第3章平面问题的直角坐标解答
弹性力学复习思考题

其中: 为曲梁圆周边界上的分布载荷。 其中: q 为曲梁圆周边界上的分布载荷。 M, Q分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力 应力函数: 结合应力分量与应力函数的关系确定 应力函数:
2 σθ = 2 r
= f (r)
= f (r) sin θ
= f (r) cosθ
力偶、 (9)半无限平面体在边界上作用力偶、集中力、分布力下,应力函数 )半无限平面体在边界上作用力偶 集中力、分布力下 、应力分量、位移分量的确定? 应力分量、位移分量的确定? 应力分量、位移分量的确定? (10)圆孔附近应力集中问题应力函数 、应力分量、位移分量的确定? ) (11)叠加法的应用。 )叠加法的应用。
X = l(1+ )αT,
Y = m(1+ )αT
(5)温度应力问题求解的基本思路与方法: )温度应力问题求解的基本思路与方法: (a)求出满足位移平衡方程(6-18)的一组特解(此时,无需满足 )求出满足位移平衡方程( )的一组特解(此时, 边界条件;用位移势函数求解)。 边界条件;用位移势函数求解)。 (b)不计变温,求出满足平衡方程(6-18)的一组补充解(常由应 )不计变温,求出满足平衡方程( )的一组补充解( 力函数求解,其边界条件为特解给出的面力)。 力函数求解,其边界条件为特解给出的面力)。 的概念; 与位移分量的关系; (6)位移势函数 ψ 的概念;位移势函数 ψ 与位移分量的关系;温 ) 度应力问题中, 满足的方程; 度应力问题中,位移势函数 ψ 满足的方程;应力分量的位移势 的表示。 函数 ψ 的表示。
王俊民 编 徐秉业 编
《弹性力学学习方法及解题指导》 弹性力学学习方法及解题指导》
同济大学出版社 机械工业出版社
(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。
2021秋北师大版数学八年级上册 第3章 位置与坐标 教学课件(付)

)B
2.海事救灾船前去救援某海域失火轮船,需要确定 ( D )
A.方位角
B.距离
C.失火轮船的国籍 D.方位角和距离
课堂检测
基础巩固题
3. 如图,雷达探测器测得六个目标A、B、C、D、E、F出现
按照规定的目标表示方法,目标C、F的位置表示为C(6,
120°)、F(5,210°),按照此方法在表示目标A、B、D、
˚
敌方舰 艇B 敌方 舰艇 C 敌方 舰艇 A
巩固练习
如图,货轮与灯塔相距40n mile,如何用方向和距离描述 灯塔相对于货轮的位置?反过来,如何用方向和距离描述 货轮相对于灯塔的位置?
北
50°
解:(1)灯塔在货轮南偏东50°方向,且相距40n mile; (2)货轮在灯塔北偏西50°方向,且相距40n mile.
上面的活动是通过像“第2列第4排、第5列第6排”这样含有 两个数的表达方式来表示一个确定的位置,其中两个数各自表示 不同的含义,例如前边的表示列,后边的表示排,我们把这种有
顺序的两个数 a与b 所组成的数对,记作(a, b).
探究新知
问题4 现在给出班里一部分同学的姓名,约定“列数在前,排 数在后”,你能快速说出这些同学座位对应的有序数对吗?
课堂检测
基础巩固题
5.如图所示,写出表示下列各点的数对. A_(__2_,3_)__;
B_(__6_,_2_)_;C(__2_,1__)__;D_(__1_2_,5_)_;E_(__1_2_,9_)_;F_(__7_,1_1_)_; G_(__5_,1_1_)_;H_(__4_,8_)__;I_(__7_,_7_)_.
1. 理解平面直角坐标系以及横轴、纵轴、原点、 坐标等概念,认识并能画出平面直角坐标系 .
