江苏省2016届高三数学一轮复习专题突破训练:统计带答案
2016年江苏省高考数学第三轮复习:高考数学考前基础练习(及答案)(14)(精品资料)

-1 1 1 -1 2 -2 O x y 第2题 2016年江苏省高考数学第三轮复习考前基础练习及答案(14)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A={x| lg|x|=0},B={x| 12<2x+1<4},则A ∩B= . 2.函数y = f (x)(x ∈[-2,2])的图象如图所示,则f (x)+f (-x)= .3.在△ABC 中,sin cos A B a b=,则∠B= . 4.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值是 . 5.已知a=(2,1),b =(x,2),且a +b 与a -2b 平行,则x 等于 .6.给出数表245691318222730354548505254请在其中找出4个不同的数,使它们能构成等比数列,这4个数从小到大依次是 .7.设ω是正实数,如果函数f(x)=2sin ωx 在[-π4,π3]上是增函数,那么ω的取值范围是 .8.从观测所得的到数据中取出m 个a ,n 个b ,p 个c 组成一个样本,那么这个样本的平均数是 .9.若长方体相邻三个侧面的面积分别是2,3,6,则该长方体的体积是 .10.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于A ,B 两点,则弦AB 的垂直平分线方程是 .11.右图给出的是计算1111246100++++ 值的一个程序框图,其中判断框中应该填的条件是 .开始S ←0 I ←012.某厂家根据以往的经验得到下面有关生产销售的统计:每生产产品x (百台),其总成本为G (x )万元,G (x )=2+x ;销售收入R(x)(万元)满足:20.4 4.20.8(05);()10.2(5).x x x R x x ⎧-+-≤≤=⎨>⎩ 要使工厂有赢利,产量x 的取值范围是 .13.设==++++=)2010(,2)2009(,5)cos()sin()(f f x b x a x f 则且βπαπ .14.下列四种说法:①命题“∃x ∈R ,使得x 2+1>3x ”的否定是“∀x ∈R ,都有x 2+1≤3x ”; ②“m=-2”是“直线(m +2)x +my +1=0与直线(m -2)x +(m +2)y -3=0垂直”的必要不充分条件;③在区间[-2,2]上任意取两个实数a ,b ,则关系x 的二次方程x 2+2ax -b 2+1=0的两根都为实数的概率为161π-;④过点(12,1)且与函数y=1x图象相切的直线方程是4x +y -3=0. 其中所有正确说法的序号是 .1、{—1};2、0;3、45°;4、38;5、4;6、如2,6,18,54等;7、3(0,]2;8、; 9、6;10、2y -3x +3=0;11、I ≤98,或I <100等;12、(1,8.2);13、;14、①③二、解答题:15.已知等差数列{a n }中,首项a 1=1,公差d 为整数,且满足a 1+3<a 3,a 2+5>a 4,数列{b n }满足11n n n b a a +=⋅,其前n 项和为S n . (1)求数列{a n }的通项公式a n ;(2)若S 2为S 1,S m (m ∈N*)的等比中项,求正整数m 的值..解:(1)由题意,得111132,53,a a d a d a d +<+⎧⎨++>+⎩解得32< d <52. ………………………3分 又d ∈Z ,∴d = 2.∴a n =1+(n -1)⋅2=2n -1. ………………………6分(2)∵111(21)(21)n n n b a a n n +==⋅-+111()22121n n =--+, ∴111111[(1)()()]23352121n S n n =-+-+⋅⋅⋅+--+11(1)22121n n n =-=++.11分 ∵113S =,225S =,21m m S m =+,S 2为S 1,S m (m ∈*N )的等比中项, ∴221m S S S =,即2215321m m ⎛⎫=⋅ ⎪+⎝⎭, 解得m=12. ………………………14分。
2016年江苏高考数学试卷及答案

2016年江苏高考数学试卷及答案【篇一:(精校版)2016年江苏数学高考试题文档版(含解析)】科网解析团队教师与学而思培优名师团队制作,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:21n1n样本数据x1,x2,?,xn的方差s??xi?x,其中x??xi.ni?1ni?12??棱柱的体积v?sh,其中s是棱柱的底面积,h是高.1棱锥的体积v?sh,其中s是棱锥的底面积,h为高.3一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合a???1,2,3,6?,b??x|?2?x?3?,则a?b?.【答案】??1,2?;【解析】由交集的定义可得a?b???1,2?.2. 复数z??1?2i??3?i?,其中i为虚数单位,则z的实部是.【答案】5;【解析】由复数乘法可得z?5?5i,则则z的实部是5.x2y23. 在平面直角坐标系xoy中,双曲线??1的焦距是.73【答案】【解析】c?2c?4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.【答案】0.1;【解析】x?5.1,s2?10.42?0.32?02?0.32?0.42??0.1. ?55.函数y 【答案】??3,1?;【解析】3?2x?x2≥0,解得?3≤x≤1,因此定义域为??3,1?. 6. 如图是一个算法的流程图,则输出a的值是.【答案】9;【解析】a,b的变化如下表:则输出时a?9.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】5; 6【解析】将先后两次点数记为?x,y?,则共有6?6?36个等可能基本事件,其中点数之和大于等于10有?4,6?,?5,5?,?5,6?,?6,4?,?6,5?,?6,6?六种,则点数之和小于10共有30种,概率为305?. 36628. 已知?an?是等差数列,sn是其前n项和.若a1?a2??3,s5?10,则a9的值是.【答案】20;【解析】设公差为d,则由题意可得a1??a1?d???3,5a1?10d?10,解得a1??4,d?3,则a9??4?8?3?20.【解析】画出函数图象草图,共7个交点.2bx2y210. 如图,在平面直角坐标系xoy中,f是椭圆2?2?1?a?b?0?的右焦点,直线y?2ab与椭圆交于b,c两点,且?bfc?90?,则该椭圆的离心率是.【解析】由题意得f?c,0?,直线y??b?b?b与椭圆方程联立可得b?,c?2??2??, 2???????????????????b????b?由?bfc?90?可得bf?cf?0,bf??,c?cf?c????????,22????c3131则c2?a2?b2?0,由b2?a2?c2可得c2?a2,则e??.a4442?x?a,?1?x?0,?11. 设f?x?是定义在r上且周期为2的函数,在区间??1,1?上f?x???2?x,0?x?1,?5??5??9?其中a?r,若f????f??,则f?5a?的值是.?2??2?2【答案】?;51?5??1?【解析】由题意得f????f??????a,2?2??2?1?9??1?21f???f?????, ?2??2?5210113?5??9?由f????f??可得??a?,则a?,2105?2??2?则f?5a??f?3??f??1???1?a??1?32??.55?x?2y?4?0,?12. 已知实数x,y满足?2x?y?2?0, 则x2?y2的取值范围是. ?3x?y?3?0,??4?【答案】?,13?;?5?【解析】在平面直角坐标系中画出可行域如下x2?y2为可行域内的点到原点距离的平方.可以看出图中a点距离原点最近,此时距离为原点a到直线2x?y?2?0的距离,d??x2?y2??min?4, 5图中b点距离原点最远,b点为x?2y?4?0与3x?y?3?0交点,则b?2,3?,则?x2?y2?max?13.????????13. 如图,在△abc中,d是bc的中点,e,f是ad上两个三等分点,ba?ca?4,????????bf?cf??1, ????????则be?ce的值是.7; 8?????????????????????????【解析】令df?a,db?b,则dc??b,de?2a,da?3a, ????????????????????????????????????则ba?3a?b,ca?3a?b,be?2a?b,ce?2a?b,bf?a?b,cf?a?b, ?????????2?2?????????2?2?????????2?2则ba?ca?9a?b,bf?cf?a?b,be?ce?4a?b,【答案】?????????????????2?2?2?2?25?213由ba?ca?4,bf?cf??1可得9a?b?4,a?b??1,因此a?,b?,88?????????2?24?5137因此be?ce?4a?b???.88814. 在锐角三角形abc中,sina?2sinbsinc,则tanatanbtanc的最小值是.【答案】8;可得sinbcosc?cosbsinc?2sinbsinc(*),由三角形abc为锐角三角形,则cosb?0,cosc?0,tanb?tanc(#),1?tanbtanctanb?tanc?tanbtanc,1?tanbtanc2?tanbtanc?2由tanb?tanc?2tanbtanc可得tanatanbtanc??1?tanbtanc,令tanbtanc?t,由a,b,c为锐角可得tana?0,tanb?0,tanc?0,由(#)得1?tanbtanc?0,解得t?1 2t22tanatanbtanc????,111?t?tt11?11?1111??????,由t?1则0?2???,因此tanatanbtanc最小值为8,2tt?t2?4tt42当且仅当t?2时取到等号,此时tanb?tanc?4,tanbtanc?2,解得tanb?2c?2a?4(或tanb,tanc互换),此时a,b,c均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)54⑴求ab的长;⑵求cos?a??的值.6??【答案】⑴.【篇二:2016年高考试题(数学)江苏卷解析精校版】txt>一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
