正弦定理余弦定理(解析版)
正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
正余弦定理 - 解析版

sin B sin C c sin C sin 2B 2cos B
5
25
★★★练习 2. 在锐角 ABC 中, A = 2B , B, C 所对的边分别为 b, c ,则 b 的取值范围是
.
b+c
答案: (1 , 1) 32
解析:分子分母齐次式直接由正弦定理进行边化角,然后利用倍角公式化简
b
b +
c
=
sin
sin B B + sin C
=
sin
B
sin B + sin(A +
B)
=
sin
B
+ sin
sin B Acos B
+
cos
A sin
B
=
1+
1 2 cos2 B
+
cos
A
=
1 4 cos2
B
下面求
B
的范围,因为 ABC
是锐角三角形,所以
A
=
A
+
2B 2
B = 3B
2
,解得 6
B
4
,代入上式可得
b 的取值范围是 (1 , 1) 。
b+c
32
★☆☆例题 4. 在 ABC 中, sin A = sin B ,则 ABC 的形状是( )
A. 直角三角形
B. 等腰三角形
C. 等边三角形
D. 锐角三角形
答案:B
解析:由 sin A = sin B 得, A = B ,三角形为等腰三角形。
sin B sin A
2
2
★★☆练习 1. ABC 中,角 A, B,C 的对边分别为 a,b, c ,已知 a = 3, cos A = 6 , B = A + 。
6.4.3正弦定理余弦定理(第1课时)课件高一下学期数学人教A版

2ab
应用:已知三条边求角度.
变形二
a2 (b c)2 2bc(1 cos A)
b2 (a c)2 2a(c 1- cos B)
c2 (a b)2 2a(b 1- cos C)
应用:配方法的使用
想一想: 余弦定理在直角三角 形中是否
仍然成立?
cosC=
例 2 在△ABC 中,已知 a= 3,b= 2,B=45°,解此三角形.
解析 由余弦定理知 b2=a2+c2-2accos B.
∴2=3+c2-2 3·22c.即 c2- 6c+1=0.
6+ 2
6- 2
6+ 2
解得 c= 2 或 c= 2 ,当 c= 2 时,由余弦定理得
cos A=b2+2cb2c-a2=2+
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做解三角形.
在 ABC中,三个内角A、B、C的对边长分别记作a,b,c
二、余弦定理
在三角形ABC中,三个角A,B,C所对的边分别
为a,b,c,怎样用a,b和C表示c?
如图,设CB a,CA b, AB c,那么
3 2.
2.解析 ∵a∶b∶c=2∶ 6∶( 3+1), 令 a=2k,b= 6k,c=( 3+1)k(k>0). 由余弦定理的变形得,
又∵0°<B<180°, ∴B=150°.
cos
b2+c2-a2 6k2+ 3+12k2-4k2 A= 2bc = 2× 6k× 3+1k =
22.
∴A=45°.
题型二 已知两边及一角解三角形
和减去这两边与它们夹角的余弦的积的两倍.
