不等式恒成立问题常见类型及解法

合集下载

恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)

恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)

不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )(,即)(x f 的下界大于A(2)若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f <max )(,即)(x f 的上界小于B例1.设22)(2+-=ax x x f ,当[)+∞-∈,1x 时,都有a x f ≥)(恒成立,求a 的取值范围.例2.已知xax x x f ++=2)(2对任意[)+∞∈,1x ,0)(≥x f 恒成立,试求实数a 的取值范围.例3.R 上的函数)(x f 既是奇函数,又是减函数,且当)2,0(πθ∈时,有0)22()sin 2(cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中b a 、为常数.(1)试确定b a 、的值;(2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22-)(c x f ≥恒成立,求c 的取值范围.2、主参换位法例5.若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围.例6.若对于任意1≤a ,不等式024)4(2>-+-+a x a x 恒成立,求实数x 的取值范围.例7.已知函数1)1(233)(23+++-=x a x x a x f ,其中a 为实数.若不等式1)('2+-->a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围.3、分离参数法(1)将参数与变量分离,即化为)()(x f g ≥λ(或)()(x f g ≤λ)恒成立的形式; (2)求)(x f 在D x ∈上的最大(或最小)值;(3)解不等式max )()(x f g ≥λ(或min )()(x f g ≤λ),得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。

不等式恒成立问题的解法

不等式恒成立问题的解法

不等式恒成立问题的解法-中学数学论文不等式恒成立问题的解法
黑龙江大庆实验中学马云姝
一、分离参变量法
二、二次函数法
将原不等式通过移项后转化为二次函数恒正(或非负),恒负(或非正)的问题,再利用判别式来解决。

三、数形结合法
通过构造两个函数,画出它们的图象,通过图象来比较两个函数值的大小,即数形结合法来解决恒成立问题。

综上不等式恒成立问题常见的解法有三种:分离变量法、二次函数法、数形结合法。

其基本思路是借助函数思想,通过不同的角度构造函数,转化为求函数的最值问题,借助函数的图象或利用判别式来解决。

不等式中恒成立问题的解法研究 完美

不等式中恒成立问题的解法研究 完美

不等式恒成立问题中心摘要近几年在数学高考试题中经常遇到不等式恒成立问题。

在05年高考辽宁、湖北及天津等省均出现此类题型。

本文根据高考题及高考模拟题总结了四种常见的解决不等式恒成立问题的方法。

法一:转换主元法。

适用于一次型函数。

法二:化归二次函数法。

适用于二次型函数。

法三:分离参数法。

适用于一般初等函数。

法四:数型结合法。

中文关键词“不等式”, “恒成立”在近些年的数学高考题及高考模拟题中经常出现恒成立问题,这样的题目一般综合性强,可考查函数、数列、不等式及导数等诸多方面的知识。

同时,培养学生分析问题、解决问题、综合驾驭知识的能力。

下面结合例题浅谈恒成立问题的常见解法。

1 转换主元法确定题目中的主元,化归成初等函数求解。

此方法通常化为一次函数。

例1:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。

解:原不等式化为 (x 2-1)m -(2x -1)<0记f(m)= (x 2-1)m -(2x -1) (-2≤m ≤2)根据题意有:⎪⎩⎪⎨⎧<=<=01)-(2x -1)-2(x f(2)01)-(2x -1)--2(x f(-2)22即:⎪⎩⎪⎨⎧<->+01-2x 2x 03-2x 2x 22解之:得x 的取值范围为231x 271+<<+-2 化归二次函数法根据题目要求,构造二次函数。

结合二次函数实根分布等相关知识,求出参数取值范围。

例2:在R 上定义运算⊗:x ⊗y =(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D)3122a -<<解:由题意可知 (x-a)[1-(x+a)] <1对任意x 成立即x 2-x-a 2+a+1>0对x ∈R 恒成立 记f(x)=x 2-x-a 2+a+1则应满足(-1)2-4(-a 2+a+1)<0 化简得 4a 2-4a-3<0解得 2321<<-a ,故选择C 。