专题2.7 概率与统计、推理与证明、算法-2016年高考数学三轮考点总动员(江苏版)(原卷版)

第二篇 易错考点大清查专题7 概率与统计、推理与证明、算法1.统计图表识图不准致错例1 【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【举一反三】【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 ▲ .2.基本事件判断不准致误例2. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.【举一反三】【扬州市2015—2016学年度第一学期期末检测试题】从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是▲.3.循环次数、终止次数不准致误例3.【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】运行如图所示的伪代码,则输出的结果S为.【举一反三】【南京市、盐城市2016届高三年级第一次模拟考试数学】运行如图所示的伪代码,其结果为▲.1.【江苏省扬州中学2015—2016学年第二学期质量检测】执行如图所示的程序框图,则输出的i 值为__________.2.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.3.【江苏省扬州中学2015—2016学年第二学期质量检测】在区间[1,1]-上随机取一个数x ,cos 2x π的值介于1[0,]2的概率为 .4.【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】右图是一个算法流程图,则输出的k 的值是 ▲ .开始k >9输出k结束k 0k 2k +k 2YN5.【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h )如下表:根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h 的灯泡只数是 ▲ .6.【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是 ▲ .7.【南京市、盐城市2016届高三年级第二次模拟考试】将一骰子连续抛掷两次,至少有一次向上的点数为1的概率是 ▲ .8.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为▲________.9.【南京市、盐城市2016届高三年级第二次模拟考试】执行如图所示的流程图,则输出的k 的值为 ▲ .10.【江苏省扬州中学2016届高三4月质量监测】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为_______.11.【江苏省扬州中学2016届高三4月质量监测】右边程序输出的结果是___________.12.【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】某学校有A,B错误!未找到引用源。
2016年高考江苏数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2016年江苏,1,5分】已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B =_______.【答案】{}1,2-【解析】由交集的定义可得{}1,2AB =-.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题. (2)【2016年江苏,2,5分】复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是_______. 【答案】5【解析】由复数乘法可得55i z =+,则则z 的实部是5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.(3)【2016年江苏,3,5分】在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是_______.【答案】210【解析】2210c a b =+=,因此焦距为2210c =.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础 (4)【2016年江苏,4,5分】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_______. 【答案】0.1【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用. (5)【2016年江苏,5,5分】函数232y x x =--的定义域是_______. 【答案】[]3,1-【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题. (6)【2016年江苏,6,5分】如图是一个算法的流程图,则输出a 的值是________. 【答案】9【解析】,a b 的变化如下表:a 1 5 9b 9 7 5 则输出时9a =.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(7)【2016年江苏,7,5分】将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.【答案】56【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.(8)【2016年江苏,8,5分】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是_______. 【答案】20【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=. 【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(9)【2016年江苏,9,5分】定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是________.【答案】7【解析】画出函数图象草图,共7个交点.【点评】本题考查正弦函数与余弦函数的图象,作出函数sin 2y x =与cos y x =在区间[]0,3π上的图象是关键,属于中档题.(10)【2016年江苏,10,5分】如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是________【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得 0BF CF ⋅=,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得 223142c a =,则c e a ==. 【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.(11)【2016年江苏,11,5分】设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.【答案】25-【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.(12)【2016年江苏,12,5分】已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是________.【答案】4,135⎡⎤⎢⎥⎣⎦【解析】在平面直角坐标系中画出可行域如下:22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离,d ==,则()22min 45x y +=,图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B ,则()22max13x y +=.