数学北师大版八年级上册第三章:回顾与思考之平面直角坐标系中的三角形面积问题

第三章:回顾与思考(第三课时)——专题复习:平面直角坐标系中三角形面积问题西安市文景中学安文鹏一、教学目标(1)知识与技能:进一步掌握在平面直角坐标系中已知点的坐标求三角形的面积和已知三角形的面积求点的坐标的方法。
(2)过程与方法通过渗透割补、转化(化复杂为简单、化未知为已知)、数形结合、分类讨论等数学思想,让学生学会学习数学的方法。
(3)情感态度与价值观积累学习经验,培养学生分析归纳能力和思维发散能力,同时培养学生的思维严谨性,提高学生学习数学的兴趣。
二、教学重点解决已知点的坐标求三角形面积和已知三角形的面积求点的坐标问题。
三、教学难点已知三角形的面积求点的坐标问题。
四、教学方法引导探究法五、教学过程(一)诗歌引入著名数学家华罗庚说过:“数缺形时少直观,形缺数时难入微。
数形结合万般好,一旦分离万事休。
”数形结合不仅为我们解题提供思路,也是揭示数学本质的有力工具。
本节课让我们一起利用数形结合的数学思想来专题复习平面直角坐标系中的三角形面积问题(教师板书课题)(二)探究已知点的坐标求面积思考:(1)你能否直接求出问题1、问题2、问题3、问题4中AOB S 的面积? 要求:问题1、问题2学生直接口答;问题3、问题4学生在讲义上独立完成,教师巡视指导并用红笔批改,之后随机选学生讲解,其他学生记录、质疑,教师补讲、点讲)(2)在平面直角坐标系中具备什么样特点的三角形就可以直接求出它的面积? 师生共同归纳:(1) 当三角形两边分别在横轴和纵轴时,可直接计算三角形的面积; (2) 当三角形有一边在横轴上时,则以横轴上的边为底边,其长等于坐标轴上的两个顶点的横坐标差的绝对值,这边上的高等于另一顶点纵坐标的绝对值;(3) 当三角形的一边在纵轴上时,则以坐标轴上的边为底边,其长等于坐标轴上的两个顶点纵坐标差的绝对值,这边上的高,等于另一顶点的横坐标的绝对值;(4) 当三角形的一边和坐标轴平行时,则以和坐标轴平行的线段为底边,这边上的高等于另一顶点的到这个坐标轴的距离。
平面直角坐标系答题及答案

平面直角坐标系答题及答案一、选择题(共5题,每题4分,共20分)1.直线y = 3x + 2与y轴的交点的坐标为: A. (0, 3) B. (3, 0) C. (0, 2) D. (-2, 0)答案:C. (0, 2)2.已知点A(2, 3)和B(7, 8),则直线AB的斜率为: A. 2 B. 3 C. 5/2 D.1/2答案:C. 5/23.在平面直角坐标系中,点P(4, -3)关于x轴的对称点为: A. (4, 3) B. (-4, 3) C. (-4, -3) D. (-4, -6)答案:C. (-4, -3)4.已知线段AB的中点坐标为(2, 5),且点A(-1, 3),则点B的坐标为:A. (5, 2)B. (3, 7)C. (-2, 5)D. (2, 7)答案:B. (3, 7)5.线段PQ的中点坐标为(1, -2),且点P(3, 1),则点Q的坐标为: A. (2, -5) B. (1, -4) C. (-1, -5) D. (2, -1)答案:C. (-1, -5)二、填空题(共3题,每题4分,共12分)1.直线y = -4x + 3与x轴的交点的坐标为(,)。
答案:(3/4, 0)2.在平面直角坐标系中,点A(5, -2)关于y轴的对称点为(,)。
答案:(-5, -2)3.已知点P(4, -3)和点Q(7, 1),则线段PQ的中点坐标为(,)。
答案:(5.5, -1)三、解答题(共2题,每题20分,共40分)1.根据平面直角坐标系,解答以下问题:(a)坐标轴上的点有哪些?答案:坐标轴上的点有无数个,如(0, 0)、(1, 0)、(0, 2)等。
(b)如何计算两点之间的距离?答案:计算两点之间的距离可以使用勾股定理,即距离等于两点间横坐标差的平方与纵坐标差的平方的和再开根号。
(c)如何判断两条直线的关系?答案:两条直线的关系可以通过斜率来判断。
如果斜率相等,且截距也相等,则两条直线重合;如果斜率相等,但截距不相等,则两条直线平行;如果斜率不相等,则两条直线相交。
平面直角坐标系

三、例题讲解: 例题讲解:
• 例2.(教材第90页例题)如图,在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0, -4),F(-4,0)
• 分析:以描点A为例,先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.类似的,描出其他各 点.