求解恒成立问题的常见方法

求解恒成立问题的常见方法

求解恒成立问题的常见方法摘要:恒成立问题是高考中常见的一类问题,常见类型有:第一类是关于x的一元二次不等式对任意x∈R恒成立,求参数取值范围;第二类是不等式在给定区间上恒成立求参数的取值范围。

因这类问题综合性强,思维容量大,因而成为高考一直常考不衰的热点问题。

关键词:恒成立;参数;解题方法一、一元二次不等式中的恒成立问题例1.已知函数f(x)=x2+ax+3对任意x∈R时恒有f(x)≥a成立,求a的取值范围。

解:∵f(x)≥a对x∈R恒成立,∴x2+ax+3-a≥0对x ∈R恒成立∵x∈R,∴Δ≥0,即a2-4(3-a)≥0∴a≤-6或a≥2 例2.已知函数y=lg(mx2-6mx+m+8)的定义域为R,求m的取值范围。

解:由已知得mx2-6mx+m+8>0对任意x∈R恒成立①当m=0时显然成立②当m≠0时有m>0(6m)2+4m(m+8)<0∴0<m<1综上可知0<m<1方法归纳:令f(x)=ax2+bx+c,若f(x)>0(或f(x)≥0)对任意x∈R恒成立,则有a>0Δ0Δ≤0),若f(x)<0(或f(x)≤0)对任意x∈R恒成立,则有a<0Δ<0(或a<0Δ≤0)等价转化即可。

二、在给定区间上恒成立问题例3.已知函数f(x)= (x≠0)在(4,+∞)上恒大于0,求a的取值范围。

解:令f(x)=0则>0,∴a>-(x+ )令g(x)=x+ ,易知g(x)在(4,+∞)上为增函数,∴g(x)min=g(4)=5∴g(x)>5∴-(x+ )<-5∴a≥-5例4.已知函数f(x)=x2+2x+a lnx,在区间(0,1]上为单调函数,求实数a的取值范围。

分析:求f ′(x)→由题意转化为恒成立问题→求最值→求得a的取值范围解:易知f ′(x)=2x+2+ ,∵f ′(x)在f ′(x)上单调∴f ′(x)≥0或f ′(x)<0在(0,1]上恒成立,即2x2+2x+a≥0或2x2+2x+a≤0恒成立∴a≥-(2x2+2x)或a≤-(2x2+2x)在(0,1]上恒成立又-(2x2+2x)=-2(x+ )2+ ∈[-4,0)∴a≥0或a≤-4方法归纳:解决此类恒成立问题通常分离参变量通过等价变形,将参数a从整体中分离出来,转化为a>(或f(x)(或a≥f(x)恒成立?圳a>m(或a≥m);(2)若f(x)在定义域内存在最小值m,则a<f(x)或(a≤f(x))恒成立?圳a<m(或a≤m);(3)若f(x)在其定义域内不存在最值,只需找到f(x)在定义域上的最大界(或最小下界)m,即f(x)在定义域上增大(或减小)时无限接近但永远达不到的那个位置来代替上述两种情况下的m,此时要注意结果所求参数范围在端点处是否要取到等号。