【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键. (13)【2016年江苏,13,5分】如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是________.【答案】78【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-,CF a b =+,则229BA CA a b ⋅=-,22BF CF a b ⋅=-, 224BE CE a b ⋅=-,由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,因此22451374888BE CE a b ⨯⋅=-=-=.【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.(14)【2016年江苏,14,5分】在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是_______. 【答案】8【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*),由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>, 在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=,又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >,2222tan tan tan 111t A B C t t t =-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2016年江苏,15,14分】在ABC △中,6AC =,4cos 5B =,π4C =.(1)求AB 的长;(2)求πcos 6A ⎛⎫- ⎪⎝⎭的值. 解:(1)4cos 5B =,B 为三角形的内角,3sin 5B ∴=,sinC sin AB ACB =,635=,即:AB = (2)()cos cos sin sin cos cos A C B B C B C =-+=-,cos A ∴=又A 为三角形的内角,sin A ∴=,π1cos sin 62A A A ⎛⎫∴-+ ⎪⎝⎭【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于中档题.(16)【2016年江苏,16,14分】如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证: (1)直线//DE 平面11A C F ; (2)平面1B DE ⊥平面11A C F .解:(1),D E 为中点,DE ∴为ABC ∆的中位线,//DE AC ∴,又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11A C F ,且11DE AC F ⊄,//DE ∴平面11A C F .(2)111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C ,111AA AC ∴⊥,又1111AC A B ⊥,且1111AA A B A =,111,AA A B ⊂平面11AA B B ,11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B , 又1A F ⊂平面11AA B B ,1DE A F ∴⊥,又11A F B D ⊥,1DEB D D =,且1,DE B D ⊂平面1B DE ,1A F ∴⊥平面1B DE ,又111A F AC F ⊂,∴平面1B DE ⊥平面11A C F .【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难答不大. (17)【2016年江苏,17,14分】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱 的高1O O 是正四棱锥的高1PO 的4倍.(1)若6m AB =,12m PO =,则仓库的容积是多少;(2)若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?解:(1)12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==, 111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m . (2)设1m PO x =,仓库的容积为()V x ,则14m OO x =,11m A O =,11A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =时,()V x 取到最大值,即1m PO =时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.(18)【2016年江苏,18,16分】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点()2,4A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.解:(1)因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >,又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=.(2)由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l的距离d ==,则BC ==BC =1A FEDCBAC 1B 1A 1解得5b =或15b =-,即l :25y x =+或215y x =-. (3)TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =,又10PQ ≤,10,解得2t⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 的平行线,2TA P Q 、两点,此时TA PQ=,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.(19)【2016年江苏,19,16分】已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值;(2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 解:(1)①()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =.②由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122xx t =+,则由20x >可得2t =≥,此时226t mt --≥恒成立,即244t m tt t+=+≤恒成立∵2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.(2)()()22x x g x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb a h x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =, 因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >, 则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x ,① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >;x >log b 2时,0x a >,log 22b x b b >=, 则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =, 由()00020g a b =+-=,因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.(20)【2016年江苏,20,16分】记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. (1)求数列{}n a 的通项公式;(2)对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;(3)设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.解:(1)当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=. (2)2112131133332k k kT k k S a a a a -+-++=++++=<=≤(3)设()C A C D =,()D B C D =,A B =∅,C A C D S S S =+,D B CDS S S =+, 22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥. ① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾.因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C D D S S S +≥.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.数学Ⅱ【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2016年江苏,21-A,10分】(选修4—1:几何证明选讲)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点,求证:EDC ABD ∠=∠.解:由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==,则EDC C ∠=∠, 由90BDC ∠=︒可得90C DBC ∠+∠=︒,由90ABC ∠=︒可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠, 又EDC C ∠=∠可得EDC ABD ∠=∠.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C 是关键,属于中档题.(21—B )【2016年江苏,21—B,10分】(选修4—2:矩阵与变换)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB .解:()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB . 【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题. (21—C )【2016年江苏,21—C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.ED CB A解:直线l0y --=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB =. 【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.(21-D )【2016年江苏,21-D 】(本小题满分10分)(选修4—4:不等式选讲)设0a >,13a x -<,23ay -<,求证:24x y a +-<.解:由13a x -<可得2223a x -<,22422233a a x y x y a +--+-<+=≤. 【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.【必做题】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2016年江苏,22,10分】如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>.(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.解:(1):20l x y --=,∴l 与x 轴的交点坐标为()2,0,即抛物线的焦点为()2,0,22p∴=,28y x ∴=. (2)① 设点()11,P x y ,()22,Q x y ,则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+-, 又,P Q 关于直线l 对称,1PQ k ∴=-,即122y y p +=-,122y y p +∴=-,又PQ 中点一定在直线l 上,12122222x x y y p ++∴=+=-,∴线段PQ 上的中点坐标为()2,p p --;② 中点坐标为()2,p p --,122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩,12212244y y p y y p p +=-⎧∴⎨=-⎩, 即关于222440y py p p ++-=有两个不等根,0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力. (23)【2016年江苏,23,10分】(1)求34677C 4C -的值;(2)设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.解:(1)34677C 4C 7204350-=⨯-⨯=.(2)对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m mm m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C2Cm m k k m k +++=+++,右边()231C m k m ++=+,而()()()()()()()()()22323!2!1C 1C 12!1!2!!m m k k k k m m m m k m m k m ++++⎡⎤+++-+=+-⎢⎥+-++-⎢⎥⎣⎦()()()()()()()()()12!1!13122C 2!1!!1!mk k k m k k m k k m k m m k m +++=+⨯+--+=+=+⎡⎤⎣⎦+-+-+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C CCkk k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
2016届高考数学(文)二轮复习专题整合突破高考中的概率与统计(解答题型)(含答案)

1.[2015·陕西质检(二)]某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A 等,小于80分者为B 等.(1)求女生成绩的中位数及男生成绩的平均数;(2)如果用分层抽样的方法从A 等和B 等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A 等的概率.解 (1)由题中茎叶图知,女生共14人,中间两个成绩是75和76,则女生成绩的中位数是75.5.男生成绩的平均数为x =16(69+76+78+85+87+91)=81.(2)用分层抽样的方法从A 等和B 等学生中共抽取5人,每个人被抽中的概率是520=14, 根据茎叶图知,A 等有8人,B 等有12人, 所以抽取的A 等有8×14=2(人),B 等有12×14=3(人),记抽取的A 等2人分别为A 1,A 2,抽取的B 等3人分别为B 1,B 2,B 3,从这5人中抽取2人的所有可能的结果为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10种,其中至少有1人是A 等的结果为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7种,所以至少有1人是A 等的概率为710.2.春节期间某电视台播出的《总会有人站出来》备受观众青睐,某网站针对此节目的关注情况进行了调查.参与调查的人主要集中在20~50岁,规定:观看此节目超过三天的为“正能量关注者”,得到如下统计表.(1)根据以上信息,求a 的值;(2)若从年龄在[30,40)的“正能量关注者”中按照年龄区间采用分层抽样的方法抽取9人,若再从这9人中随机抽取2人作进一步调查,求这2人恰好属于同一年龄区间的概率.解 (1)由参与调查的总人数为12900,得12000.5+18000.6+10000.5+a 0.4+3000.2+2000.1=12900,解得a =800.(2)年龄在[30,40)的“正能量关注者”共有1000+800=1800人,则在年龄区间[30,35)上应该抽取91800×1000=5人,分别记为a 1,a 2,a 3,a 4,a 5,在年龄区间[35,40)上应该抽取91800×800=4人,分别记为b 1,b 2,b 3,b 4.从这9人中随机抽取2人,所有的基本事件有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(a 3,a 4),(a 3,a 5),(a 3,b 1),(a 3,b 2),(a 3,b 3),(a 3,b 4),(a 4,a 5),(a 4,b 1),(a 4,b 2),(a 4,b 3),(a 4,b 4),(a 5,b 1),(a 5,b 2),(a 5,b 3),(a 5,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共36个.其中2人恰好属于同一年龄区间所包含的基本事件有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 3,a 4),(a 3,a 5),(a 4,a 5),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共16个,故所求概率P =1636=49.3.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:概率;(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^=y -b ^x )解 (1)所有的基本事件为(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10个.