• • •
五、课后作业
• 监测第30课时练习题
3.1.2 平面直角坐标系(1) 平面直角坐标系( )
•
一,教材分析
ห้องสมุดไป่ตู้• 1,教材目标、重点、难点
• 教学目标:认识并能画平面直角坐标系,在直角坐标系中 会由点的位置写出它的坐标,由坐标描出点的位置. • 教学重点:平面直角坐标系的有关概念,掌握由点定坐标、 由坐标定点的方法. • 教学难点:掌握由点定坐标、由坐标定点的方法,体会数 形结合思想.
本章教学时间约须10课时
• 3.1 平面直角坐标系 共3课时 其中 • 3.1.1 有序数对 (1课时)
• 3.1.2 平面直角坐标系 (2课时+1)
• 3.2 坐标方法的简单应用 共3课时 其中 • 3.2.1 用坐标表示地理位置 (1课时+1)
• 3.2.2 用坐标表示平移 (2课时)
• 机动,数学活动 共2课时
2,例、习题的意图
• 第89页的填空有关如何根据点的坐标描出点的位置的方 法.这样,学生在掌握由点定坐标、由坐标定点的方法的 同时,能初步认识坐标平面内点与坐标一一对应的关系, 进一步体会数形结合的思想. • 第91页的练习1、2和习题3.1的第1题目的有两个,一是为 了及时巩固由点定坐标和由坐标定点的方法,规范坐标的 书写;二是在引出象限的概念后,想让学生通过分析坐标 平面内一些具体点的坐标,归纳得出一般结论,即四个象 限内和两坐标轴上点的坐标的特征,体现了由特殊到一般 的认识过程. • 第92页第2题是让学生在学会如何求坐标、描点的基础上, 自己总结出各个象限内和坐标轴上的点的坐标的特征,这 有助于对象限概念的理解.
平面直角坐标系复习讲义(知识点+典型例题)
D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
平面直角坐标系(第3课时)
数缺形时少直观 形离数时难入微
复习回顾:
对于平面内任意一点P,过点P分别向x轴、y轴作 垂线,垂足在x轴、y轴上对应的数,分别叫做点 P的横坐标、纵坐标,有序数对(a,b)叫做点P 的坐标。
y
b
P(a, b)
1
0
1
a
x
问题1
例1 如图,已知正方形ABCD的边长为4,
①建立适当的直角坐标系,写出各顶点的坐
y
D(1,5)
C(5,5)
A(1,1)
O
B(5,1)
x
问题2
例2、如图,正三角形ABC的边长为 6 ,
建立适当的直角坐标系 ,并写出各个顶点
的坐标 .
y
C ( 0 ,3 3 )
解: 如图,以边AB
所在的直线为x 轴,
6
以边AB的中垂线y
轴建立直角坐标系. A
B
( -3 , 0 ) 0 3 ( 3 , 0 ) x
标。
y
DD
CC 建系要求及原则:
找到适当的原点
建立直角坐标系
A AO
B
B
x
问题1
②还能建立不同的直角坐标系,表示正
方形各顶点的坐标吗?
D yC
y
D
C
O A D
Bx y C
O
x
A
B
yD C
A OB x
A O
Bx
问题1
③若已知点A的坐标是(1,1),B(5,1), 你能画出直角坐标系吗?若能,请写出其他 2点的坐标?
交流.在上面的问题中,你还可以怎样建立直角坐标系?
