高考文科数学圆锥曲线专题复习试题
高三数学文科圆锥曲线大题训练(含答案)

高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C xy.(1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线10y kx k 交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212xy的位置关系.1.解:(I)由题意,椭圆C 的标准方程为221164xy,所以2222216,4,12从而a b ca b ,因此4,23ac,故椭圆C 的离心率32c ea............4分(II)由221,416y kx xy得22148120kxkx ,由题意可知0. ..............5分设点,E F 的坐标分别为1122,,,x y x y ,EF 的中点M 的坐标为,M M x y ,则1224214Mx x k x k,1221214My y y k......................7分因为BEF 是以EF 为底边,B 为顶点的等腰三角形,所以BM EF , 因此BM 的斜率1BMk k. ............... ...........................................8分又点B 的坐标为0,2,所以222122381440414M BMMy kkk kx kk,..........10分即238104k kkk ,亦即218k,所以24k,....................12分故EF 的方程为2440x y................ ...........................................13分又圆2212xy的圆心0,0O 到直线EF 的距离为42223218d, 所以直线EF 与圆相离.....................14分2.已知椭圆的中心在坐标原点O ,长轴长为22,离心率22e,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ 的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.2.解:(1)由已知,椭圆方程可设为222210x y a b ab.--------1分∵长轴长为22,离心率22e,∴1,2b c a .所求椭圆方程为2212xy.----------- 4分(2)因为直线l 过椭圆右焦点1,0F ,且斜率为1,所以直线l 的方程为1yx .设1122,,,P x y Q x y ,由2222,1,x yyx 得23210yy,解得1211,3y y .∴1212112223POQ S OFy y y y .--------------9分(3)当直线l 与x 轴垂直时,直线l 的方程为1x ,此时POQ 小于90,,OP OQ 为邻边的平行四边形不可能是矩形.当直线l 与x 轴不垂直时,设直线l 的方程为1yk x .由2222,1,x y yk x 可得2222124220k x k x k.∴22121222422,1212kkx x x x k k.11(1)y k x ,22(1)y k x 212212ky y k因为以,OP OQ 为邻边的平行四边形是矩形0OP OQuu u r uuu r.由221212222201212kkOP OQx x y y k kuu u r uuu r 得22k,2k .所求直线的方程为2(1)yx .----------------14分3.在平面直角坐标系xOy 中,椭圆C :22221(0)xy ab ab的一个顶点为(2,0)A ,离心率为63.(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.3. 解:(1)依题意,椭圆的焦点在x 轴上,因为2a,63c a,所以263c,22243b ac.所以椭圆的方程为223144xy .…………4分(2)依题意,直线l 的斜率显然存在且不为0,设l 的斜率为k ,则可设直线l 的方程为(2)y k x ,则原点O 到直线l 的距离为2|2|1k dk.设11(,)P x y ,22(,)Q x y ,则2234y kx xy消y得22(31)4kx.可得2222(,)3131k P kk,2222(,)3131k Q kk.因为以PQ 为直径的圆与直线l 相切,所以1||2PQ d ,即||OP d .所以22222222|2|()()()31311k k kk k,解得1k .所以直线l 的方程为20xy或20x y .………14分4.已知离心率为32的椭圆2222:1(0)xy C a bab与直线2x 相交于,P Q 两点(点P在x 轴上方),且2PQ .点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ .(1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.4.解:(1)由已知得32e,则12b a,设椭圆方程为22221(0)4xy b bb由题意可知点(2,1)P 在椭圆上,所以224114bb.解得22b.故椭圆C 的标准方程为22182xy.………4分(2)由题意可知,直线PA ,直线PB 的斜率都存在且不等于0.因为APQ BPQ ,所以PAPB k k .设直线PA 的斜率为k ,则直线:1(2)PA y k x (0k).由2248(12),xyy kx k 得222(14)8(12)161640k xk k x k k ……(1).依题意,方程(1)有两个不相等的实数根,即根的判别式0成立.即222264(12)4(14)161640k k k kk ,化简得216(21)0k ,解得12k.因为2是方程(1)的一个解,所以2216164214Akkx k.所以2288214Akkx k.当方程(1)根的判别式0时,12k,此时直线PA 与椭圆相切.由题意,可知直线PB 的方程为1(2)y k x .同理,易得22228()8()288214()14Bk k kkx k k.由于点,A B 是椭圆上位于直线PQ 两侧的两个动点,APQ BPQ ,且能存在四边形APBQ ,则直线PA 的斜率k 需满足12k.设四边形APBQ 面积为S ,则112222APQBPQABS SSPQ x PQx 2222188288221414B A k k k k PQ x x kk21614k k由于12k,故216161144k Skkk.当12k时,144k k,即110144kk ,即04S .(此处另解:设t k ,讨论函数1()4f t t t 在1,2t时的取值范围.222141()4t f t tt,则当12t时,()0f t ,()f t 单调递增.则当12t 时,()(4,)f t ,即S 0,4.)所以四边形APBQ 面积S 的取值范围是0,4.………14分5.已知椭圆的一个顶点为)1,0(A ,焦点在x 轴上,若右焦点到直线022y x的距离为 3.(1)求椭圆的标准方程;(2)设直线0ykxm k与椭圆相交于不同的两点M 、N ,当A MA N 时,求m 的取值范围.5.解: (1)依题意可设椭圆方程为2221x ya,………….2分则右焦点F 的坐标为21,0a,由题意得212232a,解得23a,故所求椭圆的标准方程为2213xy.………………………….5分6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12xC y的顶点,直线20x y与椭圆1C 交于A ,B 两点,且点A 的坐标为(2,1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP,0BQ BP ,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程;(2)求点Q 的轨迹方程;(3)求ABQ 面积的最大值及此时点Q 的坐标.6.(1)解法1:∵双曲线222:12xC y的顶点为1(2,0)F ,2(2,0)F , ……1分∴椭圆1C 两焦点分别为1(2,0)F ,2(2,0)F .设椭圆1C 方程为12222by ax 0a b ,∵椭圆1C 过点A (2,1),∴1224a AF AF ,得2a.……2分∴22222ba.………………………3分∴椭圆1C 的方程为22142xy.………………………4分解法2:∵双曲线222:12xC y的顶点为1(2,0)F ,2(2,0)F , …………………1分∴椭圆1C 两焦点分别为1(2,0)F ,2(2,0)F .设椭圆1C 方程为12222by ax 0ab ,∵椭圆1C 过点A (2,1),∴22211ab . ①………………………2分. ∵222ab,②………………………3分由①②解得24a, 22b .∴椭圆1C 的方程为22142x y.………………………4分(2)解法1:设点),(y x Q ,点),(11y x P ,由A (2,1)及椭圆1C 关于原点对称可得B (2,1),∴(2,1)AQxy ,11(2,1)AP x y ,(2,1)BQxy ,11(2,1)BP x y . 由0AQ AP , 得11(2)(2)(1)(1)0xx y y ,……………………5分即11(2)(2)(1)(1)xx y y .①同理, 由0BQ BP , 得11(2)(2)(1)(1)x x y y . ②……………6分①②得222211(2)(2)(1)(1)xxy y.③………………………7分由于点P 在椭圆1C 上, 则2211142xy,得221142xy , 代入③式得2222112(1)(2)(1)(1)yxy y.当2110y时,有2225x y,当2110y ,则点(2,1)P 或(2,1)P ,此时点Q 对应的坐标分别为(2,1)或(2,1),其坐标也满足方程2225xy.………………………8分当点P 与点A 重合时,即点P (2,1),由②得23yx ,解方程组2225,23,x yyx得点Q 的坐标为2,1或2,22.同理, 当点P 与点B 重合时,可得点Q 的坐标为2,1或2,22.∴点Q 的轨迹方程为2225xy, 除去四个点2,1,2,22, 2,1,2,22.………………………9分解法2:设点),(y x Q ,点),(11y x P ,由A(2,1)及椭圆1C 关于原点对称可得B (2,1),∵0AQ AP,0BQ BP,∴AQ AP,BQ BP.