设“m,n 均不小于25”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26),共3个.所以P(A)=310.(2)由数据得,另3天的平均数x =12,y =27,3x y =972,3x 2=432,∑3i =1x i y i =977,∑3i =1x 2i =434, 所以b ^=977-972434-432=52,a ^=27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)依题意得,当x =10时,y ^=22,|22-23|<2;当x =8时,y ^=17,|17-16|<2,所以(2)中所得到的线性回归方程是可靠的.4.[2015·重庆高考]随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.附:回归方程y ^=b ^t +a ^中,b ^=∑ni =1t i y i -n t -y -∑ni =1t 2i -n t -2,a ^=y --b ^t -.解 (1)列表计算如下:这里n =5,t =1n ∑ni =1t i =155=3,y =1n ∑i =1y i =365=7.2, 又l tt =∑ni =1t 2i -n t 2=55-5×32=10. l ty =∑ni =1t i y i -n t y =120-5×3×7.2=12. 从而b ^=l ty l tt =1210=1.2,a ^=y -b ^t =7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).5.[2015·山东高考]某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3,现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.因此A1被选中且B1未被选中的概率为P=215.6.[2015·课标全国卷Ⅱ]某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:解(1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.。
江苏省南京师范大学附属中学2016届高三数学一轮同步测试:基本不等式的证明(第2课时) Word版含答案
7. 基本不等式的证明(第2课时)1.求函数()22812f x x x =++的最小值及相应的实数x 的值.2.若0,0,x y >>且22log log 2x y +=,求11x y +的最小值.3.已知函数cos tan ,(0,)sin 2y θπθθθ=+∈,求函数y 的最小值.4.求函数4(x 0)y x x =+≠的值域.5.已知103x <<,求函数()(13)f x x x =-的最大值.6.设0,0x y >>,且191x y +=,求x y +的最小值.7.设,x y 均为正数.(1)若21,x y +=求11x y+的最小值; (2)若2520,x y +=求lg lg x y +的最大值.8.设1x >-,求函数()()521x x y x ++=+的最值.9.若正数,a b 满足3ab a b =++.(1)求ab 的取值范围;(2)求a b +的取值范围.7. 基本不等式的证明(第2课时)1.由220x >,280x >,()2281219f x x x=++≥+=, 当且仅当2282x x=,即x =. 2.22log log 2,x y +=⇒4xy =,由0,0,x y >>111x y +≥=, 当且仅当2x y ==时取“=”.3.由tan 0θ>,cos 1tan tan 2sin tan y θθθθθ=+=+≥, 当且仅当1tan tan θθ=,即4πθ=时取“=”. 4.4(x 0)y x x =+≠是奇函数,0x >时,44y x x=+≥=, 所以4y ≥或4y ≤-,值域为(,4][4,)-∞-+∞.5.由10,3x <<得30x >,130x ->, ()2113131(13)3(13)33212x x f x x x x x +-⎛⎫=-=⋅-≤⋅= ⎪⎝⎭ 当且仅当313x x =-,即16x =时取“=”. 6.199()()101016y x x y x y x y x y+=++=++≥+=, 当且仅当9y x x y=,即4x =,12y =时取“=”. 7.(1)1122233x y x y y x x y x y x y+++=+=++≥+, 当且仅当2y x x y=,即12y =-,1x =时取“=”; (2)2025x y =+≥10xy ≤,lg lg lg lg101x y xy +=≤=, 当且仅当2510x y ==,即5x =,2y =时取“=”.8. ()()252(1)5(1)4114(1)5591x x x x y x x x x ++++++==++=+++≥=+, 当且仅当41x x +=+,即1x =时取“=”.9.(1)3ab a b -=+≥1)0≥⇒9ab ≥, 当且仅当3a b ==时取“=”;(2)23()2a b a b ab +++=≤⇒(2)(6)0a b a b +++-≥⇒6a b +≥, 当且仅当3a b ==时取“=”.。
2016江苏省苏州市高三调研考试数学试题含答案
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
江苏省扬州市2016届高三一模数学试题word版有答案
扬州市2016届第一次模拟高 三 数 学 2016.1第一部分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应位置) 1.已知集合{}02|2<x x x A -=,{}210,,=B ,则=B A ▲ . 2.若复数)23(i i z -=(i 是虚数单位),则z 的虚部为 ▲ . 3.如图,若输入的x 值为3π,则相应输出的值为 ▲ .4.某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 ▲ .5.双曲线116922=-y x 的焦点到渐近线的距离为 ▲ . 6.从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是 ▲ . 7.已知等比数列{}n a 满足4212=+a a ,523a a =,则该数列的前5项的和为 ▲ .8.已知正四棱锥底面边长为24,体积为32,则此四棱锥的侧棱长为 ▲ . 9.已知函数)32sin()(π+=x x f (π<x ≤0),且21)()(==βαf f (βα≠),则=+βα ▲ . 10.已知)sin (cos αα,=m ,)12(,=n ,⎪⎭⎫⎝⎛-∈22ππα,,若1=⋅n m ,则=+)232sin(πα ▲ .11.已知1>>b a 且7log 3log 2=+a b ,则1+a 的最小值为.12.已知圆O :422=+y x ,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 ▲ . 13. 已知数列{}n a 中,a a =1(20≤a <),⎩⎨⎧≤+--=+)2(3)2(21n n n n n a a a a a >(*N n ∈),记n n a a a S +++= 21,若2015=n S ,则=n ▲ .14.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)(a a x a x x f 3221)(--+-=. 若集合{}Φ=∈--R x x f x f x ,>0)()1(|,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)如图,已知直三棱柱111C B A ABC -中,AC AB =,D 、E 分别为BC 、1CC 中点,D B BC 11⊥.(1)求证://DE 平面1ABC ; (2)求证:平面⊥D AB 1平面1ABC .16. (本小题满分14分)已知函数x x x x f ωωωcos sin cos 3)(2+=(0>ω)的周期为π. (1)当⎥⎦⎤⎢⎣⎡∈20π,x 时,求函数)(x f 的值域;(2)已知ABC ∆的内角A ,B ,C 对应的边分别为a ,b ,c ,若3)2(=A f ,且4=a ,5=+c b ,求ABC ∆的面积.如图,已知椭圆12222=+by a x (0>>b a )的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足MP M F λ=1(R ∈λ),M F PO 2⊥,O 为坐标原点. (1)若椭圆方程为14822=+y x ,且),(22P ,求点M 的横坐标; (2)若2=λ,求椭圆离心率e 的取值范围.18. (本小题满分15分)某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xoy .(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小. 现隧道口的最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?