与同伴交流.
y
C0
最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》检测(包含答案解析)(2)
一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )C .E7,D6D .E6,D7 2.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8° 3.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 4.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 5.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限6.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 7.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的128.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(30303 9.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭ 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 12.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.16.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.19.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.20.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题21.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 23.如图,在平面直角坐标系中,A (-2,0),C (2,2),过C 作CB ⊥x 轴于B ,在y 轴上是否存在点P ,使得ABC 和ABP △的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由.24.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点Ca +|b﹣6|=0,点B在第一象限内,点P从原点出的坐标为(0,b),且a、b满足4发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.26.如图,已知五边形 ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C .【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.2.D解析:D【分析】根据点的坐标的定义,确定一个位置需要两个数据解答即可.【详解】解:能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°.故选:D .【点睛】本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.3.A解析:A【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可.【详解】解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键. 4.C解析:C【分析】根据点坐标关于x 轴、y 轴对称的变换规律即可得.【详解】点坐标关于x 轴对称:横坐标不变,纵坐标变为相反数,点坐标关于y 轴对称:横坐标变为相反数,纵坐标不变,点A 坐标为()2,3-,∴A '的坐标为()2,3--,∴A '关于y 轴对称点的坐标为()2,3-,故选:C .【点睛】本题考查了点坐标关于坐标轴对称的变换规律,熟练掌握点坐标关于坐标轴对称的变换规律是解题关键.5.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.6.A解析:A【分析】 根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积.【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()150********=⨯⨯+=. 故选:A .【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.7.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y 轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.8.B解析:B【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P 的坐标,总结规律,根据规律解答.【详解】 解:扇形的弧长=603180π⨯=π, 由题意得,点P 在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒, 则第4秒时,点P 的坐标是(6,0),第8秒时,点P 的坐标是(12,0),……第4n 秒时,点P 的坐标是(6n ,0),2020÷4=505,∴2020秒时,点P 的坐标是(3030,0),故选:B .【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.9.D解析:D【分析】先根据点P 和P′的坐标得出坐标的变化规律,再根据规律逐一判断即可得答案.【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣, ∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意,故选:D .【点睛】本题考查了坐标与图形变化-平移,根据点P 与P′的坐标,得出平移前后点的坐标变化规律是解题的关键. 10.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得.【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△ 故选B【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11.D解析:D【分析】让点A 的纵坐标加3后等于0,即可求得m 的值,进而求得点A 的横纵坐标,即可判断点A 所在象限.【详解】∵把点A (﹣5m ,2m ﹣1)向上平移3个单位后得到的点在x 轴上,∴2m ﹣1+3=0,解得:m =﹣1,∴点A 坐标为(5,﹣3),点A 在第四象限.故选D .【点睛】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.二、填空题13.5排6号【分析】根据第一个数表示排数第二个数表示号数写出即可【详解】解:∵12排5号可记为(125)∴(56)表示5排6号故答案为:5排6号【点睛】本题考查了坐标确定位置理解有序数对的两个数的实际意解析:5排6号.【分析】根据第一个数表示排数,第二个数表示号数写出即可.【详解】解:∵12排5号可记为(12,5),∴(5,6)表示5排6号.故答案为:5排6号.