∴1111122y y x x12x ,①……………………5分1111122y y x x 12x . ②……………………6分①②得12222111122y y xx. (*)………………………7分∵点P 在椭圆1C 上,∴2211142x y ,得221122x y,代入(*)式得2212211112122xy xx,即2211122y x,化简得2225xy .若点(2,1)P 或(2,1)P , 此时点Q 对应的坐标分别为(2,1)或(2,1),其坐标也满足方程2225xy.………………………8分当点P 与点A 重合时,即点P (2,1),由②得23yx ,解方程组2225,23,x yyx得点Q 的坐标为2,1或2,22.同理, 当点P 与点B 重合时,可得点Q 的坐标为2,1或2,22.∴点Q 的轨迹方程为2225xy, 除去四个点2,1,2,22, 2,1,2,22.………………………9分(3) 解法1:点Q,x y 到直线:AB 20xy 的距离为23x y .△ABQ 的面积为2221(22)(11)23xy S………………………10分2xy22222xyxy .………………………11分而22222(2)()422y yxy x x(当且仅当22y x时等号成立)∴22222222522224522yS xyxyxyxxy522. ……12分当且仅当22y x时, 等号成立.由222,225,y x xy解得2,22,x y或2,22.xy………………………13分∴△ABQ 的面积最大值为522, 此时,点Q 的坐标为2,22或2,22.…14分解法2:由于22221123AB ,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大.………………………10分设与直线AB 平行的直线为20x y m ,由2220,25,x y m xy消去x ,得22542250y my c ,由223220250mm,解得522m.………………………11分若522m,则2y ,22x ;若522m,则2y ,22x.…12分故当点Q 的坐标为2,22或2,22时,△ABQ 的面积最大,其值为2222221522212SAB.………………………14分7.如图,B A,分别是椭圆C :)0(12222ba by ax 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项.(1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.7.【解析】:(1)解:F (1,0),|AF|=a+c ,|BF|=a ﹣c .由2是|AF|与|FB|的等差中项,是|AF|与|FB|的等比中项.∴,解得a=2,c=1,∴b 2=a 2﹣c 2=3.∴椭圆C 的方程为=1.(2)证明:直线l 的方程为:x=﹣2,直线AP 的方程为:y=k (x+2)(k ≠0),联立,化为(3+4k 2)x 2+16k 2x+16k 2﹣12=0,∴,∴x P =,∴y P =k (x P +2)=,∵QF ⊥AP ,∴k PF =﹣.直线QF 的方程为:y=﹣,把x=﹣2代入上述方程可得y Q =,∴Q.∴k PQ ==,k BQ =.∴k PQ =k BQ ,∴B ,P ,Q 三点共线.8.已知椭圆2222:10x y C a b ab的离心率为32,且经过点0,1.圆22221:C xyab. (1)求椭圆C 的方程;(2)若直线l:0y kx m k 与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM 0是否成立?请说明理由.8.解析:(1)解:∵椭圆2222:1x y C ab过点0,1,∴21b.∵2223,2c ab c a,∴24a.∴椭圆C 的方程为2214xy.……………4分(2)解法1:由(1)知,圆1C 的方程为225xy,其圆心为原点O . ……………5分∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14ykx m x y(*)有且只有一组解.由(*)得222148440kxkmxm .…………6分从而2228414440km k m,化简得2214mk .①………7分228414214Mkm kmx kk,22241414M Mk m m y kx mmkk. ……9分∴点M 的坐标为224,1414km m kk. ……………10分由于0k ,结合①式知0m ,∴OMk k2211414414mk kkmk.…………11分∴OM 与AB 不垂直. ……12分∴点M 不是线段AB 的中点. ………13分∴AMBM0不成立.………14分解法2:由(1)知,圆1C 的方程为225xy,其圆心为原点O .………5分∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14ykx m x y(*)有且只有一组解.由(*)得222148440kxkmxm .………6分从而2228414440km k m,化简得2214mk .①………7分228414214Mkm km x kk,………………8分由于0k ,结合①式知0m ,设1122,,,A x y B x y ,线段AB 的中点为,N N N x y , 由22,5,y kx m xy消去y ,得2221250kxkmx m.…………9分∴12221N x x km x k . …………10分若N M x x ,得224114km km kk,化简得30,矛盾. ………11分∴点N 与点M 不重合. ………12分∴点M 不是线段AB 的中点. …………13分∴AMBM 0不成立.………14分9.已知抛物线C :22(0)ypx p 的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN 的最小值.9.【解析】(1)由题可知(,0)2p F ,则该直线方程为:2p yx,………1分代入22(0)ypx p得:22304pxpx,设1122(,),(,)M x y N x y ,则有123x x p …3分∵8MN,∴128x x p ,即38p p ,解得p 2∴抛物线的方程为:24yx .………5分(2)设l 方程为yxb ,代入24yx ,得22(24)0xb x b ,因为l 为抛物线C 的切线,∴0,解得1b ,∴:l 1yx ………7分由(1)可知:126x x ,121x x 设(,1)P m m ,则1122(,(1)),(,(1))PMx m y m PN x m y m 所以1212()()[(1)][(1)]PM PNx m x m y m y m 2212121212()(1)()(1)x x m x x my y m y y m 126x x ,121x x ,21212()1616y y x x ,124y y ,2212124()yy x x ,∴12121244x x y y y y 221644(1)(1)PM PN m m m m ………10分222[43]2[(2)7]14mm m 当且仅当2m 时,即点P 的坐标为(2,3)时,PM PN 的最小值为14.………12分10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C .(1)求曲线C 方程;(2)点A 为直线l :20xy 上任意一点,过A 作曲线C 的切线,切点分别为P 、Q ,APQ 面积的最小值及此时点A 的坐标.10.解析:(1)设动圆圆心坐标为(,)C x y ,根据题意得222(2)4x y y +-=+,(2分)化简得24x y =.(2分)(2)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bì?=?í?=+?消去y 得2440x kx b --=设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=??í?=-?,且21616k b D =+(2分)以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=-即2111124y x x x=-同理过点Q 的切线的方程为2221124y x x x =-设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x 1Q ,解得1212224A A x x x k x x y b ì+??==???í??==-???,即(2,)A k b -则:220k b +-=,即22b k=-(2分)代入222161616323216(1)160k b k k k D =+=+-=-+>22212||1||41PQ k x x kk b=+-=++(2,)A k b -到直线PQ 的距离为22|22|1k b d k +=+(2分)3322224(22)4[(1)1]k k k =-+=-+当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). (4分)解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y=上,则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=-即1112y x x y =-同理以点Q 为切点的方程为2212y x x y =-(2分)设两条切线的均过点00(,)A x y ,则010101011212y x x y y x x y ì??=-??í??=-???,点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-(2分)代入抛物线方程24x y =消去y 可得:200240x x x y -+=00(,)A x y 到直线PQ 的距离为200201|2|2114x y d x -=+(2分)33222200011(48)[(2)4]22x x x =-+=-+所以当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).(4分)11.已知点)1,2(A 在抛物线:2x ay 上,直线1:l 1y kx (R k ,且0k )与抛物线E 相交于C B,两点,直线AC AB,分别交直线2:l 1y 于点S ,T .(1)求a 的值;(2)若25S,求直线1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.11.(1)解:∵点2,1A 在抛物线2:E x ay 上,∴4a . ……1分第(2)、(3)问提供以下两种解法:解法1:(2)由(1)得抛物线E 的方程为24xy.