用假想的位于腔外的(等效)点电荷来代替(在本题中假想(等效)点电荷应为两个),只要假想的(等效)点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内表面的感应电荷的假想(等效)点电荷1q '与q 1共同产生的电场在原空腔内表面所在位置处各点的电势皆为0;由q 2在原空腔内表面的感应电荷的假想(等效)点电荷2q '与q 2共同产生的电场在原空腔内表面所在位置处各点的电势皆为0.这样确定的假想电荷叫做感应电荷的等效电荷,而且这样确定的等效电荷是唯一的.等效电荷取代感应电荷后,可用等效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确定假想等效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .已知A 点到球心O 的距离为r ,OA 与1OP 的夹角为θ .六、(20分)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上(图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的夹角为π-α ,α < π/2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.ABπ-αSh h七、(25分)如图所示,有二平行金属导轨,相距l ,位于同一水平面内(图中纸面),处在磁感应强度为B 的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻,金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒定不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届全国中学生物理竞赛复赛试卷参考答案及评分标准一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA (1)p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='(2)2222V V p p '=' (3)渗透室下部连同U 形管左管水面以上部分气体的总体积和压强分别为 HAV V ∆+='11 (4)H g p p Δ221ρ+'=(5)式中ρ 为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ (6)在2个小时内,通过薄膜渗透过去的分子数A nN N ∆=(7)式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了∆pV ΔnRTp =∆ (8)经过2小时渗透室上部分中空气的压强为p p p ∆-='00(9)测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆(10)根据定义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k(11)评分标准:本题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O 处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO 和AC 的夹角α1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角α2,就可以计算出此时星体C 与地心的距离OC . 因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) 已知R r 2=近, RGM43=近v得 R r 6=远(4) 所以R R R AB 862=+= (5)在△ABC 中用正弦定理()ABBC211πsin sin ααα--= (6)所以 ()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦定理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC(9)评分标准:本题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因μ子在相对自身静止的惯性系中的平均寿命s 100.260-⨯≈τ根据时间膨胀效应,在地球上观测到的μ子平均寿命为τ,B()21c v -=ττ (1)代入数据得 τ = 1.4×10-5s(2)相对地面,若μ子到达地面所需时间为t ,则在t 时刻剩余的μ子数为()()τt N t N -=e 0 (3)根据题意有()()%5e 0==-τt N t N (4)对上式等号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t(6)根据题意,可以把μ子的运动看作匀速直线运动,有t h v =(7)代入数据得m 1024.14⨯=h (8)评分标准:本题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面应垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u 111=-+ (1) 可解得]4[212fL L L u -±=因为要保证经透镜折射后的光线都能全部会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan α ≤h 即u ≤2h .在上式中取“-”号,代入f 和L 的值,算得h u )236(-=≈1.757h (2)此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3应分别位于这3条连线上(如图1).由几何关系知,有hhh h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置应在1S '之下与1S '的距离为 h O O h O S 146.02111=-=' (4)同理,O 3的位置应在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须等于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜. 因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一部分,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半部分的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况(纸面为M M '平面).图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '(与O 2重合)为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能全部进入透镜.首先,圆1的K 点(见图2)是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能全部进入L 1.为了保证全部光束能进入透镜组合,对L 1和L 2进行加工时必须保留圆1和圆2内的透镜部分.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.若沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形部分,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的全部光线都会聚到P 点.现在计算Q Q '和N N '的位置以及对各个透镜切去部分的大小应符合的条件.