【点睛】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.14.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.【点睛】本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 15.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.16.()或(7-7)【分析】根据题意可得关于a 的绝对值方程解方程可得a 的值进一步即得答案【详解】解:∵P(2-a2a+3)到两坐标轴的距离相等∴∴或解得或当时P 点坐标为();当时P 点坐标为(7-7)故答解析:(73,73)或(7,-7). 【分析】 根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.【详解】解:∵P (2-a ,2a +3)到两坐标轴的距离相等, ∴223a a -=+.∴223a a -=+或2(23)a a -=-+, 解得13a =-或5a =-, 当13a =-时,P 点坐标为(73,73); 当5a =-时,P 点坐标为(7,-7). 故答案为(73,73)或(7,-7). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键. 17.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.18.【分析】先根据点的坐标求出四边形ABCD 的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A (11)B (﹣11)C (﹣1﹣2)D (1﹣2)∴AB =1﹣(﹣1)=2BC =1﹣(解析:()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键. 19.【分析】先根据第四象限的点坐标符号规律可得点P 的横坐标为正数纵坐标为负数再根据点到坐标轴的距离即可得【详解】点在第四象限点P 的横坐标为正数纵坐标为负数又到轴的距离是1到轴的距离是3点P 的纵坐标为横坐 解析:()3,1-【分析】先根据第四象限的点坐标符号规律可得点P 的横坐标为正数,纵坐标为负数,再根据点到坐标轴的距离即可得.【详解】点P 在第四象限,∴点P 的横坐标为正数,纵坐标为负数, 又到x 轴的距离是1,到y 轴的距离是3,∴点P 的纵坐标为1-,横坐标为3,即点P 的坐标为()3,1-,故答案为:()3,1-.【点睛】本题考查了象限中的点坐标、点到坐标轴的距离,熟练掌握象限中的点坐标符号规律是解题关键.20.二【分析】根据第二象限的横坐标小于零纵坐标大于零可得答案【详解】解:点A (-31)在第二象限故答案为:二【点睛】本题考查了点的坐标记住各象限内点的坐标的符号是解决的关键四个象限的符号特点分别是:第一解析:二【分析】根据第二象限的横坐标小于零,纵坐标大于零,可得答案.【详解】解:点A(-3,1)在第二象限,故答案为:二.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题21.(1)作图见解析;(2)作图见解析;位置关系是:平行;数量关系是:相等.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移6个单位长度,再向左平移3个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【详解】解:1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.【点睛】本题主要考查作图−平移变换,解题的关键是熟练掌握平移变换的定义和性质.22.(1)4;(2)①83,②6或2【分析】(1)根据正方形的面积求出边长,即可得出点A所表示的数;(2)①求出重合部分的边长,即可求出平移的距离,②分为左移和右移,由重合部分的面积求出重合部分的边长,进而求出点A 移动的距离,得出点A '所表示的数.【详解】解:(1)1234OA BC ==÷=,故答案为:4;(2)当4S =时,①若正方形OABC 平移后得图2, 重叠部分中4433AO '=÷=,48433AA '=-=. 故答案为:83; ②当S 恰好等于原长方形OABC 面积的一半时,点A 向右或向左移动422÷=, 因此点A '表示的数为426+=或422-=,故点A '所表示的数6或2.【点睛】此题考查数轴表示数的意义,长方形的性质,平移的性质,掌握数轴上两点之间距离的计算方法是解决问题的前提.23.(0,2)P 或(0,2)P -.【分析】先根据点A 、C 的坐标可得AB 、BC 的长,从而可得ABC 的面积,再根据三角形的面积公式可求出OP 的长,由此即可得出答案. 【详解】由题意,设点P 的坐标为(0,)P a ,则OP a =,(2,0),(2,2)A C -,2(2)4,2AB BC ∴=--==,CB x ⊥轴,ABC ∴的面积为1142422AB BC ⋅=⨯⨯=, ABC 和ABP △的面积相等,ABP ∴的面积为142AB OP ⋅=,即1442a ⨯=, 解得2a =±,故点P 的坐标为(0,2)P 或(0,2)P -.【点睛】本题考查了坐标与图形,根据点坐标求出相应线段的长是解题关键.24.(1)见解析;(2)西游传说(3,3),华夏五千年(1,4)--.【分析】(1)以太空飞梭为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)如图所示:(2)西游传说(3,3),华夏五千年(1,4)--.【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键. 25.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O CB A O 的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题b-=(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.26.(1)14;(2)F是CD中点,F(2,2)【分析】(1)延长ED和BC,交于点G,根据各点坐标,利用四边形ABGE的面积减去△DCG的面积即可;(2)柑橘题意可得四边形ABGE是正方形,再由ED=BC,得到F是CD中点,再由点C和点D的坐标得到点F的坐标.【详解】解:(1)延长ED和BC,交于点G,∵A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3),可得:EG∥AB,AE∥BG,∴点G的坐标为(3,3),∴五边形ABCDE的面积=4×4-2×2÷2=14;(2)由题意可得:四边形ABGE是正方形,ED=BC=2,∴当点F是CD中点时,根据轴对称性可得AF平分五边形 ABCDE 的面积,此时点F(2,2).【点睛】本题考查了点的坐标,线段中点,正方形和三角形的面积,解题的关键是根据坐标得到相应线段的长度.。
北京市首都师范大学附属中学七年级数学下册第三单元《平面直角坐标系》检测卷(包含答案解析)