不等式恒成立问题的三类常见解法

不等式恒成立问题的三类常见解法

不等式恒成立问题的三类常见解法作者:仲一鸣来源:《中学教学参考·理科版》2012年第01期不等式恒成立问题主要可分成两类:第一类为不含参数的不等式恒成立问题;第二类为含有1个(或多个)参数的不等式恒成立问题.对于第一类问题,实际上就是证明这个不等式,本文不再赘述;对于第二类,其基本解题思想是将问题转化为函数的最值问题,常见的基本解法有以下三种.一、参数分离,间接求最值【例1】(2008,江苏)设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],均有f(x)≥0成立,则实数a的值为 .解:(1)若x=0,则a∈R.(2)若x∈(0,1],a≥1x2-1x3,令g(x)=1x2-1x3,则g′(x)=3(1-2x)x4,即g(x)在x∈(0,12]上单调递增,在x∈[12,1]上单调递减,所以g(x)max=g(12)=4,所以a≥4.(3)若x∈[-1,0),a≤1x2-1x3,由(2)得g(x)在[-1,0)上单调递增,所以g(x)min=g(-1)=4,所以a≤4.综上,a=4.二、参数不分离,直接求最值【例2】 (2007,辽宁) 已知f(x)=x3-9x2+24x(x∈R),若对于任意m∈[-26,6],恒有f(x)≥x3-mx-11成立,试求实数x的取值范围.解:由题,f(x)-(x3-mx-11)≥0对任意的m∈[-26,6]恒成立,即xm+(-9x2+24x+11)≥0对m∈[-26,6]恒成立,不妨令g(m)=xm+(-9x2+24x+11), 则任意m∈[-26,6],g(m)≥0g(m)min≥0g(6)≥0,g(-26)≥0x∈[-13,1].本题注意点有两处:(1)对自变量和参数的辨别.笔者认为在实际操作中,一般对“哪个字母”恒成立,“哪个字母”即为自变量;求“哪个字母”的范围,“哪个字母”即为参数.(2)对于参数,在本题中存在高次方,故不易参数分离,因此采用移项直接求关于m的一次函数(或常值函数)的最小值.【例3】(2008,天津)已知函数f(x)=x+ax+b(a,b∈R),若对于任意的a∈[12,2],不等式f(x)≤10在[14,1]上恒成立,求b的取值范围.解:由函数f(x)图像易得f(x)max=max{f(14),f(1)},故本题等价于对任意的a∈[12,2],都有f(14)≤10,f(1)≤10恒成立,即b≤394-4a,b≤9-a对任意的a∈[12,2]成立b≤74,b≤7b≤74.在此题中,恒成立针对不同的自变量进行了多次嵌套,解决的手法是由内而外逐层分析:在内层,视“x”为自变量,采用直接求最值法;在外层,视“a”为自变量,采用参数分离间接求最值法.【例4】已知二次函数f(x)=x2+ax+1-a,若x∈[-2,2],则f(x)≥0恒成立,求a的取值范围.解:由f(x)=x2+ax+1-a≥0对任意x∈[-2,2]恒成立,故f(0)=1-a≥0,即a≤1.又f(x)=(x+a2)2-a24-a+1,对称轴x=-a2∈[-12,+∞),故(1)对称轴x=-a2∈[-12,2],即a∈[-4,1],y min=f(-a2)≥0a∈[-2-22,-2+22],即a∈[-4,-2+22];(2)对称轴x=-a2∈(2,+∞)即,即a∈(-∞,-4),y min=f(2)≥0a∈[-5,+∞),即a∈[-5,-4).综上所述,a∈[-5,-2+22].无论是参数分离还是参数不分离,都不可避免地需要分类讨论,那么就尽可能减少分类讨论的步骤.这里借助赋值法得到f(0)=1-a≥0,即a≤1,从而缩小了参数a的范围,减少了直接求最值所需讨论的次数.三、数形结合【例5】(2009,上海)已知0≤x≤1时,不等式sinπx2≥kx恒成立,则实数k 的取值范围是 .图1解:由sinπ2≥kx对0≤x≤1恒成立,即函数f(x)=sinπx2的图像在x∈[0,1]这一部分始终在函数g(x)=kx的上方(如图1所示),故k≤1.【例6】(2008,浙江)若a>0,b>0,且当x≥0,y≥0,x+y≤1时,恒有ax+b y≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积为 .图2解:令S1为x≥0,y≥0,x+y≤1所表示的区域;令S2为ax+by≤1所表示的区域,由题,当x≥0,y≥0,x+y≤1.时,恒有ax+by≤1,故易得1a≥1,1b≥10<a≤1,0<b≤1,故P(a,b)所形成的平面区域的面积为1.上述两例均是从几何角度来处理不等式恒成立问题.一般而言,f(x)≥g(x)对x∈[a,b]恒成立可以从图形的角度理解为y=f(x)的图像在x∈[a,b]部分始终在y=g(x)的上方.含有参数的不等式恒成立问题是与函数最值相关的重要问题,解题中要注意方法的灵活运用,对于无须分类讨论便可实现参数分离的,应首选“参数分离”,除此之外,直接求最值以及数形结合也是不错的选择.参考文献[1]谢广喜. 与参变元、主变元有关的几个问题的讨论[J].中学数学教学参考(上旬),2009(1-2) .[2]张勇赴.“构造函数法”求解不等式恒成立问题[J].中学数学教学参考(上旬),2009( 6) .(责任编辑金铃)。