设点,B C 的坐标分别为1122,,,x y x y ,依题意,2211224,4xy xy ,由21,4,y kx xy 消去y 得2440xkx ,解得221,24412212kk x k k.∴12124,4x x k x x .……………2分直线AB 的斜率2111111124224ABxy x k x x ,故直线AB 的方程为12124x y x.……………3分令1y,得1822xx ,∴点S 的坐标为182,12x . ……………4分同理可得点T 的坐标为282,12x .……………5分∴121212888222222x x STx x x x 121212121288248x x xxx x x x x x kk . ……………6分∵25ST ,∴1225x x k .由221212124x x x x x x ,得22201616kk,解得2k , 或2k ,…………… 7分∴直线1l 的方程为21yx ,或21yx .……………9分(3)设线段ST 的中点坐标为0,1x ,则1212124418822222222x x x x x x x 1212444444222248k k x x x x k k . ……………10分而2ST2221212122221614kx x x x x x k kk,……………11分∴以线段ST 为直径的圆的方程为2222114xy ST k 2241kk.展开得22222414414kx x y kkk.……………12分令0x,得214y ,解得1y 或3y.……………13分∴以线段ST 为直径的圆恒过两个定点0,1,0,3.……………14分解法2:(2)由(1)得抛物线E 的方程为24xy.设直线AB 的方程为112y k x ,点B 的坐标为11,x y ,由112,1,y k x y解得122,1.x k y∴点S 的坐标为122,1k . ………2分由1212,4,y k x xy 消去y ,得2114840x k x k ,即12420x x k ,解得2x或142x k .∴1142x k ,22111114414y x k k .∴点B 的坐标为211142,441k k k . ………3分同理,设直线AC 的方程为212y k x ,则点T 的坐标为222,1k ,点C 的坐标为222242,441k kk . …………4分∵点,B C 在直线1:1l y kx 上,∴22222211212121214414414242kk kk kkk k k k k k k 121k k .∴121k k k . ………5分又211144142k k k k 1,得21111214442412k k kk kk k k k ,化简得122k k k .……………6分12121222222k k STk k k k ,…………7分∵25ST ,∴1212225k k k k .∴2212125k k k k .由2221212121212454k k k k k k k k k k ,得225124k kk ,解得2k.……8分∴直线1l 的方程为21yx ,或21yx .…… 9分(3)设点,P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ,………10分得122222110x x y y k k ,…11分整理得,224410x xy k . …12分令0x,得214y ,解得1y 或3y.……13分∴以线段ST 为直径的圆恒过两个定点0,1,0,3.…14分12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22(1)求椭圆C 的方程;(2)B A,为椭圆C 上满足AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OPtOE ,求实数t 的值.12.【解】(I)设椭圆C 的方程为)0(12222baby ax 由题意可得:2222222b a cecba,解得:1,2c b a 因此:椭圆C 的方程为1222yx(II)(1)当B A,两点关于x 轴对称时,设直线AB 的方程为m x,由题意可得:)2,0()0,2(m 将x m 代入椭圆方程1222yx ,得22||2m y 所以:4622||2m m S AOB ,解得:232m 或212m①又)0,()0,2(21)(21mt m t OB OA t OEt OP因为P 为椭圆C 上一点,所以12)(2mt ②由①②得:42t或342t,又知0t,于是2t或332t(2)当B A,两点关于x 轴不对称时,设直线AB 的方程为h kxy,由hkx y y x 1222得:0124)21(222hkhx xk 设),(),,(2211y x B y x A ,由判别式0可得:2221hk 此时:2212122212212122)(,2122,214kh hx x k y y kh x x kkh x x ,所以222221221221211224)(1||khk kx x x x kAB 因为点O 到直线AB 的距离21||kh d所以:222221||212112221||21kh khkkd AB SAOB46||21212222h khk③令221k n,代入③整理得:016163422h n h n 解得:24h n 或234h n ,即:22421h k 或223421h k ④又)21,212(),(21)(21222121khtk kht y y x x t OB OA t OE t OP 因为P 为椭圆C 上一点,所以1])21()212(21[22222kh kkh t ,即121222tkh⑤将④代入⑤得:42t 或342t,又知0t ,于是2t 或332t,经检验,符合题意综上所述:2t或332t13.已知点2,1P 在抛物线21:20C xpy p上,直线l 过点0,2Q 且与抛物线1C 交于A 、B 两点。
文科数学圆锥曲线练习题

文科数学圆锥曲线练习题一、选择题1. 若椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a > b > 0\),且该椭圆的离心率为\(\frac{1}{2}\),则椭圆的焦点到中心的距离为:A. \(\frac{a}{2}\)B. \(\frac{b}{2}\)C. \(\frac{\sqrt{3}}{2}a\)D. \(\frac{\sqrt{3}}{2}b\)2. 对于双曲线\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),若其渐近线方程为\(y = \pm \frac{b}{a}x\),则下列关于双曲线的陈述中,正确的是:A. 双曲线的离心率大于1B. 双曲线的离心率小于1C. 双曲线的离心率等于1D. 双曲线没有离心率3. 已知抛物线\(y^2 = 4ax\)的准线方程为\(x = -a\),若抛物线上一点\(P(x_0, y_0)\)到准线的距离为\(a\),则该点\(P\)的横坐标\(x_0\)为:A. \(a\)B. \(2a\)C. \(3a\)D. \(4a\)二、填空题4. 椭圆\(\frac{x^2}{4} + \frac{y^2}{3} = 1\)的短轴长度为______。
5. 若双曲线\(\frac{x^2}{9} - \frac{y^2}{16} = 1\)的一条渐近线与x轴的交点坐标为\((5, 0)\),则另一条渐近线的方程为\(y = \pm \frac{4}{3}(x - 5)\)。
6. 抛物线\(y^2 = 12x\)的焦点坐标为\((3, 0)\),准线方程为\(x = -3\),若抛物线上一点\(Q\)到焦点的距离等于到准线的距离,则点\(Q\)的坐标为\((3, \pm 6)\)。
三、解答题7. 已知椭圆\(\frac{x^2}{25} + \frac{y^2}{16} = 1\),求该椭圆的离心率以及焦点坐标。
高中数学文科圆锥曲线试题及解答

高中数学文科圆锥曲线试题及解答一.基础题组1. 【2013课标全国,文5】设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A.13 C .12 D【答案】:D2. 【2012全国新课标,文4】设F 1,F 2是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,P 为直线32a x =上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【答案】C 【解析】设直线32a x =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,232aF M c =-,故22312cos6022a cF M PF c -︒===,解得34c a =,故离心率34e =. 3. 【2010全国新课标,文5】中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(【答案】:D4. 【2006全国,文5】已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( )(A )23 (B )6 (C )43 (D )12答案】C5. 【2005全国,文5】抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 5【答案】D6. 【2005全国,文6】双曲线22149x y -=的渐近线方程是( )(A) 23y x =±(B) 49y x =±(C) 32y x =±(D) 94y x =±【答案】C【解析】由题意知:2,3a b ==,∴双曲线22149x y -=的渐近线方程是32y x =±.7. 【2014全国,文20】(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .8. 【2013课标全国,文20】(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为2,求圆P 的方程. 【解析】:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.9. 【2010全国新课标,文20】设F 1、F 2分别是椭圆E :x 2+22y b=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求b 的值.即43x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=224222224(1)4(12)8(1)1(1)b b b b b b =+++---,解得b =2 10. 