专题4-3 正余弦定理与解三角形小题归类-(解析版)

专题4-3 正余弦定理与解三角形小题归类目录一、热点题型归纳【题型一】正余弦定理 .............................................................................................................................. 2 【题型二】求角 .......................................................................................................................................... 3 【题型三】判断三角形形状 ...................................................................................................................... 4 【题型四】面积与最值 .............................................................................................................................. 6 【题型五】周长与最值 .............................................................................................................................. 8 【题型六】角的最值 .................................................................................................................................. 9 【题型七】最值 ........................................................................................................................................ 11 【题型八】切弦互化求最值 .................................................................................................................... 13 【题型九】解三角形应用题 .................................................................................................................... 14 二、真题再现 ............................................................................................................................................ 17 三、模拟检测 .. (22)正余弦定理(1)正弦定理:a sin A =b sin B =csin C =2R ,其中R 为 外接圆半径 ;注意:正弦定理变式与性质:①边化正弦:a =2R sin A ,b =2R sin B ,c =2R sin C ; ②正弦化边:sin A sin B sin C =c2R ; ③a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;④a +b +csin A +sin B +sin C= 2R ;(2)余弦定理:①a 2=b 2+c 2-2bc cos_A ; ②b 2=c 2+a 2-2ca cos_B ; ③c 2=a 2+b 2-2ab cos_C 注意:变式:①cos A =b 2+c 2-a 22bc;②cos B =c 2+a 2-b 22ac;③cos C =a 2+b 2-c 22ab(3)三角形面积 :①S △ABC =12ab sin C =12bc sin A =12ac sin B =abc4R②S △ABC =12(a +b +c )·r (r 是切圆的半径) 三角形中:①sin(A +B )=sin C ,cos(A +B )=-cos C ;②sinA +B 2=cosC 2, cos A +B 2=sin C2;③三角形中,任何一个角的正弦值恒大于0;④a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .【题型一】正余弦定理【典例分析】(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤ 【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得. 【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B ,又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭, 所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b a c ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D1..(2022·江西·丰城九中高三开学考试(文))已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =( )A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B . 