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。

学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。

本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。

1. 方法一:代数法我们来介绍代数法。

这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。

代数法通常包括加减变形、乘除变形以及平方去根等技巧。

以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。

代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。

2. 方法二:图像法我们介绍图像法。

图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。

对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。

图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。

3. 方法三:参数法我们介绍参数法。

参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。

参数法的典型应用包括辅助角法、二次函数法等。

以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。

参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。

总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。

代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。

个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。

高考数学重难点第二讲 一元二次不等式恒成立与能成立问题5大题型(原卷及答案)(全国通用)(学生专用)

重难点第二讲一元二次不等式恒成立与能成立问题——每天30分钟7天掌握恒成立与能成立问题5大题型【命题趋势】不等式是高考数学的重要内容。

其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。

另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。

一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。

第1天认真研究满分技巧及思考热点题型【满分技巧】一、一元二次不等式在实数集上的恒成立1、不等式对任意实数恒成立⇔==⎧⎨>⎩a bc或Δ<0>⎧⎨⎩a2、不等式对任意实数恒成立⇔==⎧⎨<⎩a bc或Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数的值域为,则恒成立⇒,即;恒成立⇒,即.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。

四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.2、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.【热点题型】【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“x ∃∈R ,使()24110x a x +-+≤”是假命题,则实数a 的取值范围是()A .(,3)-∞-B .()5,3-C .(5,)+∞D .(3,5)-【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式0k->恒成立,则实数k 的取值范围是_____________.【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式()2216(4)10ax a x ----≥的解集为∅,则实数a 的取值范围为_________.【题型2一元二次不等式在某区间上的恒成立问题】【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式2(13)20ax a x +-+≥的解集为A ,设{1,1}B =-,B A ⊆,则实数a 的取值范围为()A .3124a -≤≤B .1342a -≤≤C .14a -≤D .32a ≥【变式2-2】(2022秋·河南·高三期末)已知0a >,b ∈R ,若0x >时,关于x 的不等式()()2250ax x bx -+-≥恒成立,则4b a+的最小值为()A .2B .C .D .【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数()2f x ax x a =++,不等式()5f x <的解集为3—12⎛⎫⎪⎝⎭,.(1)求a 的值;(2)若()f x mx >在(]0,5x ∈上恒成立,求m 的取值范围.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数()f x 满足()21f =-,()11f -=-,且()f x 的最大值是8.(1)试确定该二次函数的解析式;(2)()2f x x k >+在区间[]3,1-上恒成立,试求k 的取值范围.第4天掌握给定参数范围的一元二次不等式恒成立问题模型【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式21634x ax x a -≥--对任意[]2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞C .[]8,6-D .(]0,3【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【变式3-3】(2023·全国·高三专题练习)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数()21f x mx mx =--.(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为()A .(),2-∞B .(]13,0,32∞⎛⎫-⋃ ⎪⎝⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .(),1-∞【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式()()224210ax a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【变式4-2】(2023·全国·高三专题练习)若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____.