设透镜L 1被切去部分沿O 1O 2方向的长度为x 1,透镜L 2被切去部分沿O 1O 2方向的长度为x 2,如图2所示,则对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=(7)由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),ρ-'+=111O S r x M 代入r ,ρ 和11O S '的值,得h x M 457.01=(8) 代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ),ρ-=r x M 2h h图2代入r 和ρ 的值,得h x M 311.02=(10) h x d x M m 335.021=-=(11) 由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同.评分标准:本题20分.第1问10分,其中(2)式5分,(3)式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜部分全部保留,透镜其它部分可根据需要磨去(或切割掉)”给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分(4分).五、1.解法Ⅰ:如图1所示,S 为原空腔内表面所在位置,1q '的位置应位于1OP 的延长线上的某点B 1处,2q '的位置应位于2OP 的延长线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q k P A q k(1) 0212212='+B A q k P A q k (2) 怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系. 若等效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅(3) 即1111OB OA OA OP =(4)则1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得等效电荷1q '11q aRq -=' (6)由 (3) 式知,等效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置应使2112B OA A OP ∽△△,用类似的方法可求得等效电荷B 2122q aRq -=' (8)等效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k(1')式中21221)cos 2(θRa a R r -+=(2')21221)cos 2(θRd d R r -+='(3')由(1')、(2')、(3')式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+(4')(4')式是以θcos 为变量的一次多项式,要使(4')式对任意θ均成立,等号两边的相应系数应相等,即)()(22212221a R q d R q +'=+ (5')a q d q 2121'=(6')由(5')、(6')式得0)(2222=++-aR d R a ad (7') 解得aR a R a d 2)()(2222-±+=(8')由于等效电荷位于空腔外部,由(8')式求得 aR d 2=(9')由(6')、(9')式有212221q aR q =' (10')考虑到(1')式,有11q aRq -='(11')同理可求得aR OB 22=(12')22q aRq -=' (13')2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因221cos 2a ra r A P +-=θ22221cos 2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R a R r r A B θ 222cos 2a ra r A P ++=θ22222cos 2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=a R a R r r A B θ 代入 (10) 式得⎝⎛+--+-=422222cos 2cos 21R raR r a R ara r kq U A θθ⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Rara r θθ(11)评分标准:本题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ.第2问2分,即(11)式2分.图2六、令I 表示题述极短时间∆t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如图所示;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示∆t 末了时刻C 沿平行于DE 方向速度的大小,B v 表示∆t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示∆t 末了时刻B 沿垂直于DE 方向速度的大小.由动量定理, 对C 有C m I v ='αsin (1) v m I I ='-αcos(2) 对B 有B m I v ='αsin (3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相等.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++=(6)评分标准:本题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分.七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感应电动势,由两金属杆与导轨构成的回路中会出现感应电流.由于回路具有自感系数,感应电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2(相对地面参考系S ),当v 1、v 2为正时,表示速度沿x 轴正方向;若规定逆时针方向为回路中电流和电动势的正方向,则因两杆作切割磁力线的运动而产生的感应电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势ti LL ∆∆-=E (2)根据欧姆定律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有C mV m 20=v(4)得2v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一新的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',则有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu (8)由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +∆t 时刻,它的坐标为x x '∆+',则由速度的定义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2 (11)若将x '视为i 的函数,由(11)式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待定.