(隧道口截面面积公式为lh S 32=)已知函数x e x ax x f )2()(2++=(0>a ),其中e 是自然对数的底数. (1)当2=a 时,求)(x f 的极值;(2)若)(x f 在[]22,-上是单调增函数,求a 的取值范围;(3)当1=a 时,求整数t 的所有值,使方程4)(+=x x f 在[]1+t t ,上有解.20. (本小题满分16分)若数列{}n a 中不超过)(m f 的项数恰为m b (*N m ∈),则称数列{}m b 是数列{}n a 的生成数列,称相应的函数)(m f 是数列{}n a 生成{}m b 的控制函数. (1)已知2n a n =,且2)(m m f =,写出1b 、2b 、3b ; (2)已知n a n 2=,且m m f =)(,求{}m b 的前m 项和m S ;(3)已知n n a 2=,且3)(Am m f =(*N A ∈),若数列{}m b 中,1b ,2b ,3b 是公差为d (0≠d )的等差数列,且103=b ,求d 的值及A 的值.第二部分(加试部分)21.(本小题满分10分)已知直线1=+y x l :在矩阵⎥⎦⎤⎢⎣⎡=10n m A 对应的变换作用下变为直线1=-'y x l :,求矩阵A .22. (本小题满分10分)在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.23. (本小题满分10分)某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金m 元,若摸中乙箱中的红球,则可获奖金n 元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.24. (本小题满分10分)已知函数232)(x x x f -=,设数列{}n a 满足:411=a ,)(1n n a f a =+. (1)求证:*N n ∈∀,都有310<<n a ; (2)求证:44313313313121-≥-++-+-+n na a a .数 学 试 题Ⅰ参 考 答 案2016.1一、填空题1.{}1 2.3 3.12 4.144 5.4 6.257.31 8.5 9.76π 10.725- 11.3 12.1± 13.1343 14.1(,]6-∞ 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.证明:(1)D 、E 分别为BC 、1CC 中点,1//DE BC ∴, …………2分DE ⊄ 平面1ABC ,1BC ⊂平面1ABC //DE ∴平面1ABC …………6分(2)直三棱柱111ABC A B C -中,1CC ⊥平面ABC AD ⊂平面ABC 1CC AD ∴⊥ …8分AB AC =,D 为BC 中点 AD BC ∴⊥ ,又1CC BC C =,1CC , BC ⊂平面11BCC B ,11面AD BCC B ∴⊥ 1BC ⊂平面11BCC B 1AD BC ∴⊥ …………11分又11BC B D ⊥,1B D AD D =,1B D ,AD ⊂平面1AB D 1BC ∴⊥平面1AB D1BC ⊂平面1ABC ∴平面1AB D ⊥平面1ABC …………14分16.解:(1)1()cos 2)sin 2sin(2)23f x x x x πωωω=++=++ …………2分()f x 的周期为π,且0ω>,22ππω∴=,解得1ω= ()sin(2)3f x x π∴=+4分又02x π≤≤, 得42333x πππ≤+≤,sin(2)13x π≤+≤,0sin(2)13x π≤++≤+ 即函数()y f x =在[0,]2x π∈上的值域为1]+.………7分(2)()2A f =sin()3A π∴+=由(0,)A π∈,知4333A πππ<+<, 解得:233A ππ+=,所以3A π= …………9分由余弦定理知:2222cos a b c bc A =+-,即2216b c bc =+-216()3b c bc ∴=+-,因为5b c +=,所以3bc = …………12分∴1sin 2ABC S bc A ∆== …………14分17.(1)22184x y += 12(2,0),(2,0)F F ∴- 21OP F M F M k k k ∴===∴直线2F M 的方程为:2)y x =-,直线1F M 的方程为:2)y x + …………4分由2)2)y x y x ⎧=-⎪⎨=+⎪⎩解得:65x = ∴点M 的横坐标为65 …………6分 (2)设00(,),(,)M M P x y M x y12F M MP = 1002(,)(,)3M M F M x c y x c y ∴=+=+00200212242(,),(,)333333M x c y F M x c y ∴-=-2PO F M ⊥,00(,)OP x y = 2000242()0333x c x y ∴-+=即220002x y cx += …………9分联立方程得:2200022002221x y cx x y ab ⎧+=⎪⎨+=⎪⎩,消去0y 得:222222002()0c x a cx a a c -+-=解得:0()a a c x c +=或 0()a a c x c-= …………12分0a x a -<< 0()(0,)a a c x a c-∴=∈ 20a ac ac ∴<-< 解得:12e >综上,椭圆离心率e 的取值范围为1(,1)2. …………15分18.解:(1)设抛物线的方程为:2(0)y ax a =->,则抛物线过点3(10,)2-,代入抛物线方程解得:3200a =, …………3分令6y =-,解得:20x =±,则隧道设计的拱宽l 是40米; …………5分 (2)抛物线最大拱高为h 米,6h ≥,抛物线过点9(10,())2h --,代入抛物线方程得:92100h a -=令y h =-,则292100h x h --=-,解得:210092h x h =-,则2100()922l h h =-,2292400l h l =-………9分229266400l h l ≥∴≥- 即2040l <≤ 232292232(2040)33400400ll S lh l l l l ∴==⋅=<≤--………12分2232222229(400)323(1200)'(400)(400)l l l l l l S l l --⋅-∴===--当20l <<'0S <;当40l≤时,'0S >,即S 在上单调减,在上单调增,S ∴在l =l =,274h =答:当拱高为274米,拱宽为 ………15分19.解:(1)2()(22)x f x x x e =++,则'2()(253)(1)(23)x x f x x x e x x e =++=++ ………2分令'()0f x = ,31,x =--323()()52极大值=f x f e -∴-= ,1()(1)3极小值=f x f e --= ………4分(2)问题转化为'2()(21)30xf x ax a x e ⎡⎤=+++≥⎣⎦在[2,2]x ∈-上恒成立;又0x e > 即2(21)30ax a x +++≥在[2,2]x ∈-上恒成立; ………6分 2()(21)3令g x ax a x =+++0a >,对称轴1102x a=--< ①当1122a--≤-,即102a <≤时,()g x 在[2,2]-上单调增,min ()(2)10g x g ∴=-=> 102a ∴<≤………8分 ②当12102a-<--<,即12a >时,()g x 在1[2,1]2a ---上单调减,在1[1,2]2a --上单调增,2(21)120a a ∴∆=+-≤ 解得:11a -≤≤112a ∴<≤综上,a 的取值范围是(0,1. ………10分 (3)1,a = 设2()(2)4x h x x x e x =++-- ,'2()(33)1x h x x x e =++- 令2()(33)1x x x x e ϕ=++- ,'2()(56)x x x x e ϕ=++ 令'2()(56)0,2,3得x x x x e x ϕ=++==--33()(3)10极大值=x e ϕϕ∴-=-< ,21()(2)10极小值=x e ϕϕ-=-< ………13分 1(1)10,(0)20eϕϕ-=-<=> 000(1,0),()()0()()0存在-,时,,+时x x x x x x x ϕϕ∴∈-∈∞<∈∞> ()h x ∴在0(,)x -∞上单调减,在0(,)x +∞上单调增又43148(4)0,(3)10,(0)20,(1)450h h h h e e e -=>-=-<=-<=-> 由零点的存在性定理可知:12()0(4,3),(0,1)的根h x x x =∈--∈ 即4,0t =-. ………16分 20.