【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+, 又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+, 展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =, 因为sin 0C >,所以5cos 6B =.故选:B . 2.(2023·全国·高三专题练习)在ABC 中,60,3,90C AC B ==>,则ba 的可能取值为( ) A .23B .43 C .53D .73【答案】D【分析】通过正弦定理将所求表达式表示为关于A 的三角函数,求出范围即可得结果. 【详解】因为60,3,90C AC B ==>,所以030A <<,0tan A <<1tan A >()1sin sin sin 11222sin sin sin 2tan A AA C bB a A A A A +====>,则b a 的可能取值为73,故选:D. 3.面积(无最值型)【题型二】求角【典例分析】(2022·山西吕梁·三模(文))在ABC 中,内角,,A B C 的对边分别为,,a b c ,若()(),6b c b c ac C π+-==,则B =( ) A .6πB .3π C .2π D .23π 【答案】B【分析】由22b c ac =+结合余弦定理以及正弦定理的边化角公式得出sin 2sin cos sin A C B C -=,再由内角和定理以及三角恒等变换得出B .【详解】由()()b c b c ac +-=得22b c ac =+,结合余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为()()sin 2sin cos sin 2sin cos sin A C B B C C B B C -=+-=-, 所以()sin sin B C C -=,所以B C C -=,得2B C =.因为6C π=,所以3B π=.【变式演练】1.(2022·全国·高三专题练习)已知在ABC中,30,1B a b ===,则A 等于( ) A .45 B .135C .45或135D .120 【答案】C【分析】根据正弦定理,结合三角形中的边角关系,即可求得答案.【详解】由正弦定理sin sina b A B=,得1sin 2sin 12a B Ab ===, 因为1,(0,π)a b A ==∈,故45A =或135, 故选:C2.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A B C .2D .1【答案】A【分析】根据三角形面积公式及余弦定理化简条件求角C ,由此可求sin 4C π⎛⎫+ ⎪⎝⎭.【详解】因为()22a b c =+-,又in 12s S ab C =,所以222sin 2C ab a b c -=+-,22212a b c C ab +--=,又222cos 2a b c C ab+-=cos 1C C -=,所以1sin 62C π⎛⎫-= ⎪⎝⎭,又()0,C π∈,所以3C π=,所以sin =sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫++=+= ⎪ ⎪⎭⎝⎭所以sin 44C π⎛⎫+= ⎪⎝⎭A.3.(2023·全国·高三专题练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin (2sin B C A B C +=+2sin 0A B -=,则sin C = ( )A .12B C D 【答案】C【分析】根据给定条件利用正弦定理角化边,求出角A ,再求出角B 即可计算作答.【详解】在ABC 中,由22(sin sin )sin (2sin B C A B C +=+及正弦定理得:22()(2b c a bc +=+,即222b c a +-=,由余弦定理得:222cos 2b c a A bc +-==0180A <<,解得135A =,2sin 0A B -=得1sin 2B A ==,显然090B <<,则30B =,15C =,所以6sin sin(6045)sin 60cos 45cos 60sin 454C -=-=-=. 故选:C【题型三】判断三角形形状【典例分析】(2023·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若222a b c -=且cos sin =b C a B ,则ABC 是( ) A .等腰直角三角形 B .等边三角形 C .等腰三角形D .直角三角形【答案】A【分析】由222a b c -=结合余弦定理可求得π4A =,由cos sin =b C a B 结合正弦定理可求得π4C =,从而可判断出三角形的形状【详解】由222a b c -=,得222b c a +-,所以由余弦定理得222cos 2b c a A bc +-===, 因为(0,π)A ∈,所以π4A =,因为cos sin =b C a B ,所以由正弦定理得sin cos sin sin B C A B =,因为sin 0B ≠,所以πcos sin sin 4C A ===,因为(0,π)C ∈,所以π4C =,所以πππππ442B AC =--=--=,所以ABC 为等腰直角三角形, 故选:A【变式演练】1..(2021·广东·高三阶段练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【分析】先依据条件222b c a bc +=+求得π3A =,再利用2sin sin sinBC A =可以求得b c =,从而判断△ABC 的形状是等边三角形【详解】△ABC 中,222b c a bc +=+,则2221cos 222b c a bc A bc bc +-=== 又0πA <<,则π3A =由2sin sin sin B C A =,可得2a bc =,代入222b c a bc +=+则有222b c bc bc bc +=+=,则()20b c -=,则b c = 又π3A =,则△ABC 的形状是等边三角形故选:C2.