现已知在t =0时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫ ⎝⎛-'=0212x x L Bl i (14)021x 表示t =0时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫ ⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2=(16)这时作用于ab 杆的安培力X Ll B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B mT 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,ϕ 为初相位,都是待定的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt T T A u π2sin π2 (20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现已知在t =0时刻,ab 杆位于初始位置,即X = 0 速度00002121v v v v =-=-=C V u故有ϕcos 0A =ϕsin π220⎪⎭⎫⎝⎛-=T A v 解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=(23)由 (15) 式可求得ab 杆在S '系中的位置t TmL Bl x x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相等,故在S '系中,cdt TmL Bl x x π2sin 222100cdv --=' (25)相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到(18)式,得ab 杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL BlmL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 22210cd v v (27)回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感应电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2(相对地面参考系S ),若规定逆时针方向为回路电动势和电流的正方向,则由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感应电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有ti LL ∆∆-=E (3’)根据欧姆定律,注意到回路没有电阻,有0=+L E E由式(2’)、(3’)两式得ti LBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +∆t 时刻,ab 相对于cd 杆的距离为x '+x '∆,则由速度的定义,有tx u ∆'∆=(5’)代入 (4') 式得i L x Bl ∆='∆(6’)若将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程b i BlLx +=' (7’)式中b 为常数,其值待定.现已知在t =0时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得0x i Bl Lx +=' (8’) 或 ()0x x LBli -'=(9’)0x 表示t =0时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab 杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =0时刻的相对位置的位移,即从t =0到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'= (10') 于是有X LBl i =(11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿定律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到(9')式得()X Ll B iBl a a m 22cd ab22-=-=-(14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,表明这个相对运动是简谐振动,它的振动的周期()Ll B mT 222π2=(15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,ϕ 为初相位,都是待定的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现已知在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有ϕcos 0A =ϕsin π20⎪⎭⎫⎝⎛-=T A v解这两式,并注意到(15’) 式得2π3=ϕ2π200mLBlT A v v ==由此得t mL BlmL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为 X = x ab -x cd -x 0 (19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v(20’)(12’)和(13’)式相加, ()0cd ab =+-=+iBl iBl a a m得()0cd ab =+a a由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和应为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (22’)t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v (23’)由(11’)、(19’)(22’)、(23’)式得回路中电流t mL BlL m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v (24’)评分标准:本题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分标准中的相应式子给分.。
热学竞赛试题分析
热学竞赛试题的分析【摘要】本文通过分析二十届至二十四届全国中学生物理竞赛(复赛)理论试题热学所占分值与特点,预测了全国中学生物理竞赛热学部分的出题趋势,并对竞赛辅导提出一些建议。
【关键词】物理竞赛热学出题趋势竞赛辅导全国中学生物理竞赛是在中国科学技术协会领导下,由中国物理学会主办,是物理学习比较优秀的中学生自愿参加的课外科技活动。
举办这一竞赛的目的在于促进中学生提高学习物理的兴趣和积极性,改进学习方法,增强学习能力,同时促进学校开展物理课外活动,活跃校内学习氛围,以及发现物理学习特别优秀的中学生,进行因材施教,以便更好地培养他们。
从瓦特发明了蒸汽机以来,人们对热学的应用越来越关注。
同时,热学理论也日趋完善。
这种理论和实践的不断发展也反映到竞赛试题上来,下面来讨论竞赛试题中的热学问题。
一、热学在竞赛试题中所占分值及特点1、从二十届至二十四届物理竞赛复赛试题中可以看出,热学分值的比重并不是很高,由表1我们发现,每届试题中都有一道热学题,题目出现在前三题中。
热学的分值在15分到25分之间,占整个试卷总分的10.714%至16.429%。
2、热学部分虽然占的分值较少,但试题的难度系数也较小,因此,它的难度与分值是成正比例的。
并且,题目中所用到的知识点也相对较少。
在第二十届复赛试题中,先分析温度为t2时空气的体积和压强,根据理想气体状态方程求出t2;然后通过分析温度继续上升气柱中的空气作等压变化,利用盖—吕萨克定律,求出气柱中空气温度缓慢升高到t=97℃时空气的体积。
在第二十一届复赛试题中,主要运用理想气体状态方程pv=nrt,求出经过2小时,薄膜下部增加的空气的摩尔数,从而求得该薄膜材料在0℃时对空气的透气系数。
在第二十二届复赛试题中,第一个过程是等容过程,根据热力学第一定律△u=q+w和等容过程方程求出q与t的关系;第二个过程是等压过程,根据热力学第一定律和状态方程,求出q 与t的关系。
在第二十三届复赛试题中,主要运用热力学第一定律,通过内能、温度与做功的关系从而求出气体原来所处的状态a与另一已知状态b之间的内能之差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十届全国中学生物理竞赛复赛试卷 题号 一 二 三 四 五 六 七 总计 得分 复核人
全卷共七题,总分为140分。 一、(15分)图中a为一固定放置的半径为R的均匀带电球体,O为其球心.己知取无限远处
的电势为零时,球表面处的电势为U=1000 V.在离球心O很远的O′点附近有一质子b,它以 Ek=2000 eV 的动能沿与OO平行的方向射向a.以l表示b与OO线之间的垂直距离,要使质子b能够与带电球体a的表面相碰,试求l的最大值.把质子换成电子,再求l的最大值.