【变式4-3】(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式2620x x a -+->在区间[]0,5内有解,则实数a 的取值范围是().A .()2,+∞B .(),5-∞C .(),3-∞-D .(),2-∞【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是()A .(-∞B .127⎛⎫-∞ ⎪⎝⎭,C .)+∞D .127⎛⎫+∞⎪⎝⎭,【变式5-2】(2022·全国·高三专题练习)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为()A .37a ≥B .13a ≥C .12a ≥D .13a ≤【变式5-3】(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.【变式5-4】(2023·全国·高三专题练习)已知命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题,则实数a 的取值范围是______.【变式5-5】(2022·全国·高三专题练习)设()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()()24f x g x mx +=-.若()()220f x x g x -+≥在()0,x ∈+∞上有解,则实数m 的取值范围是______.第7天融会贯通及限时检测(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A .m>2B .0m <C .1m <D .m 1≥2.(2022秋·北京大兴·高三统考期中)若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A .1m <B .1m £C .1m >D .1m ≥3.(2022秋·全国·高三校联考阶段练习)设m ∈R ,则“34m >-”是“不等式210x x m -++≥在R 上恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2022秋·宁夏银川·高三校考期中)已知命题p :R x ∀∈,20x x a -+>,若p ⌝是假命题,则实数a 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .11,42⎛⎫⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭5.(2022秋·河南·高三校联考阶段练习)设函数()22f x ax ax =-,命题“[]0,1x ∃∈,()3f x a ≤-+”是假命题,则实数a 的取值范围为()A .(),3-∞B .()3,+∞C .24,7⎛⎫+∞⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭6.(2023·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数()21f x mx mx =--,若对于任意的{|13}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为()A .57m <B .507m ≤<C .0m <或507m <<D .0m ≤8.(2022秋·湖南邵阳·高三统考期中)设函数22()223f x x ax a a =++-+,若对于任意的x R ∈,不等式()()0f f x ≥恒成立,则实数a 的取值范围是()A .32a ≥B .2a ≤C .322a <≤D .32a ≤9.(2022秋·辽宁鞍山·高三校联考期中)设R a ∈,若关于x 的不等式210x ax -+≥在12x ≤≤上有解,则()A .2a ≤B .2a ≥C .52a ≤D .52a ≥10.(2023·全国·高三专题练习)已知命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题,则实数a 的取值范围()A .(],0-∞B .[]0,4C .[4,+∞)D .(],0-∞[)4⋃+∞,11.(2022·全国·高三专题练习)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是()A .{}14a a -≤≤B .{}14a a -<<C .{4a a ≥或}1a ≤-D .{}41a a -≤≤12.(2022·全国·高三专题练习)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为()A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎫-∞-⎪⎝⎭13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x ,使得关于x 的不等式2430ax x a -+-<成立,则实数a 的取值范围是______.14.(2021·全国·高三专题练习)已知函数2,0()0x x x f x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x 使不等式()24(4)0kx kx ---<成立”是假命题,则实数k 的取值范围是____________.16.(2022秋·江苏连云港·高三校考开学考试)2210,0ax x x -+≥∀>恒成立,则实数a 的取值范围是_________.17.(2021·全国·高三专题练习)若不等式22x mx ->对满足1m ≤的一切实数m 都成立,则x 的取值范围是___________18.(2023·全国·高三专题练习)若不等式22210x t at -+-+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,则实数t 的取值范围是__________.重难点第二讲一元二次不等式恒成立与能成立问题——每天30分钟7天掌握恒成立与能成立问题5大题型【命题趋势】不等式是高考数学的重要内容。

恒成立问题常见类型及解法

恒成立问题常见类型及解法重庆清华中学 张忠在近年高考试题中,常见条件中出现“恒”、“都”、“总”、“永远”、“一切”等关键词的试题,我们习惯上称之为恒成立问题。

对此类题,许多学生常常一筹莫展,但如果了解它的题型,选择合适的对策,解决问题就会游刃有余。

高中数学中的恒成立问题,总体上分为两种典型类型:等式的恒成立和不等式的恒成立。

一、等式的恒成立问题(恒等问题)【例】 是否存在常数a 、b 、c 使得等式:122311122222··…++++=+++n n n n an bn c ()()()对一切自然数n 都成立?证明你的结论。

(一). 利用多项式恒等定理,建立方程组求参数多项式f(x)g(x)的充要条件是:对于a 的任意一个取值,都有f (a )g (a );或者两个多项式各同类项的系数对应相等。