解:(1)1m =,则111a =≤ 11b ∴=;2m =,则114a =<,244a =≤ 22b ∴=3m =,则119a =<,249a =< 399a =≤ 33b ∴= …………3分(2)m 为偶数时,则2n m ≤,则2m m b =;m 为奇数时,则21n m ≤-,则12m m b -=;1()2()2为奇数为偶数m m m b m m -⎧⎪⎪∴=⎨⎪⎪⎩ …………5分m 为偶数时,则21211(12)2224m m m m S b b b m =+++=+++-⨯=; m 为奇数时,则221211(1)11424m m m m m m m S b b b S b ++++-=+++=-=-=; 221()4()4为奇数为偶数m m m S m m ⎧-⎪⎪∴=⎨⎪⎪⎩ …………8分 (3)依题意:2n n a =,(1)f A =,(2)8f A =,(5)125f A =, 设1b t =,即数列{}n a 中,不超过A 的项恰有t 项,所以122t t A +≤<, 同理:1221282,21252,++t d t d t d t d A A ++++≤<≤<即⎧⎪⎨⎪⎩13222122,22,22,125125++t t t d t d t dt d A A A +-+-++≤<≤<≤<故22131222max{2,2,}min{2,2,}125125++t d t d t t d t t d A ++-++-≤<由⎧⎨⎩312222,22,125++t d t t d t d -++-<<得4d <,d 为正整数 1,2,3d ∴=, …………10分 当1d =时,232242max{2,2,}max{2,,}21254125++=t d tt tt d t t -⨯= , 21121228282min{2,2,}min{2,,}21252125125=t d t tt t t d t t ++++-+⨯⨯=< 不合题意,舍去;当2d =时,2312162max{2,2,}max{2,2,}2125125+=t d tt t d t t t +--⨯= ,211212322322min{2,2,}min{2,2,}2125125125=t d tt t t d t t t ++++-+⨯⨯=< 不合题意,舍去;当3d =时,232642max{2,2,}max{2,2,}2125125++=t d tt t d t t t -⨯= ,211211212821282min{2,2,}min{2,2,}2125125125+=t d tt t t d t t t ++++-+⨯⨯=>适合题意,………12分此时12822125t tA ≤<⨯,125,3,6b t b t b t ==+=+,336t b t ∴+≤≤+310b = 47t ∴≤≤t 为整数 4,5,6t t t ∴===或7t =(3)27f A =,310b = 10112272A ∴≤< 1011222727A ∴≤<………14分当4t =时,11422125A ≤< ∴无解 当5t =时,12522125A ≤< ∴无解 当6t =时,13622125A ≤< 13264125A ∴≤< 当7t =时,14722125A ≤< ∴无解 13622125A ∴≤< *A N ∈ 64A ∴=或65A = 综上:3d =,64A =或65. ………16分2015-2016学年度第一学期高三期末调研测试数 学 试 题 Ⅱ 参 考 答 案21.解:(1)设直线:1l x y +=上任意一点(,)M x y 在矩阵A 的变换作用下,变换为点(,)M x y ''' .由''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得x mx ny y y '=+⎧⎨'=⎩…………5分 又点(,)M x y '''在l '上,所以1x y ''-=,即()1mx ny y +-=依题意111m n =⎧⎨-=⎩,解得12m n =⎧⎨=⎩,1201A ⎡⎤∴=⎢⎥⎣⎦ …………10分22.解:圆的直角坐标方程为22(4)16x y +-=, …………3分直线的直角坐标方程为y =, …………6分圆心(0,4)到直线的距离为2d ==,则圆上点到直线距离最大值为246D d r =+=+=. …………10分23.解:(1)设参与者先在乙箱中摸球,且恰好获得奖金n 元为事件M . 则131()344P M =⨯= 即参与者先在乙箱中摸球,且恰好获得奖金n 元的概率为14. …………4分(2)参与者摸球的顺序有两种,分别讨论如下: ①先在甲箱中摸球,参与者获奖金可取0,,m m n则3121111(0),(),()44364312P P m P m n 3110()4612412m n E m m n …………6分 ②先在乙箱中摸球,参与者获奖金可取0,,n m n则2131111(0),(),()33443412P P n P m n ηηη====⨯==+=⨯= 2110()3412123m n En m n …………8分 2312m n E E 当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大; 当32m n 时,两种顺序参与者获奖金期望值相等; 当32mn 时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. 答:当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当32m n时,两种顺序参与者获奖金期望值相等;当32mn 时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. …………10分24.(1)解:①当1n =时,114a =, 有1103a << 1n ∴=时,不等式成立 …………1分②假设当*()n k k N =∈时,不等式成立,即103k a << 则当1n k =+时,2221211()233()3()333k k k k k k k a f a a a a a a +==-=--=--+ 于是21113()33k k a a +-=- 103k a <<,∴21103()33k a <-<,即111033k a +<-<,可得1103k a +<< 所以当1n k =+时,不等式也成立由①②,可知,对任意的正整数n ,都有103n a << …………4分 (2)由(1)可得21113()33n n a a +-=- 两边同时取3为底的对数,可得31311log ()12log ()33n n a a +-=+-化简为313111log ()2[1log ()]33n n a a ++-=+- 所以数列31{1log ()}3n a +-是以31log 4为首项,2为公比的等比数列 …………7分 133111log ()2log 34n n a -∴+-=,化简求得:12111()334n n a --=,1213413n n a -∴=- 2n ≥时,101211111211n n n n n n C C C C n n ------=++++≥+-=,1n =时,121n -=*n N ∴∈时,12n n -≥,121343413n n n a -∴=⋅≥⋅-011222121121113[444]3[444]44111333n n n n a a a -++++=+++≥+++=---- 11233344131313n na a a +∴+++≥----. …………10分。
高三数学一轮复习45分钟滚动基础训练卷江苏专版(16).pdf
专题01 现象 第一部分 夯实双基 【湖北省宜昌市2014年春季九年级调研考试物理试题】下列现象中,能用光的折射规律解释的是A.小孔成像B.水中“月亮”C.海市蜃楼D.墙上手影 【江苏省苏州市吴中区2014年九年级教学质量调研测试(一)】不锈钢茶杯底部放有一枚硬币,人移动到某一位置时看不见硬币(如图甲),往茶杯中倒入一些水后,又能看见硬币了(如图乙)。
造成看不见和又看见了的原因分别是 A.光的直线传播和光的折射 B.光的直线传播和光的反射 C.光的反射和光的折射 D.光的反射和光的直线传播 .【福建省龙岩市初级中学2014-2015学年八年级上学期第一次阶段测试】一束光线以30°角入射到平面镜上,当入射角增大20°时,反射光线与入射光线的夹角为 ( ) A.100 ° B.120° C.140° D.160° 【淮北市2013-2014学年度九年级“五校联考”模拟试题二】人眼的晶状体和角膜的共同作用相当于凸透镜,如图所示表示的是来自远处的光经小丽眼球折光系统获得光路示意图。
下列分析正确的是( ) A.小丽是正常眼睛 B.应该用凸面镜矫正 C.应利用凸透镜矫正 D.应利用凹透镜矫正 【江苏常熟市2014届九年级4月调研测试】虚线方框内各放置一个透镜,两束光通过透镜前后的方向如图所示,则A.甲为凹透镜,乙为凸透镜 B.甲、乙都为凸透镜 C.甲为凸透镜、乙为凹透镜 D.甲、乙都为凹透镜 【广东省东莞市寮步信义学校2014年初中毕业生学业考试第一模拟试卷】在图中画出通过透镜后的折射光线。
8.【山东省聊城市东昌府区2014届初中毕业班学业水平测试】一束光从空气斜射到某液面上发生反射和折射,请画出反射光线与折射光线的大致方向并标出的反射角的大小 【湖北省宜昌市2014年春季九年级调研考试物理试题】如图所示为探究光的反射规律的实验装置。
小明同学首先使纸板A和纸板B处于同一平面,可以在纸板B上观察到反射光线OF. (1)小明想探究反射光线与入射光线是否在同一平面内,他的操作应该是: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2016年高考一轮复习专题突破训练 统计 一、填空题 1、(2015年江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数是__6________。
2、(2014年江苏高考)在底部周长]130,80[的树木进行研究,频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.