(2023·全国·高三专题练习)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bA B=,222c a b ab =+-,则ABC ∆是( )A .钝角三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】B【分析】利用正余弦定理可确定边角关系,进而可判定三角形形状.【详解】在ABC ∆中,由正弦定理得sin sin a bA B =,而cos cos a b A B =,△ sin sin cos cos A B A B=,即tan tan A B =,又△A 、B 为ABC ∆的内角,△A B =,又△222c a b ab =+-,△222ab a b c =+-,△由余弦定理得:2221cos 22a b c C ab +-==,△3C π=,△ABC ∆为等边三角形.故选:B.3.(2023·全国·高三专题练习)已知三角形ABC ,则“222cos cos cos 1A B C +->”是“三角形ABC 为钝角三角形”的( )条件.A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 【答案】A【分析】利用同角的三角函数的基本关系式、正余弦定理可判断两个条件之间的推出关系,从而可得正确的选项.【详解】因为222cos cos cos 1A B C +->,故2221sin 1sin 1sin 1A B C -+--+>, 故222sin sin sin C A B >+,故222c a b >+,故222cos 02a b c C ab+-=<,而C 为三角形内角,故C 为钝角,但若三角形ABC 为钝角三角形,比如取2,63C B A ππ===,此时2221cos cos cos 14A B C +-=<,故222cos cos cos 1A B C +->不成立,故选:A.【题型四】面积与最值【典例分析】(2021·江苏·高三课时练习)在锐角三角形ABC 中,cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C +=,则ABC ∆的面积的最大值为( )AB .C .D .【答案】Ccos 2B B +=结合同角三角函数基本关系,可求出B ,根据正余弦定理由cos cos sin sin 3sin B C A Bb c C +=可得b ,再利用余弦定理及均值不等式求ac 最大值,代入面积公式即可.cos 2B B +=得cos 2B B =,所以2221cos sin 44sin B B B B =+=+-,即2(2sin 0B =,解得sin B =由锐角三角形知3B π=,cos cos sin sin 3sin B C A Bb c C+=, 22222222a c b a b c abc abc +-+-∴+=,即222a abc =b =2222126cos 122a c b ac B ac ac ac+--∴=≥=-,当且仅当a c =时等号成立,解得12ac ≤,11sin 1222ABC S ac B ∆=≤⨯=当且仅当a c =时等号成立,故选:C【变式演练】1.(2020·全国·高三课时练习)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c,b =且ABC ∆面积为222)S b a c --,则ABC ∆面积S 的最大值为( ) A.2 B.4-C.8-D.16-【答案】B【解析】由已知利用三角形的面积公式可求tan B ,可得cos B ,sin B 的值,由余弦定理,基本不等式可求8(23)ac -,根据三角形的面积公式即可求解其最大值. 【详解】解:222331()(2cos )sin12122S b a c ac B ac B =--=-=,tan B ∴=,56B π=,cos B=,1sin 2B =, 又22b =228(23)a c ac =++,88(223ac∴=+, 当且仅当a c =时取等号,111sin 8(24222ABC S ac B ∆∴=⨯⨯=- ∴面积S 的最大值为4-B .2.(2023·全国·高三专题练习)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a bkab +=,则△ABC的面积为22c 时,k 的最大值是( )A .2BC .4D .【答案】B【分析】由三角形的面积公式,可得2sin c ab C =, 根据余弦定理,可得22sin 2cos a b ab C ab C +=+,则整理出以k 为函数值的三角函数,根据三角函数的性质,可得k 的最值.【详解】由题意得21sin 22ABC c S ab C ==,所以2sin c ab C =,又因为2222cos c a b ab C =+-,所以2222cos sin 2cos a b c ab C ab C ab C +=+=+,所以()22sin 2cos a b k C CC abϕ+==++,其中tan 2ϕ=,且0k >, 所以k 的取值范围为(,故选:B. 3.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .4 【答案】C【分析】根据sin 2sin cos 0B C A +=利用三角恒等变换和正余弦定理得到2222b a c =-,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据1sin 2ABC S ac B =可求△ABC 面积的最大值.【详解】sin 2sin cos 0B C A +=,()sin 2sin cos 0A C C A ∴++=,即sin cos cos sin 2sin cos 0A C A C C A ++=, 即sin cos 3cos sin 0A C A C +=,则2222223022b a c b c a a c ab bc+-+-⋅+⨯⨯=,理得2222b a c =-, △2222222223232cos 2244a ca c a cb ac ac B ac ac ac ac -+-+-+====当且仅当a 2=3c 2⇔c =√√3a =√8√3时取等号,π10sin 62B B ⎛⎤∴∈∴ ⎥⎝⎦,,, 则111sin 82222ABCS ac B =⨯⨯=.