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位 4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 5.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交6.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 7.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上 D .y 轴上9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2)10.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88612.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.15.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.17.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________18.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.19.已知P (a,b ),且ab <0,则点P 在第_________象限.20.点3(2,)A 到x 轴的距离是__________.三、解答题21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫(A ,B ,C ,D 都在格点上).规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A →C ( , ),B →C ( , ),C →D ( , );(2)若这只甲虫的行走路线为A →B →C →D ,则该甲虫走过的路程是 ;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.(4)若图中另有两个格点M 、N ,且M →A (2﹣a ,b ﹣5),M →N (4﹣a ,b ﹣3),则N →A 应记为什么?22.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______). (2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置. 23.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.24.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).''';(1)在图中画出A B C(2)此次平移可以看作将ABC向________平移________个单位长度,再向________平''';移________个单位长度,得A B C'''的面积并写出做题步骤.(3)求A B C25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点 A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.26.如图,在平面直角坐标系中,△ABC的顶点都在格点上,点B的坐标是(1,2).(1)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A'B'C'.请画出△A'B'C'并写出A',B′,C'的坐标;(2)在△ABC内有一点P(a,b),请写出按(1)中平移后的对应点P″的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据点A 的平移规律,求出点'C 的坐标即可.【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,, 故选:C .【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】解://AB x 轴,5b ∴=,1a ≠-.故答案为C .【点睛】本题主要考查了坐标与图形,即平行于x 轴的直线上的点纵坐标相同,平行于y 轴的直线上的点横坐标相同.3.A解析:A【分析】根据把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度可直接得到答案.【详解】将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比向上平移3个单位;故选:A .【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.4.A解析:A【分析】分析点P 的运动规律找到循环规律即可.【详解】解:点P 坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2020=505×4,所以,前505次循环运动点P 共向右运动505×4=2020个单位,且在x 轴上, 故点P 坐标为(2020,0),故选A.【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 5.D解析:D【分析】根据点M 、N 的坐标可得直线MN 的解析式,由此即可得.【详解】(9,5),(3,5)M N ---,∴直线MN 的解析式为5y =-,则直线MN 与x 轴平行,与y 轴垂直相交,故选:D .【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.6.A解析:A【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可.【详解】解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键. 7.D【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:30>,20-<,∴点()3,2P -所在的象限是第四象限.故选D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),.+-根据各象限内点的坐标特征解答.8.B解析:B【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A (m ,n )满足mn=0,∴m=0或n=0,∴点A 在x 轴或y 轴上.即点在坐标轴上.故选B .【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.9.C解析:C【分析】平行于y 轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y 轴的直线上所有点的横坐标相等,已知点A (-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C .【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x 轴的直线上所有点的纵坐标相等,平行于y 轴的直线上所有点的横坐标相等.10.B解析:B【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断.解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限.故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.11.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 12.C解析:C观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.二、填空题13.