3、(2013年江苏高考)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93
乙 89 90 91 88 92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。 4、(2015届南京、盐城市高三二模)某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了100件产品的净重,所得数据均在区间[96,106]中,其频率分布直方图如图所示,则在抽测的100件产品中,净重在区间[100,104]上的产品件数是 。
5、(南通、扬州、连云港2015届高三第二次调研(淮安三模))一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2) 如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ . 6、(苏锡常镇四市2015届高三教学情况调研(二))某工厂生产某种产品5000件,它们来自甲、乙、丙3条不同的生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、
乙、丙3条生产线抽取的件数之比为::122,则乙生产线生产了 ▲ 件产品 7、(泰州市2015届高三第二次模拟考试)某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为 ▲ . 8、(盐城市2015届高三第三次模拟考试)某单位有840名职工, 现采用系统抽样抽取42人做问卷调查, 将840人按1, 2, „, 840随机编号, 则抽取的42人中, 编号落入区间[61, 120]的人数为 ▲ . 9、(苏锡常镇四市2015届高三教学情况调研(一))在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下: 成绩(分) 80分以下 [80,100) [100,120) [120,140) [140,160] 人数 8 8 12 10 2
在该班随机抽取一名学生,则该生在这次考试中成绩在120分以上的概率为 10、(2015届江苏南京高三9月调研)某学校高一、高二、高三年级的学生人数之比为4:3:3,
现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取 ▲ 名学生. 11、(2015届江苏南通市直中学高三9月调研)某大学共有学生5600人,其中专科生1300人,本科生3000人,研究生1300人,现采用分层抽样的方法,抽取容量为280的样本,则抽取的本科生人数为 ▲ . 12、(连云港、徐州、淮安、宿迁四市2015届高三)如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为 ▲
13、(南京市、盐城市2015届高三)在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ .
14、(南通市2015届高三)某中学共有学生2800人,其中高一年级970人,高二年级930人,高三年级900人,现采用分层抽样的方法,抽取280人进行体育达标检测,则抽取高二年级学生人数为 15、(苏州市2015届高三上期末)某课题组进行城市空气质量监测,按地域将24个城市分成甲、乙、丙三组,对应区域城市数分别为4、12、8.若用分层抽样抽取6个城市,则乙组中应该抽取的城市数为 16、(南京市2014届高三第三次模拟)某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为 ▲ 17、(南京、盐城市2014届高三第二次模拟(淮安三模))某地区教育主管部门为了对该地区模拟
考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .
18、(2014南通二模)从编号为0,1,2,„,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 19、(南京、盐城市2014届高三第一次模拟)若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差2s 20、甲和乙两个城市去年上半年每月的平均气温(单位:C°)用茎叶图记录如下,根据茎叶图可知,两城市中平均温度较高的城市是_____________,气温波动较大的城市是____________.
21、某单位为了了解用电量y度与气温Cx0之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表: 气温(0C) 18 13 10 -1
用电量(度) 24 34 38 64
由表中数据得线性回归方程abxyˆ中2b,预测当气温为04C 时,用电量的度数约为____▲____. 二、解答题 1、为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲
校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,xx,估计12xx的值.
2、某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 12月1日 12月2日 12月3日 12月4日 12月5日 温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验. (1)求选取的2组数据恰好是不相邻2天数据的概率; (2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求
出y关于x的线性回归方程ybxa; (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
3.某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段60,50,70,60„100,90后画出如下部分..频
率分布直方图.观察图形的信息,回答下列问题: (1)求出物理成绩低于50分的学生人数; (2)估计这次考试物理学科及格率(60分及以上为及格) (3) 从物理成绩不及格的学生中任选两人,求他们成绩至少有一个不低于50分的概率.
参考答案 一、填空题 1、因为1(4+6+5+8+7+6=66x),所以平均数为6.
2、24
3、25)9092()9088()9091()9090()9089(222222S 4、55 5、0.02 6、2000 7、16 8、3 9、0.3 10、32 11、150 12、143 13、65 14、93 15、3
16、30 17、300 18、76. 19、265 20、乙,乙 21、68
二、解答题 1、【答案】解:(1)30300.056000.05nn 255306p
(2)174013504246092670922805290230x =208430
254014503176010337010208059030x
=206930
2120842069150.5303030xx
2、解:(1)设抽到不相邻两组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种, „„„„„„2分
所以 43()1105PA.„„„„„„„„„„„„„„„„„„4分 答:略. „„„„„„„„„„„„„„„„„„„„„„„„5分 (2)由数据,求得12,27xy.„„„„„„„„„„„„„„„„„7分
由公式,求得52b,3aybx. „„„„„„„„„„„„9分 所以y关于x的线性回归方程为5ˆ32yx. „„„„„„„„„„10分 (3)当x=10时,5ˆ103222y,|22-23|<2;„„„„„„„„„12分 同样,当x=8时,5ˆ83172y,|17-16|<2.„„„„„„„„14分 所以,该研究所得到的线性回归方程是可靠的. „„„„„„„„15分 3、解: (1)因为各组的频率和等于1,故低于50分的频率为: 1.010)005.0025.003.02015.0(11f
所以低于50分的人数为61.060(人)„„„„„„„„„„„„„„„„.5分 (2)依题意,成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组), 频率和为 (0.0150.030.0250.005)100.75
所以,抽样学生成绩的合格率是75%. 于是,可以估计这次考试物理学科及格率约为75%„„„„„„„„„„„„„„9分. (3)“成绩低于50分”及“[50,60)”的人数分别是6,9。所以从成绩不及格的学生中选两人,他
们成绩至少有一个不低于50分的概率为:761415561P „„„„„14分