【2005全国,文22】 (本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当3,121-==x x 时,求直线l 的方程.即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………………………9分 (Ⅱ)当121,3x x ==-时,二.能力题组1. 【2014全国,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )C2. 【2013课标全国,文10】设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y 1)x -或y =1)x -C .y 1)x -或y =1)x -D .y 1)x -或y =1)x -【答案】:C3. 【2012全国新课标,文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||AB =C 的实轴长为( )A B . C .4 D .8【答案】 C【解析】设双曲线的方程为22221x y a a-=,抛物线的准线为x =-4,且||AB =A (-4,,B (-4,-),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.4. 【2006全国,文9】已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )32【答案】A5. 【2005全国,文9】已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C .23D .3【答案】C6. 【2012全国新课标,文20】设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py ,得x 2-33px -2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3. 当m的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 三.拔高题组1. 【2010全国,文12】已知椭圆C :22x a +22y b =1(a >b >0),过右焦点F 且斜率为k (k>0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k 等于( ) A ..2【答案】:B2. 【2007全国,文11】已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )(A) 13(B)33 (C)21 (D)23【答案】:D 【解析】∵椭圆的长轴长是短轴长的2倍,∴2a b =,∴224a b =,又∵222b ac =-,∴222244()a b a c ==-,∴2234a c =,∴2234c a =,∴c e a ==3. 【2007全国,文12】设F 1,F 2分别是双曲线1922=-y x 的左右焦点,若点P 在双曲线上,且120PF PF ∙=,则12||PF PF +=( )(A)10(B)102(C)5 (D) 52【答案】:B4. 【2006全国,文11】过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+=【答案】D 【解析】5. 【2005全国,文10】设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .2D 1【答案】D【解析】22221x y a b +=,2(,0)F c ,则垂线x c =,22221c y a b +=,∴2224222222(1)()c a c b y b b a a a-=-==, ∴2||b y a =,22b PF a =,122F F c =,所以22b c a=,即a²-c²=2ac,即c²+2ac -a²=0,∴c a ==-,∴1c a =-±0<e<1,所以1c e a ==-6. 【2010全国,文15】已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)l 相交于点A ,与C 的一个交点为B ,若AM =MB ,则p =________.【答案】:27. )【2010全国,文22】已知斜率为1的直线l 与双曲线C :22x a-22y b =1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3). (1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明过A 、B 、D 三点的圆与x 轴相切. 【解析】:(1)由题设知,l 的方程为y =x +2.代入C 的方程,并化简,得 (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0,设B (x 1,y 1)、D (x 2,y 2),则x 1+x 2=2224a b a -,x 1x 2=-222224a a b b a +-, ①由M (1,3)为BD 的中点知122x x +=1,故 12×2224a b a-=1,即b 2=3a 2, ②故c 2a ,所以C 的离心率e =ca=2.故|BD |x 1-x 2|=6.连结MA ,则由A (1,0),M (1,3)知|MA |=3,从而MA =MB =MD ,且MA ⊥x 轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切.所以过A 、B 、D 三点的圆与x 轴相切.8. 【2006全国,文22】(本小题满分12分)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
《圆锥曲线》精选历届高考试题(文科)

、选择题:
2 2
椭圆x 4y=1的离心率为(
(A)仝
2
2.
设p是椭圆
(B)3
4
2 2-y1上的点.
25
B.
)
(C)二
2
3.
若焦点在x轴上的椭圆
4.
A.
+
B.
2
已知△ABC的顶点B
.10
1
=1的离心率为一,则m=(
2
c
3
C.8
X2
C在椭圆㊁
〔 )
(O 4 .3
卜y2=
1上,
边上,则△ABC勺周长是(
(A)2 3(B)6
5.如图,直线I:x -2y20过椭圆的左焦点
F1和一个顶点B,该椭圆的离心率为(
5
PR+PF2等于()
顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC
(D)12
1
A .-
5
B.
6.已知椭圆的焦点是 的轨迹是()
(A)圆(B)椭圆
7.已知F1、F2是椭圆的两个焦点,过 三角形,则这个椭圆的离心率是(
11.在平面直角坐标系xOy中,已知ABC顶点A(-4,0)和C(4,0),顶点B在椭圆1上,
259
sin A sin C
则
sin B
12.椭圆x24y^4长轴上一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,该
三角形的面积是.
(A)空3
3
&已知以
长为(
Fi、
y
\g
JrF!O
f2X
F2、
(B)3
F1(-2,0),F2(2,0)
(A)
高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练用时:60分钟一、选择题1. θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是 A. 椭圆 B. 双曲线 C. 抛物线 D. 圆2. 已知椭121)(1222=-+t y x 的一条准线方程是8=y ,则实数t 的值是 A. 7或-7B. 4或12C. 1或15D. 03. 双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围为 A. )0,(-∞ B. (-12,0) C. (-3,0) D. (-60,-12)4. 以112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程为 A.1121622=+y xB.1161222=+y x C.141622=+y xD.116422=+y x 5. 抛物线28mx y =的焦点坐标为 A. )0,81(mB. )321,0(mC. )321,0(m±D. )0,321(m±6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最小值,P 点的坐标是 A. )1,41(-B. )22,2(-C. )1,41(-- D. )22,2(-- 7. 已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为A.116922=-x yB.116922=-y x C.125922=-x yD.125922=-y x8. 抛物线2x y =到直线42=-y x 距离最近的点的坐标为 A. )45,23(B. )1,1(C. )49,23(D. )4,2(9. 动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点 A. (4,0) B. (2,0) C. (0,2) D. (0,-2)10.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 12575D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题11. 到定点(2,0)的距离与到定直线8=x 的距离之比为22的动点的轨迹方程为_______. 12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________.13. 已知点(-2,3)与抛物线)0(22>=p px y 的焦点距离是5,=p ____________. 14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_______________. 三、解答题15. 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。
圆锥曲线文科练习题

圆锥曲线文科练习题圆锥曲线是高中数学中的一个重要内容,也是文科生常常需要练习的题型之一。
它包括了椭圆、双曲线和抛物线三种曲线形式。