二、(15分)U形管的两支管 A、B和水平管C都是由内径均匀的细玻璃管做成的,它们的内径与管长相比都可忽略不计.己知三部分的截面积分别为 2A1.010Scm2,
2B3.010Scm2,2C2.010Scm2,在 C管中有一段空气柱,两侧被水银封闭.当温度
为127t℃时,空气柱长为l=30 cm(如图所示),C中气柱两侧的水银柱长分别为 a=2.0cm,b=3.0cm,A、B两支管都很长,其中的水银柱高均为h=12 cm.大气压
强保持为 0p=76 cmHg不变.不考虑温度变化时管和水银的热膨胀.试求气柱中空气温度缓慢升高到 t=97℃时空气的体积.
三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地
心到该通道的距离为多少?己知M=20m,地球半径0R=6400 km.假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的. 四、(20分)如图所示,一半径为R、折射率为n的玻璃半球,放在空气中,平表面中央半径为0h的区域被涂黑.一平行光束垂直入射到此平面上,正好覆盖整个表面.Ox为以球心O为原
点,与平而垂直的坐标轴.通过计算,求出坐标轴Ox上玻璃半球右边有光线通过的各点(有光线段)和无光线通过的各点(无光线段)的分界点的坐标.
五、(22分)有一半径为R的圆柱A,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A相同,半径为r的较细圆柱B,用手扶着圆柱A,将B放在A的上面,并使之与墙面相接触,如图所示,然后放手. 己知圆柱A与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B与墙面间的静摩擦系数和圆柱B的半径r的值各应满足什么条件?
六、(23分)两个点电荷位于x轴上,在它们形成的电场中,若取无限远处的电势为零,则在正x轴上各点的电势如图中曲线所示,当0x时,电势U:当x时,电
势0U;电势为零的点的坐标0x, 电势为极小值0U的
点的坐标为 0ax(a>2)。试根据图线提供的信息,确定这两个点电荷所带电荷的符号、电量的大小以及它们在x轴上的位置.
七、(25分)如图所示,将一铁饼状小物块在离地面高为h处沿水平方向以初速0v抛出.己知物块碰地弹起时沿竖直方向的分速度的大小与碰前沿竖直方向的分速度的大小之比为e(<1).又知沿水平方向物块与地面之间的滑动摩擦系数
为(≠0):每次碰撞过程的时间都非常短,而且都是“饼面”着地.求物块沿水平方向运动的最远距离. 第二十届全国中学生物理竞赛复赛试题参考解答、评分标准 一、参考解答 令m表示质子的质量,0v和v分别表示质子的初速度和到达a球球面处的速度,e表示元电荷,由能量守恒可知 220
11
22mvmveU (1)
因为a不动,可取其球心O为原点,由于质子所受的a球对它的静电库仑力总是通过a球的球心,所以此力对原点的力矩始终为零,质子对O点的角动量守恒。所求l的最大值对应于质子
到达a球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。以maxl表示l的最大值,由角动量守恒有 max0
mvlmvR (2)
由式(1)、(2)可得
20
max
1/2eUlRmv (3)
代入数据,可得 max22lR (4)
若把质子换成电子,则如图复解20-1-2所示,此时式(1)中e改为e。同理可求得
max62lR (5)
评分标准:本题15分。 式(1)、(2)各4分,式(4)2分,式(5)5分。 二、参考解答 在温度为1(27273)K=300KT时,气柱中的空气的压强和体积分别为
10pph, (1)
1CVlS (2)
当气柱中空气的温度升高时,气柱两侧的水银将被缓慢压入A管和B管。设温度升高到2T