解法一:因为3222)1(n n n n n ++=+所以12231222··…++++n n ()=++++++++++++=++++++=+++()()()()()()()()()1232121212131211411231110222333222………n n n n n n n n n n n n n n显然当a b c ===31110,,时等式对一切自然数n 都成立。

(二). 待定系数法和数学归纳法对策:先用待定系数法探求a 、b 、c 的值,再利用数学归纳法证明等式对一切自然数n 都成立。

解法二:令n=1,n=2,n=3可得,解得。

以下用数学归纳法证明:等式1·22+2·32+…+n(n+1)=(3n 2+11n+10)对一切自然数n 都成立(证略)。

(三)、根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)((f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立。

基本不等式及恒成立问题 - 解析版

基本不等式以及恒成立【教学目标】一、基本不等式基本不等式:如果,a b R ∈,那么22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(当且仅当a b =时取“=”号)当0,0a b >>时,22+≥即a b +≥a b =时取“=”号)【例题讲解】 二、基本不等式的构造(一)分式分离【知识点】分式函数求最值,二次比一次型,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()A y mg xB A B g x =++>>,()g x 恒正或恒负的形式,然后运用均值不等式来求最值。

【例题讲解】★☆☆例题1.已知0x >,求函数254x x y x++=的最小值; 答案:9★☆☆练习1.函数241x x y x −+=−在1x >的条件下的最小值为_________;此时x =_________. 答案:5,3★☆☆练习2.已知0x >,则24x x x−+的最小值是 答案:3解:由于0x >, 41213x x−=,当且仅当2x =时取等号,此时取得最小值3.★★☆练习3. 求2710(1)1x x y x x ++=>−+的最小值。

答案:9解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(1)x +的项,再将其分离。

知识点要点总结:关键点在于对分式不等式的分离,明确对于分式不等式以低次幂的为主导来进行配凑,并且注意对于正负的讨论。

(二)整式凑分式分母形式【知识点】对整式加分式的形式求最值,使用配凑法。

需要调整项的符号,配凑项的系数,使其积为定值,从而利用基本不等式求解最值。

【例题讲解】★☆☆例题1.已知54x <,求函数14245y x x =−+−的最大值。

答案:1 12)45x −不是常数,所以对拆、凑项, 5,4x <∴1⎫当且仅当5备注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学导数及应用-不等式恒成立问题课件


利用数形结合来解决。
方法1:分离变量法(优先)
方法2:构造函数
,转化为 零点问题
方法3:构造两个函数的图象判断交点个数
方法4:转化为二次函数零点问题
方法5:转化为一次函数零点问题
类型五:利用导数研究函数与不等式问题
1、利用导数证明不等式的方法:证明
构造函数
。如果
,则F(x) 在
函数,同时若
,则由减函数的定义可知,
的值,要注意验证 左右的导数值的符号是否符 合取极值的条件。
(3)已知含参函数的极值点讨论 ①分类讨论根据 解(判断为极值点)
的存在性和解与区间的位置关系分为:“无、左、 中、右”,对四种分类标准进行取舍(或合并);
②注意数形结合。
注意:(1)在函数的整个定义域内,函数的极 值不一定唯一,在整个定义域内可能有多个极大
(2)切点的三个作用:①求切线斜率; ②切点在切线上; ③切点在曲线上。
类型二:利用导数研究函数的单调性 (1)求函数的单调区间
方法:判断导函数的符号 步骤:①求函数定义域;
②求函数的导函数; ③解不等式f '(x) 0 (或 f '(x) 0),求出 递增区间(或递减区间)。
注意:求单调区间前先求定义域(定义域优 先原则);单调区间是局部概念,故不能用“∪” 连接,只能用“,”或“和”。
'( x) mi n
0;
函数f (x)在区间D单调递减 在f ' (x) 0在x D
恒成立 对x D, f ' (x) 0; max
试题研究:
例1、已知函数f (x) x ln x.
(1)若函数g(x) f (x) ax在区间e2, 上的增函数,
求a的取值范围;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档