故选:C .【题型五】周长与最值【典例分析】(2022·全国·高三专题练习)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin cos 6A A π⎛⎫++ ⎪⎝⎭4b c +=,则ABC ∆周长的取值范围是( )A .[)6,8B .[]6,8C .[)4,6D .[]4,6【答案】A【分析】利用三角函数恒等变换的应用化简已知可得3sin A π+=(),结合A 的范围可求A ,再由余弦定理求得2163a bc =- ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】△ sin 6A cos A π⎛⎫++ ⎪⎝⎭12sinA sinA ∴-=可得:3sin A π+=()40333A A ππππ∈+∈(,),(,),2 33A ππ∴+=,解得3A π=,△4b c +=, △由余弦定理可得222222163a bccosA b c bc bc bc =-=+--=-(),△由4b c +=,b c +≥,得04bc ≤<,△2416a ≤<,即24a ≤<.△ABC 周长4[68L a b c a =++=+∈,) .故选:A .【变式演练】1.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sinA +cos(A +π6)=√32,b +c =4,则ABC ∆周长的取值范围是 A .[6,8) B .[6,8] C .[4,6) D .(4,6]【答案】A 【分析】利用三角函数恒等变换的应用化简已知可得sin (A +π3)=√32,结合A 的范围可求A ,再由余弦定理求得a 2=16−3bc ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围. 【详解】△sinA +cos(A +π6)=√32,∴sinA +√32cosA −12sinA =√32,可得:sin (A +π3)=√32,∵A ∈(0,π),A +π3∈(π3,4π3),∴A +π3=2π3,解得A =π3,△b +c =4,△由余弦定理可得a 2=b 2+c 2−2bccosA =(b +c )2−2bc −bc =16−3bc ,△由b +c =4,b +c ≥2√bc ,得0<bc ≤4,△4≤a 2<16,即2≤a <4. △ABC 周长L =a +b +c =a +4∈[6,8) .故选A .2.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinsin 2B Cb a B +=,a =△ABC 周长的最大值为________.【答案】【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故b c +≤b c ==.故△ABC 周长的最大值为a b c ++故答案为:3.(2022·全国·高三专题练习)在三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin Aa ==,则该三角形周长的最大值为___________.【分析】利用正弦定理化简式子,求出tan B 的值,进而求出B 的大小,由余弦定理结合基本不等式即可求出a c +≤.【详解】由正弦定理变形有:sin sin A B a b =,又因为sin A a ==sin B B =,则tan 3B B π=2=1b ===又因为()()()()222222212cos 3344a cb ac ac B a c ac a c a c +=+-=+-≥+-⋅=+,所以()2264464a cb ac +≤=⨯=⇒+≤ “a c =”时取等.则该三角形周长的最大值为a b c ++==.【题型六】角的最值【典例分析】(2022·全国·高三专题练习(理)(文))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2c sin C =(a +b )(sin B -sin A ),则当角C 取得最大值时,B =( ) A .3π B .6πC .2π D .23π【答案】D 【分析】利用正弦定理化简已知条件,结合余弦定理与基本不等式求得C 的最大值,再通过三角形的形状,即可求得此时对应的B .【详解】由正弦定理得2c 2=(a +b )(b -a ),即b 2-a 2=2c 2.又cos C =2222a b c ab +-=2234a b ab +当且仅当3a 2=b 2,即b 时,cos C C 取到最大值6π.当b 时,3a 2-a 2=2c 2,则a =c .所以A =C =6π,从而B =π-A -C =23π.故选:D .【变式演练】1.(2022·安徽淮南·一模(文))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()322213f x x bx a c x =+++无极值点,则角B 的最大值是( )A .34πB .2πC .4π D .6π【答案】A【分析】由题知()()22220f x x bx a c '=+++=无解或有两个相等的解,即()()222240b a c ∆=-+≤,再由余弦定理得角B 的范围.【详解】解:因为()()322213f x x bx a c x =+++无极值点,所以()()22220f x x bx a c '=+++=无解或有两个相等的解,所以()()222240b a c ∆=-+≤,所以222cos 2a c b B ac +-=≥,因为()0,B π∈,所以304B π<≤.故选:A2. 2.(2022·全国·江西师大附中模拟预测(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2sin sin sin a A c C b B +=,则角A 的最大值为( )A .