在解题过程中,我们需要掌握它们的定义、性质以及相关的计算方法。
下面,我们将通过几个具体的练习题来深入了解圆锥曲线。
练习题一:已知椭圆的焦点为F1(2,0),F2(-2,0),离心率为e=2/3,求椭圆的方程。
解析:椭圆的定义是离心率小于1的曲线,其焦点到任意点的距离之和等于常数2a。
根据已知条件,我们可以得到2a=6。
而椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标。
由于椭圆的中心坐标为(0,0),所以方程简化为x²/9+y²/b²=1。
由于离心率为e=2/3,所以b²=a²(1-e²)。
代入已知条件,可以求得b²=8。
因此,椭圆的方程为x²/9+y²/8=1。
练习题二:已知双曲线的中心为(0,0),焦点为F1(3,0),F2(-3,0),离心率为e=2,求双曲线的方程。
解析:双曲线的定义是离心率大于1的曲线,其焦点到任意点的距离之差等于常数2a。
根据已知条件,我们可以得到2a=6。
而双曲线的标准方程为(x-h)²/a²-(y-k)²/b²=1,其中(h,k)为双曲线的中心坐标。
由于双曲线的中心坐标为(0,0),所以方程简化为x²/9-y²/b²=1。
由于离心率为e=2,所以b²=a²(e²-1)。
代入已知条件,可以求得b²=18。
因此,双曲线的方程为x²/9-y²/18=1。
练习题三:已知抛物线的焦点为F(0,1/4),直线y=1/2x-1与抛物线交于两个点A和B,求点A和B的坐标。
2024届高考数学复习:精选好题专项(圆锥曲线的综合运用大题)练习(附答案)

2024届高考数学复习:精选好题专项(圆锥曲线的综合运用大题)练习1.[2023ꞏ新课标Ⅰ卷]在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎝⎛⎭⎫0,12 的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33 .2.[2023ꞏ新课标Ⅱ卷]已知双曲线C 的中心为坐标原点,左焦点为(-25 ,0),离心率为5 .(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点(-4,0)的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于点P .证明:点P 在定直线上.3.[2023ꞏ全国乙卷(理)]已知椭圆C :y 2a 2 +x 2b 2 =1(a >b >0)的离心率为5 ,点A (-2,0)在C 上.(1)求C 的方程;(2)过点()-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.4.[2022ꞏ全国甲卷(理),20]设抛物线C :y 2=2px (p >0)的焦点为F ,点D (p ,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当α-β取得最大值时,求直线AB 的方程.5.[2023ꞏ全国甲卷(理)]已知直线x -2y +1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,|AB |=415 .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且FM → ꞏFN →=0,求△MFN 面积的最小值.6.[2022ꞏ新高考Ⅱ卷,21]已知双曲线C :x 2a 2 -y 2b 2 =1(a >0,b >0)的右焦点为F (2,0),渐近线方程为y =±3 x .(1)求C 的方程.(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为-3 的直线与过Q 且斜率为3 的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.7.[2022ꞏ全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32 ,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT → =TH →.证明:直线HN 过定点.8.[2022ꞏ新高考Ⅰ卷,21]已知点A(2,1)在双曲线C:x2a2-y2a2-1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan ∠P AQ=22,求△P AQ的面积.参考答案1.答案解析:(1)设点P 的坐标为(x ,y ),依题意得|y |=x 2+(y -12)2 ,化简得x 2=y -14 , 所以W 的方程为x 2=y -14 .(2)设矩形ABCD 的三个顶点A ,B ,C 在W 上, 则AB ⊥BC ,矩形ABCD 的周长为2(|AB |+|BC |).设B (t ,t 2+14 ),依题意知直线AB 不与两坐标轴平行,故可设直线AB 的方程为y -(t 2+14 )=k (x -t ),不妨设k >0,与x 2=y -14 联立,得x 2-kx +kt -t 2=0, 则Δ=k 2-4(kt -t 2)=(k -2t )2>0,所以k ≠2t . 设A (x 1,y 1),所以t +x 1=k ,所以x 1=k -t ,所以|AB |=1+k 2 |x 1-t |=1+k 2 |k -2t |=1+k 2 |2t -k |,|BC |=1+(1-1k )2 |-1k -2t |=1+k 2k |1k +2t |=1+k 2k 2 |2kt +1|,且2kt +1≠0,所以2(|AB |+|BC |)=21+k 2k 2 (|2k 2t -k 3|+|2kt +1|). 因为|2k 2t -k 3|+|2kt +1|=⎩⎪⎨⎪⎧(-2k 2-2k )t +k 3-1,t ≤-12k(2k -2k 2)t +k 3+1,-12k <t ≤k 2(2k 2+2k )t -k 3+1,t >k 2,当2k -2k 2≤0,即k ≥1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k ]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k2 ]上单调递减或是常函数(当k =1时是常函数),函数y =(2k 2+2k )t -k 3+1在(k2 ,+∞)上单调递增,所以当t =k2 时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 2+1,又k ≠2t ,所以2(|AB |+|BC |)>21+k 2k 2 (k 2+1)=2(1+k 2)32k2. 令f (k )=2(1+k 2)32k2,k ≥1, 则f ′(k )=2(1+k 2)12(k +2)(k -2)k 3, 当1≤k <2 时,f ′(k )<0,当k >2 时,f ′(k )>0,所以函数f (k )在[1,2 )上单调递减,在(2 ,+∞)上单调递增, 所以f (k )≥f (2 )=33 ,所以2(|AB |+|BC |)>2(1+k 2)32k2≥33 .当2k -2k 2>0,即0<k <1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k ]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k 2 ]上单调递增,函数y =(2k 2+2k )t -k 3+1在(k 2 ,+∞)上单调递增,所以当t =-12k 时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 3+k =k (1+k 2),又2kt +1≠0,所以2(|AB |+|BC |)>21+k 2k 2 k (k 2+1)=2(1+k 2)32k. 令g (k )=2(1+k 2)32k,0<k <1, 则g ′(k )=2(1+k 2)12(2k 2-1)k 2, 当0<k <22 时,g ′(k )<0,当22 <k <1时,g ′(k )>0,所以函数g (k )在(0,22 )上单调递减,在(22 ,1)上单调递增,所以g (k )≥g (2)=33 ,所以2(|AB |+|BC |)>2(1+k 2)32k ≥33 . 综上,矩形ABCD 的周长大于33 .2.答案解析:(1)设双曲线C 的方程为x 2a 2 -y 2b 2 =1(a >0,b >0),c 为双曲线C 的半焦距,由题意可得⎩⎪⎨⎪⎧c =25ca=5c 2=a 2+b2,解得⎩⎪⎨⎪⎧c =25a =2b =4 . 所以双曲线C 的方程为x 24 -y 216 =1.(2)方法一 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 则x 1=my 1-4,x 2=my 2-4.联立得⎩⎪⎨⎪⎧x =my -4x 24-y216=1,得(4m 2-1)y 2-32my +48=0. 因为直线MN 与双曲线C 的左支交于M ,N 两点,所以4m 2-1≠0,且Δ>0.由根与系数的关系得⎩⎨⎧y 1+y 2=32m4m 2-1y 1y 2=484m 2-1,所以y 1+y 2=2m3 y 1y 2. 因为A 1,A 2分别为双曲线C 的左、右顶点, 所以A 1(-2,0),A 2(2,0).直线MA 1的方程为y 1x 1+2 =y x +2 ,直线NA 2的方程为y 2x 2-2 =yx -2,所以y 1x 1+2y 2x 2-2 =yx +2y x -2,得(x 2-2)y 1(x 1+2)y 2 =x -2x +2 ,(my 2-6)y 1(my 1-2)y 2 =my 1y 2-6y 1my 1y 2-2y 2 =x -2x +2 .因为my 1y 2-6y 1my 1y 2-2y 2 =my 1y 2-6(y 1+y 2)+6y 2my 1y 2-2y 2=my 1y 2-6ꞏ2m3y 1y 2+6y 2my 1y 2-2y 2=-3my 1y 2+6y 2my 1y 2-2y 2=-3,所以x -2x +2=-3,解得x =-1, 所以点P 在定直线x =-1上.方法二 由题意得A 1(-2,0),A 2(2,0).设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 则x 21 4 -y 21 16 =1,即4x 21 -y 21 =16.如图,连接MA 2,kMA 1ꞏkMA 2=y 1x 1+2 ꞏy 1x 1-2 =y 21 x 21 -4 =4x 21 -16x 21 -4 =4 ①. 