三【分析】根据点A (3b )在第一象限可得b >0;则可以确定点B (-3−b )的纵坐标的符号进而可以判断点B 所在的象限【详解】根据题意点A (3b )在第一象限则b >0那么点B (-3−b )中−b <0;则点B解析:三【分析】根据点A (3,b )在第一象限,可得b >0;则可以确定点B (-3,−b )的纵坐标的符号,进而可以判断点B 所在的象限.【详解】根据题意,点A (3,b )在第一象限,则b >0,那么点B (-3,−b )中,−b <0;则点B (-3,−b )在第三象限.故答案为:三.【点睛】本题考查四个象限上点的坐标的特点,并要求学生根据点的坐标,判断其所在的象限. 14.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 15.(0﹣1)【分析】设M (xy )根据题意列出方程组然后求解即可解答【详解】解:设M (xy )∵M 到ABC 的实际距离相等∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M (x ,y ),根据题意列出方程组,然后求解即可解答.【详解】解:设M (x ,y ),∵M 到A ,B ,C 的“实际距离”相等,∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M (0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键.16.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.17.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.18.()【分析】依据对应点的坐标变化即可得到三角形ABC向左平移2个单位向上平移3个单位后得到三角形A′B′C′进而得出点P′的坐标【详解】解:由图可得C(20)C(03)∴三角形ABC向左平移2个单位解析:(32,145)【分析】依据对应点的坐标变化,即可得到三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,进而得出点P′的坐标.【详解】解:由图可得,C(2,0),C'(0,3),∴三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,又∵点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,∴对应点P′的坐标为(12﹣2,﹣15+3),即P'(32-,145),故答案为:(32-,145).【点睛】此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.19.二四【分析】先根据ab<0确定ab的正负情况然后根据各象限点的坐标特点即可解答【详解】解:∵ab<0∴a>0b<0或b>0a<0∴点P在第二四象限故答案为二四【点睛】本题主要考查了各象限点的坐标特点解析:二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.20.3【分析】根据到x轴的距离等于点的纵坐标的长度是解题的关键【详解】解:点(2-3)到x轴的距离为|-3|=3故答案为3【点睛】本题考查了点的坐标熟记到x轴的距离等于纵坐标的长度到y轴的距离等于横坐标解析:3【分析】根据到x轴的距离等于点的纵坐标的长度是解题的关键.【详解】解:点(2,-3)到x轴的距离为|-3|=3.故答案为3.【点睛】本题考查了点的坐标,熟记到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.三、解答题21.(1)+4,+4;+3,0;+1,﹣3;(2)12;(3)见解析;(4)(﹣2,﹣2)【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A 应记为什么.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4,+4;+3,0;+1,﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.22.(1)+4,+1,-2,+1;(2)8秒;(3)图见解析.【分析】(1)根据题意,向上向右为正,向下向左为负,进而得出答案;(2)根据甲虫的行走路线,借助网格求出总路程,再根据时间等于路程除以速度即可;(3)结合各点变化得出其位置,进而得出答案.【详解】解:(1)结合网格可知→(-2,+1);A D→(+4,+1);C B故答案为:+4,+1,-2,+1;(2)∵甲虫的行走路线为:A→B→C→D→A,∴甲虫走过的路程为:1+4+2+1+1+2+4+1=16甲虫行走的时间为:16÷2=8秒;(3)如图2所示:【点睛】本题考查了正数和负数,坐标位置的确定,读懂题目信息,明确正数和负数的意义是解题的关键.23.(1)1或﹣5;(2)(2,6)【分析】m+,解出m的值即可;(1)由点P与x轴的距离为9可得36=9(2)由点P在过点A(2,-3)且与y轴平行的直线上可得2-m=2,解出m的值即可.【详解】(1)点P(2-m,3m+6),点P在x轴的距离为9,∴|3m+6|=9,解得:m=1或-5.答:m的值为1或-5;(2)点P在过点A(2,-3)且与y轴平行的直线上,∴2-m=2,解得:m=0,∴3m+6=6,∴点P的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键.24.(1)图见解析;(2)右,6,下,1;(3)5.5,过程见解析.【分析】(1)根据B到对应点B'的平移方式确定'A和'C的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答即可;(3)利用△A′B′C′所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)△A′B′C′如图所示;(2)此次平移可以看作将△ABC向右平移6个单位长度,再向下平移1个单位长度,得△A′B′C′,故答案为:右,6,下,1;(3)△A′B′C′的面积=11153132325 5.5 222.【点睛】本题考查了坐标与图形变换—平移,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(1)如图所示,△A1B1C1即为所求见解析;(2)如图所示见解析,△A2B2C2即为所求,其中B2点坐标为(3,﹣2),C2 点坐标为(3,﹣4).【分析】根据旋转作图的步骤:①定点一一旋转中心;②旋转方向;③旋转角度.再根据旋转的性质进行操作即可画出旋转之后的图形;接下来再根据平移作图的一般步骤,作出平移之后的图形,相信你能画出来.【详解】(1)如图所示,△A1B1C1 即为所求.(2)如图所示,△A2B2C2 即为所求,其中B2点坐标为(3,﹣2),C2 点坐标为(3,﹣4).【点睛】本题主要考查旋转和平移的知识点,解题的关键是要注意坐标的平移方法,26.(1)图见解析,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)(a+3,b﹣2)【分析】(1)利用点平移的坐标变换规律写出A',B′,C'的坐标,然后描点即可;(2)利用(1)中的平移规律,把P点的横坐标加3,纵坐标减2得到P′点的坐标.【详解】解:(1)如图,△A'B'C'为所作,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)点P(a,b)平移后的对应点P″的坐标为(a+3,b﹣2).【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.平移中点的坐标变化规律:横坐标左减右加,纵坐标上加下减.。