π6B .π4C .π3D .2π3【答案】A【分析】根据正弦定理先将角化边,再运用余弦定理和基本不等式得到cos A 的范围进而得到最后的结果 【详解】因为2sin sin sin a A c C b B += 所以2222a c b +=,进而可得2222a b c =-2222222221()32cos 224b c b c b c a b c A bc bc bc+--+-+===因为223b c +≥=,当且仅当b =时等号成立所以cos A ≥=又因为(0,)A π∈所以角A 的最大值为6π故选:A3.已知锐角△ABC 中,角、、A B C 对应的边分别为a b c 、、,△ABC的面积)222S a b c =+-,若24)tan bc a b B -=(, 则c 的最小值是ABCD【答案】C 【详解】分析:利用余弦定理列出关系式,代入已知等式中,并利用三角形面积公式化简求出C 的度数,再对24)tan bc a b B -=(进行化简整理,最后利用基本不等式求得.详解:)2221cos sin 2S a b c C ab C =+-==,即tan C =,6C π∴=.又A B C π++=,56A B π∴+=,又△ABC 为锐角三角形,∴025062B B πππ<<<-<,解得32B ππ<<, ∴)tan B ∈+∞,又24)tan bc a b B -=(,5sin 24246tan 242424242424sin sin B bc a a sinA B c c c b b B Bπ⎛⎫- ⎪-⎝⎭∴==-=-=-, 即1tan 24242tan B c B ⎛=- ⎝⎭1224tan tan c B B ∴-+≥=,当且仅当12tan tan B B =,即tan B =.24c ∴-≥c ≥故选C.【题型七】最值【典例分析】在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则22a cca c ac a +++的最小值为( )A .12B .2C .14D .4 四川省成都市成都市石室中学2020-2021学年高三下学期期中数学试题 【答案】A【分析】由1sin 2ABC S ac B =△可解得4ac =,结合基本不等式,知24a c ac +=;经过变形化简可将原式整理为222()2()a c a c ac ca c ac a ac a c +-+=+++,令t a c =+,则[4t ∈,)+∞,2818()()44t f t t t t-==-,结合函数的单调性即可得解.【详解】由1sin 2ABC S ac B =△可知,11122ac =⨯,解得4ac =,由基本不等式得,24a c ac +=.22222()2()()()()a c a c a c a c acca c ac a c a c a c a ac a c ac a c ++-+=+==++++++, 令t a c =+,则[4t ∈,)+∞,∴222818()()44a c t f t t ca c ac a t t-+===-++,在[4,)+∞上单调递增, ()min f t f ∴=(4)12=,即22a c ca c ac a +++的最小值为12. 故选:A .【变式演练】1..锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2sinA(acosC +ccosA)=√3a ,则cb 的取值范围是( ) A .(12,2)B .(√33,2√33)C .(1,2)D .(√32,1)【答案】B【分析】根据正弦定理,结合2sinA(acosC +ccosA)=√3a 可求得角B .又由三角形为锐角三角形,求得角C 的取值范围,即可求解.【详解】由正弦定理得,2sinA(sinAcosC +sinCcosA)=√3sinA ⇒sin(A +C)=√32⇒B =π3又∵A,C ∈(0,π2)∴π6<C <π2⇒12<sinC <1⇒c b=sinC sinB=2√33sinC ∈(√33,2√33) 故选B.2.在锐角ABC ∆中,A =2B ,则ABAC 的取值范围是A .(−1,3)B .(1,3)C .(√2,√3)D .(1,2)【答案】D【分析】根据在锐角ABC ∆中,每个角都是锐角确定B 的范围,利用正弦定理以及三倍角的正弦公式,化简表达式,求出范围即可.【详解】在锐角ABC ∆中,{0<2∠B <π20<∠B <π20<π−3∠B <π2可得π6<∠B <π4,cosB ∈(√22,√32),cos 2B ∈(12,34),所以由正弦定理可知AB AC=cb =sinC sinB=sin3B sinB=3sinB−4sin 3BsinB=3−4sin 2B =4cos 2B −1∈(1,2),故选D.3.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --b a 的取值范围为A .(0,+∞)B .(1,+∞) C .(0D.)+∞【答案】A 【分析】根据222c a b S --=2222a b c C ab +-=,可得cos C C =,可得tan C =可得23C π=,再利用正弦定理可得sin sin b B a A =,12,根据A 的范围可得答案.【详解】由222c a b S --=得2221sin2a b c ab C +-= ,所以2222a b c C ab +-=,所以cos C C =,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2A AA -=,因为03A π<<,所以0tan A <<所以1tan A >所以102b a >=, 所以ba 的取值范围为(0,)+∞.故选:A【题型八】切弦互化求最值【典例分析】ABC 中,角,,A B C 的对边长分别为a,b,c ,若acosB −bcosA=35c ,则tan (A −B )的 最大值为 ( )A .43B .1C .34D 【全国百强校】黑龙江省鹤岗市第一中学2019届高三上学期第二次月考数学(理)试题 【答案】C 【分析】利用正弦定理,将已知等式化简整理得sinAcosB =4sinBcosA ,两边同除以cosAcosB ,得到tanA =4tanB ,利用两角差的正切公式,得tan (A −B )=31tanB+4tanB,最后利用基本不等式求最值 . 