由x 24 -y 216 =1,得4x 2-y 2=16,4[(x -2)+2]2-y 2=16, 4(x -2)2+16(x -2)+16-y 2=16,4(x -2)2+16(x -2)-y 2=0.由x =my -4,得x -2=my -6,my -(x -2)=6,16 [my -(x -2)]=1.4(x -2)2+16(x -2)ꞏ16 [my -(x -2)]-y 2=0,4(x -2)2+83 (x -2)my -83 (x -2)2-y 2=0,两边同时除以(x -2)2,得43 +8m 3 ꞏy x -2 -⎝⎛⎭⎫y x -2 2 =0,即⎝⎛⎭⎫y x -2 2 -8m 3 ꞏy x -2 -43 =0. kMA 2=y 1x 1-2 ,kNA 2=y 2x 2-2, 由根与系数的关系得kMA 2ꞏkNA 2=-43 ②. 由①②可得kMA 1=-3kNA 2.lMA 1:y =kMA 1(x +2)=-3kNA 2(x +2),lNA 2:y =kNA 2(x -2). 由⎩⎪⎨⎪⎧y =-3kNA 2(x +2)y =kNA 2(x -2) ,解得x =-1. 所以点P 在定直线x =-1上.3.答案解析:(1)因为点A (-2,0)在C 上,所以4b 2 =1,得b 2=4.因为椭圆的离心率e =c a =53 ,所以c 2=59 a 2,又a 2=b 2+c 2=4+59 a 2,所以a 2=9,c 2=5,故椭圆C 的方程为y 29 +x 24 =1.(2)由题意知,直线PQ 的斜率存在且不为0, 设l PQ :y -3=k (x +2),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y -3=k (x +2),y 29+x24=1,得(4k 2+9)x 2+(16k 2+24k )x +16k 2+48k =0, 则Δ=(16k 2+24k )2-4(4k 2+9)(16k 2+48k )=-36×48k >0,故x 1+x 2=-16k 2+24k 4k 2+9 ,x 1x 2=16k 2+48k4k 2+9 . 直线AP :y =y 1x 1+2(x +2), 令x =0,解得y M =2y 1x 1+2 ,同理得y N =2y 2x 2+2 , 则y M +y N =2y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=2(kx 1+2k +3)(x 2+2)+(kx 2+2k +3)(x 1+2)(x 1+2)(x 2+2)=22kx 1x 2+(4k +3)(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=22k (16k 2+48k )+(4k +3)(-16k 2-24k )+(8k +12)(4k 2+9)16k 2+48k +2(-16k 2-24k )+4(4k 2+9)=2×10836 =6.所以MN 的中点的纵坐标为y M +y N2 =3, 所以MN 的中点为定点(0,3).4.答案解析:(1)方法一 由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2 p ,|MD |=2 p ,|FD |=p2 .在Rt △MFD 中,|FD |2+|MD |2=|FM |2,即⎝⎛⎭⎫p 2 2 +(2 p )2=9,解得p =2.所以C 的方程为y 2=4x .方法二 抛物线的准线方程为x =-p2 . 当MD 与x 轴垂直时,点M 的横坐标为p .此时|MF |=p +p2 =3,所以p =2. 所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β. 由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0.设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(x -1),直线MD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).联立得方程组⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x , 所以k 21 x 2-(2k 21 +4)x +k 21 =0,则x 1x 2=1.联立得方程组⎩⎪⎨⎪⎧y =k 2(x -m ),y 2=4x ,所以k 22 x 2-(2mk 22 +4)x +k 22 m 2=0,则x 3x 4=m 2.联立得方程组⎩⎪⎨⎪⎧y =k 3(x -2),y 2=4x ,所以k 23 x 2-(4k 23 +4)x +4k 23 =0,则x 1x 3=4.联立得方程组⎩⎪⎨⎪⎧y =k 4(x -2),y 2=4x ,所以k 24 x 2-(4k 24 +4)x +4k 24 =0,则x 2x 4=4.所以M (x 1,2x 1 ),N (1x 1 ,-2x 1 ),A (4x 1 ,-4x 1),B (4x 1,4x 1 ).所以k 1=2x 1x 1-1 ,k 2=x 1x 1-1,k 1=2k 2,所以tan (α-β)=tan α-tan β1+tan αtan β =k 1-k 21+k 1k 2 =k 21+2k 22=11k 2+2k 2. 因为k 1=2k 2,所以k 1与k 2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan (α-β)取得最大值.所以k 2>0,且当1k 2=2k 2,即k 2=22 时,α-β取得最大值.易得x 3x 4=16x 1x 2=m 2,又易知m >0,所以m =4.所以直线AB 的方程为x -2 y -4=0. 5.答案解析:(1)设A (x 1,y 1),B (x 2,y 2),把 x =2y -1代入y 2=2px ,得y 2-4py +2p =0,由Δ1=16p 2-8p >0,得p >12 .由根与系数的关系,可得y 1+y 2=4p ,y 1y 2=2p ,所以|AB |=1+1⎝⎛⎭⎫122 ꞏ(y 1+y 2)2-4y 1y 2 =5 ꞏ16p 2-8p =415 ,解得p =2或p =-32 (舍去),故p =2.(2)设M (x 3,y 3),N (x 4,y 4),由(1)知抛物线C :y 2=4x ,则点F (1,0).因为FM → ꞏFN →=0,所以∠MFN =90°,则S △MFN =12 |MF ||NF |=12 (x 3+1)(x 4+1)=12 (x 3x 4+x 3+x 4+1) (*).当直线MN 的斜率不存在时,点M 与点N 关于x 轴对称, 因为∠MFN =90°,所以直线MF 与直线NF 的斜率一个是1,另一个是-1. 不妨设直线MF 的斜率为1,则MF :y =x -1, 由⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得x 2-6x +1=0, 得⎩⎨⎧x 3=3-22,x 4=3-22 或⎩⎨⎧x 3=3+22,x 4=3+22.代入(*)式计算易得,当x 3=x 4=3-22 时,△MFN 的面积取得最小值,为4(3-22 ). 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m . 由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x , 得k 2x 2-(4-2km )x +m 2=0,Δ2=(4-2km )2-4m 2k 2>0, 则⎩⎨⎧x 3+x 4=4-2kmk 2,x 3x 4=m 2k 2,y 3y 4=(kx 3+m )(kx 4+m )=k 2x 3x 4+mk (x 3+x 4)+m 2=4mk . 又FM → ꞏ FN →=(x 3-1,y 3)ꞏ(x 4-1,y 4)=x 3x 4-(x 3+x 4)+1+y 3y 4=0,所以m 2k 2 -4-2kmk 2 +1+4m k =0,化简得m 2+k 2+6km =4.所以S △MFN =12 (x 3x 4+x 3+x 4+1)=m 2+k 2-2km +42k 2 =m 2+k 2+2km k 2=⎝⎛⎭⎫m k 2 +2⎝⎛⎭⎫m k +1.令t =mk ,则S △MFN =t 2+2t +1,因为m 2+k 2+6km =4,所以⎝⎛⎭⎫m k 2 +6⎝⎛⎭⎫m k +1=4k 2 >0, 即t 2+6t +1>0,得t >-3+22 或t <-3-22 , 从而得S △MFN =t 2+2t +1>12-82 =4(3-22 . 故△MFN 面积的最小值为4(3-22 ).6.答案解析:(1)由题意可得⎩⎪⎨⎪⎧b a =3, a 2+b 2=2,解得⎩⎨⎧a =1,b =3.所以C 的方程为x 2-y 23 =1.(2)当直线PQ 斜率不存在时,x 1=x 2,但x 1>x 2>0,所以直线PQ 斜率存在,所以设直线PQ 的方程为y =kx +h (k ≠0).联立得方程组⎩⎪⎨⎪⎧y =kx +h ,x 2-y 23=1. 消去y 并整理,得(3-k 2)x 2-2khx -h 2-3=0.则x 1+x 2=2kh3-k 2 ,x 1x 2=h 2+3k 2-3, x 1-x 2=(x 1+x 2)2-4x 1x 2 =23(h 2+3-k 2)|3-k 2|. 因为x 1>x 2>0,所以x 1x 2=h 2+3k 2-3>0,即k 2>3. 所以x 1-x 2=23(h 2+3-k 2)k 2-3. 设点M 的坐标为(x M ,y M ),则y M -y 2=3 (x M -x 2),y M -y 1=-3 (x M -x 1), 两式相减,得y 1-y 2=23 x M -3 (x 1+x 2). 因为y 1-y 2=(kx 1+h )-(kx 2+h )=k (x 1-x 2), 所以23 x M =k (x 1-x 2)+3 (x 1+x 2),解得x M =k h 2+3-k 2-khk 2-3.两式相加,得2y M -(y 1+y 2)=3 (x 1-x 2).因为y 1+y 2=(kx 1+h )+(kx 2+h )=k (x 1+x 2)+2h , 所以2y M =k (x 1+x 2)+3 (x 1-x 2)+2h ,解得y M =3h 2+3-k 2-3h k 2-3=3k x M .所以点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 选择①②.因为PQ ∥AB ,所以k AB =k .