时,气柱右侧水银刚好全部压到B管中,使管中水银高度增大 CB
bShS (3)
由此造成气柱中空气体积的增大量为 CVbS (4)
与此同时,气柱左侧的水银也有一部分进入A管,进入A管的水银使A管中的水银高度也应增大h,使两支管的压强平衡,由此造成气柱空气体积增大量为
AVhS (5)
所以,当温度为2T时空气的体积和压强分别为 21VVVV (6)
21pph (7)
由状态方程知 112212
pVpV
TT (8)
由以上各式,代入数据可得 2347.7TK (9)
此值小于题给的最终温度273370TtK,所以温度将继续升高。从这时起,气柱中的空气作等压变化。当温度到达T时,气柱体积为
22
TVVT (10)
代入数据可得 30.72cmV (11)
评分标准:本题15分。 求得式(6)给6分,式(7)1分,式(9)2分,式(10)5分,式(11)1分。 三、参考解答 位于通道内、质量为m的物体距地心O为r时(见图复解20-3),它受到地球的引力可以表示为
2GMmFr, (1)
式中M是以地心O为球心、以r为半径的球体所对应的那部分地球的质量,若以表示地球的密度,此质量可以表示为 343Mr (2)
于是,质量为m的物体所受地球的引力可以改写为 43FGmr (3)
作用于质量为m的物体的引力在通道方向的分力的大小为 sinfF (4)
sinxr (5)
为r与通道的中垂线OC间的夹角,x为物体位置到通道中
点C的距离,力的方向指向通道的中点C。在地面上物体的重力可以表示为
020
GMmmgR (6)
式中0M是地球的质量。由上式可以得到 043gGR (7)
由以上各式可以求得
0mgfxR (8)
可见,f与弹簧的弹力有同样的性质,相应的“劲度系数”为
0mgkR (9)
物体将以C为平衡位置作简谐振动,振动周期为02/TRg。取0x处为“弹性势能”的零点,设位于通道出口处的质量为m的静止物体到达0x处的速度为0v,则根据能量守恒,有 22200
11
()22mvkRh (10)
式中h表示地心到通道的距离。解以上有关各式,得 2220
00
RhvgR (11)
可见,到达通道中点C的速度与物体的质量无关。 设想让质量为M的物体静止于出口A处,质量为m的物体静止于出口B处,现将它们同时释放,因为它们的振动周期相同,故它们将同时到达通道中点C处,并发生弹性碰撞。碰
撞前,两物体速度的大小都是0v,方向相反,刚碰撞后,质量为M的物体的速度为V,质量为m的物体的速度为v,若规定速度方向由A向B为正,则有 00MvmvMVmv, (12)
222200
1111
2222MvmvMVmv (13)
解式(12)和式(13),得
03MmvvMm
(14)
质量为m的物体是待发射的卫星,令它回到通道出口B处时的速度为u,则有 22220
111
()222kRhmumv (15)
由式(14)、(15)、(16)和式(9)解得 2220
20
8()()RhMMmugRMm
(16)
u的方向沿着通道。根据题意,卫星上的装置可使u的方向改变成沿地球B处的切线方向,如
果u的大小恰能使小卫星绕地球作圆周运动,则有
20200
Mmu
GmRR (17)
由式(16)、(17)并注意到式(6),可以得到 22071022()RMMmmhMMm
(18)
已知20Mm,则得 00.9255920kmhR (19)
评分标准:本题20分。 求得式(11)给7分,求得式(16)给6分,式(17)2分,式(18)3分,式(19)2分。
四、参考解答 图复解20-4-1中画出的是进入玻璃半球的任一光线的光路(图中阴影处是无光线进入的区域),光线在球面上的入射角和折射角分别为i和i,折射光线与坐标轴的交点在P。令轴上OP的距离为x,MP的距离为l,根据折射定律,有 sinsinini (1)