【详解】∵acosB −bcosA =35c ,∴结合正弦定理与sinC =sin (A +B ),可得sinAcosB −sinBcosA =35(sinAcosB +cosAsinB ),整理得sinAcosB =4sinBcosA , 同除以cosAcosB ,得tanA =4tanB ,由此可得tan (A −B )=tanA−tanB 1+tanAtanB =3tanB 1+4tan 2B =31tanB+4tanB ,∵A,B 是三角形内角,且tan A 与tan B 同号,∴A,B 都是锐角,即tanA >0,tanB >0,∴tan (A −B )=31tanB+4tanB ≤34,当且仅当1tanB=4tanB ,即tanB =12时,tan (A −B )的最大值为34,故选C.【变式演练】1.在ABC ∆中,若111tan tan tan B C A+=,则cos A 的取值范围为 A .20,3⎛⎤ ⎥⎝⎦B .2,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,13⎡⎫⎪⎢⎣⎭【答案】B 【详解】分析:由已知等式正切化为弦,可得2sin cos sin sin AA B C=,结合正弦定理、余弦定理以及基本不等式求得cos A的最小值,从而可得结果.详解:111tan tan tan B C A +=,cos cos cos sin sin sin B C A B C A ∴+=,可得sin cos cos sin sin cos sin sin sin sin sin C B C B A A B C B C A +==, 2sin cos sin sin A A B C ∴=,又22,cos sin sin sin a b c a R A A B C bc ====,22222b c a a bc bc+-∴=,可得2223a b c =+,222222222223cos 22333b c b c b c a b c bc A bc bc bc bc ++-+-+∴===≥=,cos A ∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选B. 2.在ABC 中,,,a b c 分别是角,,A B C 的对边,若a 2+b 2=2014c 2,则2tanA⋅tanBtanC(tanA+tanB)的值为A .2013B .1C .0D .2014【答案】A 【分析】由a 2+b 2=2014c 2,利用余弦定理可得a 2+b 2﹣c 2=2013c 2=2abcosC .利用三角函数基本关系式和两角和的正弦公式、正弦定理可得2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2即可得出.【详解】△a 2+b 2=2014c 2,△a 2+b 2﹣c 2=2013c 2=2abcosC . △2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2=2013.故答案为:A3.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足22b a ac -=,则1tanA−1的取值范围是A .⎛ ⎝⎭B .(1,√2)C .(2√33,√2) D .(1,+∞)【答案】A根据余弦定理以及正弦定理化简条件得A 、B 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】因为b 2−a 2=ac ,所以c 2−2accosB =ac ∴c −2acosB =a ∴sinC −2sinAcosB =sinA,sin(A +B)−2sinAcosB =sinA,∴sin(B −A)=sinA ∴B −A =A,B =2A因此1tanA−1tanB=1tanA−1tan2A=1tanA−1−tan 2A 2tanA=1+tan 2A 2tanA=12(tanA +1tanA), 因为ΔABC 为锐角三角形,所以0<A <π2,0<B =2A <π2,0<C =π−B −A =π−3A <π2∴π6<A <π4,√33<tanA <1因为y =12(x +1x )在(√33,1)上单调递减,所以1tanA−1tanB∈(1,2√33),选A.【题型九】解三角形应用题【典例分析】(2022·江苏·高三课时练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出2320tan 225xx θ-=+,利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ+=+454x =时,函数取得最大值;结合两种情况的结果,即可得出结论.【详解】解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=',设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '220tan 225x x θ-∴+令y =,则函数在[0x ∈,20]单调递减,0x ∴=时,;若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '220tan 225xx θ+∴+22(20)225x y x +=+,则0y '=可得454x =. 故答案为:539.【变式演练】1.(2022·全国·高三课时练习)如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .)201千米B .)401千米C .)201D .)401【答案】D【分析】使用余弦定理及基本不等式,得到(22AB ab ≥,使用正弦定理及三角恒等变换得到ab ≥AB 的最短距离. 