设直线AB 的方程为y =k (x -2),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ),则⎩⎨⎧y A =k (x A -2),y A =3x A ,解得x A =2k k -3 ,y A =23k k -3 . 同理可得x B =2k k +3 ,y B =-23kk +3 . 此时x A +x B =4k 2k 2-3,y A +y B =12kk 2-3 .因为点M 在AB 上,且其轨迹为直线y =3k x , 所以⎩⎪⎨⎪⎧y M=k (x M -2),y M =3k x M . 解得x M =2k 2k 2-3=x A +x B 2 ,y M =6kk 2-3 =y A +y B 2 , 所以点M 为AB 的中点,即|MA |=|MB |. 选择①③.当直线AB 的斜率不存在时,点M 即为点F (2,0),此时点M 不在直线y =3k x 上,与题设矛盾,故直线AB 的斜率存在.当直线AB 的斜率存在时,设直线AB 的方程为y =m (x -2)(m ≠0),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ),则⎩⎨⎧y A =m (x A -2),y A =3x A,解得x A =2m m -3 ,y A =23mm -3. 同理可得x B =2m m +3 ,y B =-23mm +3 . 此时x M =x A +x B 2 =2m 2m 2-3,y M =y A +y B 2 =6m m 2-3 .由于点M 同时在直线y =3k x 上,故6m =3k ꞏ2m 2,解得k =m ,因此PQ ∥AB .选择②③.因为PQ ∥AB ,所以k AB =k .设直线AB 的方程为y =k (x -2),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ), 则⎩⎨⎧y A =k (x A -2),y A =3x A ,解得x A =2k k -3 ,y A =23k k -3 . 同理可得x B =2k k +3 ,y B =-23kk +3. 设AB 的中点为C (x C ,y C ),则x C =x A +x B 2 =2k 2k 2-3,y C =y A +y B 2 =6kk 2-3 .因为|MA |=|MB |,所以点M 在AB 的垂直平分线上,即点M 在直线y -y C =-1k (x -x C )上.将该直线方程与y =3k x 联立,解得x M =2k 2k 2-3=x C ,y M =6k k 2-3 =y C ,即点M 恰为AB 的中点,所以点M 在直线AB 上.7.答案解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).将点A (0,-2),B (32 ,-1)的坐标代入,得⎩⎪⎨⎪⎧4n =1,94m +n =1, 解得⎩⎨⎧m =13,n =14. 所以椭圆E 的方程为x 23 +y 24 =1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组⎩⎪⎨⎪⎧x -1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3 ,y 1y 2=16t 2+16t -84t 2+3. 设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0 =y 1+1x 0-32,得x 0=32 y 1+3. 设H (x ′,y ′).由MT → =TH → ,得(32 y 1+3-x 1,0)=(x ′-32 y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1,所以直线HN 的斜率k =y 2-y ′x 2-x ′ =y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4 , 所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4ꞏ(x -x 2). 令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4ꞏ(-x 2)+y 2 =(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2 =(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)ꞏ16t 2+16t -84t 2+3+(5-2t )ꞏ16t 2+8t 4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4 =-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32 ,-1)可得直线AB 的方程为y =23 x -2.a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23 +y 24 =1,可得N (1,263 ),M (1,-263 ).将y =-263 代入y =23 x -2,可得T (3-6 ,-263 ).由MT → =TH → ,得H (5-26 ,-263 ).此时直线HN 的方程为y =(2+263 )(x -1)+263 ,则直线HN 过定点(0,-2).b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎪⎨⎪⎧kx -y -(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0.所以⎩⎪⎨⎪⎧x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4, 则⎩⎪⎨⎪⎧y 1+y 2=-8(2+k )3k 2+4,y 1y 2=4(4+4k -2k 2)3k 2+4, 且x 1y 2+x 2y 1=-24k 3k 2+4.① 联立得方程组⎩⎪⎨⎪⎧y =y 1,y =23x -2,可得T (3y 12 +3,y 1). 由MT → =TH → ,得H (3y 1+6-x 1,y 1).则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.② 将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立. 综上可得,直线HN 过定点(0,-2).8.答案解析:(1)∵点A (2,1)在双曲线C :x 2a 2 -y 2a 2-1=1(a >1)上,∴4a 2 -1a 2-1 =1,解得a 2=2.∴双曲线C 的方程为x 22 -y 2=1.显然直线l 的斜率存在,可设其方程为y =kx +m . 联立得方程组⎩⎪⎨⎪⎧y =kx +m ,x 22-y 2=1. 消去y 并整理,得(1-2k 2)x 2-4kmx -2m 2-2=0.Δ=16k 2m 2+4(1-2k 2)(2m 2+2)=8m 2+8-16k 2>0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4km 1-2k 2 ,x 1x 2=-2m 2-21-2k 2. 由k AP +k AQ =0,得y 1-1x 1-2 +y 2-1x 2-2=0, 即(x 2-2)(kx 1+m -1)+(x 1-2)(kx 2+m -1)=0.整理,得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0, 即2k ꞏ-2m 2-21-2k2 +(m -1-2k )ꞏ4km 1-2k 2 -4(m -1)=0, 即(k +1)(m +2k -1)=0.∵直线l 不过点A ,∴k =-1.(2)设∠P AQ =2α,0<α<π2 ,则tan 2α=22 ,∴2tan α1-tan 2α=22 ,解得tan α=22 (负值已舍去). 由(1)得k =-1,则x 1x 2=2m 2+2>0,∴P ,Q 只能同在双曲线左支或同在右支.当P ,Q 同在左支时,tan α即为直线AP 或AQ 的斜率.设k AP =22 . ∵2 为双曲线一条渐近线的斜率,∴直线AP 与双曲线只有一个交点,不成立.当P ,Q 同在右支时,tan (π2 -α)=1tan α 即为直线AP 或AQ 的斜率.设k AP =122=2 ,则k AQ =-2 , ∴直线AP 的方程为y -1=2 (x -2),即y =2 x -22 +1.联立得方程组⎩⎪⎨⎪⎧y =2x -22+1,x 22-y 2=1. 消去y 并整理,得3x 2-(16-42 )x +20-82 =0,则x P ꞏ2=20-823 ,解得x P =10-423. ∴|x A -x P |=|2-10-423 |=4(2-1)3. 同理可得|x A -x Q |=4(2+1)3. ∵tan 2α=22 ,0<2α<π,∴sin 2α=223 ,∴S △P AQ =12 |AP |ꞏ|AQ |ꞏsin 2α=12 ×3 ×|x A -x P |×3 ×|x A -x Q |×sin 2α=12 ×3×169×223 =1629 .。
word完整版圆锥曲线文科测试含答案推荐文档

2圆锥曲线(文科)1已知F i 、F 2是两个定点,点P 是以F i 和F 2为公共焦点的椭圆和双曲线的一个交点, 并且PF i 丄PF 2, e i 和e 2分别是椭圆和双曲线的离心率,则有A . ee ? 22 ei2 2.已知方程— I m| 1 2 y=1 2 m表示焦点在y 轴上的椭圆,则 m 的取值范围是A . m<2 3 1<m<—22 4.已知椭圆二3m C . m< — 1 或 1<m<2D . m<— 1 或B . 1<m<2 3.在同一坐标系中, ) 5n 3n A . x —+ 上 y 2 5.过抛物线y=ax 2 (a > 0)的焦点 2m _ , <15 , £3 y 一 ± xC . x 一 ± y - 4 P 、 A . 2a B .丄 2a 2 F 用一直线交抛物线于 Q 两点, v —+ 3 y —± x 4 若线段PF 与FQ 的长分别是p 、q ,则丄 pC . 4a 2 y_ (a > b > 0) 的左、右焦点分别为 F i 、F 2,线段 F i F 2被抛物线y 2=2bx 的焦点分成5:3两段, 则此椭圆的离心率为 7. 8. 椭圆 16 172 x 12 2 »=13 ± _34 B 4 1717 的一个焦点为F i ,点 P 在椭圆上 •如果线段 PF i 的中点M 在y 轴上,那么点 M 的纵坐标是(2设F i 和F 2为双曲线— 4 y 2 1的两个焦点,点 P 在双曲线上,且满足/ F i PF 2= 90°,则 △ F 1PF 2的面积是(2x 已知双曲线—a2 計利椭圆2x 2 m 2+每=1(a>0,m>b>0)的离心率互为倒数,那么以 b 2 a 、 b 、 m 为边长的三角形是A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形 10.中心在原点,焦点坐标为(0, ± 5=2)的椭圆被直线3x — y — 2=0截得的弦的中点的横坐标为 丄,则椭圆方程为22 2 A.红+也=1 25 752 2 B .红+也=1 75 25 2 2C . —1 25 75 11.已知点(一2, 3)与抛物线y 2=2px ( p >0)的焦点的距离是2 2 D .・+・=1 75 255,贝y p= ____2 212•设圆过双曲线 ] 1=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是___________9162 213.双曲线x y = 1的两个焦点为F i 、F 2,点P 在双曲线上,若 PF i 丄PF 2,则点P 到x 轴的距离为 _________________________百 14.若A 点坐标为(1, 1) , F 1是5X 2 + 9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+ |P F 1|的最小值是 _______________________2 216•双曲线 笃 与1 ( a>1,b>0)的焦距为2c,直线I 过点(a,0)和(0, b),且点(1,0)到直线I 的距离与点(- a b 1,0)到直线l 的距离之和s > 4 c.求双曲线的离心率e 的取值范围52 2 ,—17.已知圆C 1的方程为(x - 2)2+(y — 1)2=竺,椭圆C 2的方程为 —+ -^=1 (a>b>0), C 2的离心率为空,如果 G 与C 2相交 3 a 2 b 2 2 于A 、B 两点,且线段 AB 恰为圆C 1的直径,求直线 AB 的方程和椭圆 C 2的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理 高三文科数学专题复习之圆锥曲线知识归纳: 名称 椭圆 双曲线
图象 xO
y xO
y
定义 平面内到两定点21,FF的距离的和为常数(大于21FF)的动点的轨迹叫椭圆即aMFMF221 当2a﹥2c时,轨迹是椭圆, 当2a=2c时,轨迹是一条线段21FF 当2a﹤2c时,轨迹不存在 平面内到两定点21,FF的距离的差的绝对值为常数(小于21FF)的动点的轨迹叫双曲线即122MFMFa 当2a﹤2c时,轨迹是双曲线 当2a=2c时,轨迹是两条射线 当2a﹥2c时,轨迹不存在
标准方程
焦点在x轴上时:1
222
2bya
x
焦点在y轴上时:1
222
2bxa
y
注:根据分母的大小来判断焦点在哪一坐标轴上
焦点在x轴上时:1
222
2bya
x
焦点在y轴上时:1
222
2bxa
y
常数cba,,的关系
222bca,0ba, a最大,bcbcbc,, 222bac
,0ac
c最大,可以bababa,, 精心整理
渐近线 焦点在x轴上时:0
xy
ab
焦点在y轴上时:0
yx
ab
抛物线: 图形 x
y
OFl x
yOFl 方
程 )0(22ppxy )0(22ppxy )0(22ppyx )0(22ppyx
焦点 )0,2(p )0,2(p )2,0(p )2,0(p
准线 2px 2px 2py
2
py
(一)椭圆 1.椭圆的性质:由椭圆方程)0(12222babyax (1)范围:axb-a,xa,椭圆落在bya,x组成的矩形中。 精心整理
(2)对称性:图象关于y轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简称中心。x轴、y轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(
2aAaA,),0(),,0(2bBbB
。加两焦点)0,(),0,(21cFcF共有六
个特殊点。21AA叫椭圆的长轴,21BB
叫椭圆的短轴。长分别为ba2,2。ba,分别为椭圆
的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a
c
e2)(1abe
。10e。
椭圆形状与e的关系:0,0ce,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0e时的特例。,,1ace椭圆变扁,直至成为极限位置线段21FF
,此时
也可认为是椭圆在1e时的特例。 2.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e,那么这个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数e就是离心率。 椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3.椭圆的准线方程
对于12222byax,左准线caxl21:;右准线c
axl22:
对于12222bxay,下准线c
ayl21:;上准线cayl22:
焦点到准线的距离cbccacc
ap2222(焦参数)
(二)双曲线的几何性质: 精心整理
1.(1)范围、对称性 由标准方程12222byax,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不封闭,但仍称其对称中心为双曲线的中心。 (2)顶点 顶点:0,),0,(
21aAaA,特殊点:bBbB,0),,0(21
实轴:21AA长为2a,a叫做实半轴长。虚轴:21BB
长为2b,b叫做虚半轴长。
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。 (3)渐近线
过双曲线12222byax的渐近线xaby(0byax) (4)离心率 双曲线的焦距与实轴长的比acace22,叫做双曲线的离心率范围:e>1
双曲线形状与e的关系:112
2
222eacaacabk,e越大,即渐近线的斜率
的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。 2.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线。 等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直;(3)离心率2e。 3.共渐近线的双曲线系 如果已知一双曲线的渐近线方程为xaby)0(kxkakb,那么此双曲线方程就一定 精心整理
是:)0(1)()(2222kkbykax或写成2222byax。 4.共轭双曲线 以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。区别:三量a,b,c中a,b不同(互换)c相同。共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。 5.双曲线的第二定义:到定点F的距离与到定直线l的距离之比为常数)0(acace的点的轨迹是双曲线。其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。常数e是双曲线的离心率。 6.双曲线的准线方程:
对于12222byax来说,相对于左焦点)0,(
1cF
对应着左准线caxl21:,相对于右焦点
)0,(2cF对应着右准线caxl22:; 焦点到准线的距离c
bp2(也叫焦参数)。
对于12222bxay来说,相对于下焦点),0(
1cF
对应着下准线cayl21:;相对于上焦点
),0(2cF对应着上准线cayl22:。
(三)抛物线的几何性质 (1)范围 因为p>0,由方程022ppxy
可知,这条抛物线上的点M的坐标(x,y)满足不
等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。 精心整理
(2)对称性 以-y代y,方程022
ppxy
不变,所以这条抛物线关于x轴对称,我们把抛物线的
对称轴叫做抛物线的轴。 (3)顶点 抛物线和它的轴的交点叫做抛物线的顶点.在方程022
ppxy
中,当y=0时,x=0,
因此抛物线022
ppxy
的顶点就是坐标原点。
(4)离心率 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示。由抛物线的定义可知,e=1。
【典型例题】 例1.根据下列条件,写出椭圆方程 (1)中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; (2)和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3); (3)中心在原点,焦点在x轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是510-。 分析:求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程。 解:(1)焦点位置可在x轴上,也可在y轴上
因此有两解:1
12x16y112y16
x2222或
(2)焦点位置确定,且为(0,5),设原方程为22221yxab,(a>b>0),由已知条 精心整理
件有
14952222baba
10,1522ba,故方程为110x15y22。
(3)设椭圆方程为1
222
2bya
x,(a>b>0)
由题设条件有510cacb及a2=b2+c2,解得b=10,5a 故所求椭圆的方程是1
5y10
x22。
例2.直线1kxy与双曲线1322
yx
相交于A、B两点,当a为何值时,A、B在双曲
线的同一支上?当a为何值时,A、B分别在双曲线的两支上? 解:把1kxy代入1322
yx
整理得:022)3(22
axxa
……(1)
当3a时,2
424a
由>0得6a6且3a时,方程组有两解,直线与双曲线有两个交点 若A、B在双曲线的同一支,须32221axx
>0,所以3a或3a。
故当36a或63a时,A、B两点在同一支上;当33a时,A、B两点在双曲线的两支上。
例3.已知抛物线方程为)1x(p2y2
(p>0),直线myxl:过抛物线的焦点F且被抛
物线截得的弦长为3,求p的值。 解:设l与抛物线交于1122(,),(,),||3.AxyBxyAB则
由距离公式|AB|=|yy|2|yy|
k
11)yy()x-(x21212221221
则有2
12
9().2yy