【详解】在ABC 中,135AOB ∠=︒,设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα=︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.在一座尖塔的正南方地面某点A ,测得塔顶的仰角为2230'︒,又在此尖塔正东方地面某点B ,测得塔顶的仰角为6730︒',且A ,B 两点距离为540m ,在线段AB 上的点C 处测得塔顶的仰角为最大,则C 点到塔底O 的距离为( ) A .90m B .100m C .110m D .270m 【答案】A 【分析】作出图示,根据正切的二倍角公式和解直角三角形求得塔的高度,再运用等面积法可求得选项. 【详解】如下图所示,设,,OC z OA x OB y ===,则222540x y +=,22.5,67.5OAP OBP ∠=∠=,则22tan 22.5tan 4511tan 22.5==-,解得tan 22.521=,22tan 67.5tan13511tan 67.5==--,解得tan 67.52+1=,所以222540+=,解得z =所以1x ==)y ==要使点C 处测得塔顶的仰角为最大,则需tan PCO ∠最大,也即需OC 最小,所以OC AB ⊥,又1122ABOSOA OB AB OC =⨯⨯=⨯⨯,即(90540OA OB OC AB ⨯===, 所以C 点到塔底O 的距离为90m ,故选:A.3..某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4米,沿AC 折叠使B 到B′位置,AB′交DC 于P ,研究发现,当ΔADP 的面积最大时最节能,则最节能时ABCD 的面积为A .3−2√2B .C .2(√2−1)D .2【答案】C 【分析】本题可以先通过设AB 、DP 分别为x 、y ,再通过题目所给信息以及AD 2+DP 2=PA 2得出x 、y 之间的关系,然后通过ΔADP 的面积列出算式,当其最大时求出AB 的值,最后得出结果. 【详解】设AB 为x ,DP 为y ,因为四边形ABCD 是周长为4的长方形,AB 为x 所以AD 为2−x ,DC 为x , 因为DP 为y ,所以PC 为x −y , 由题意可知,PC =PA ,所以有AD 2+DP 2=PA 2,即(2−x )2+y 2=(x −y )2,化简得y =2−2x , 所以S ΔADP =12(2−x )(2−2x ),化简得S ΔADP =3−(2x +2),所以当x =√2时ΔADP 面积最大,此时S ABCD =√2(2−√2)=2(√2−1),故选C .1.(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos c B A =,则tan A 等于( )A .3B .13-C .3或13- D .-3或13【答案】A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案;【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===,sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅,sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A.1 B C D .3 【答案】D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.3.(2020·全国·高考真题(文))在△ABC 中,cos C =2,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C4.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B AA-的值为( )A .19B .13 C .1 D .72【答案】D【分析】根据正弦定理边化角求解即可.【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D5.(2020·全国·高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23【答案】A【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =.故选:A.6.(2019·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3 【答案】A【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,46422422b c a c c c b A bc bc c +---==∴=-∴=∴=⨯=,故选A .7.·湖南·高考真题(文))在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A B C D 【答案】B2sin 60sin A A A =⇒==所以sin sin()sin cos cos sin C A B A B A B =+=+=则BC 边上的高h C ===,应选答案B .点睛:解答本题的思路是先运用正弦定理求出cos A ,再运用两角和的正弦公式求得sin C =,再解直角三角形可求得三角形的高h C =,从而使得问题获解.8.(2018·全国·高考真题(理))ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π6【答案】C【详解】分析:利用面积公式12ABC S absinC =和余弦定理2222a b c abcosC +-=进行计算可得.详解:由题可知222124ABC a b c S absinC +-==所以2222absinC a b c +-=由余弦定理2222a b c abcosC +-=所以sinC cosC =()C 0,π∈C 4π∴=故选C.9.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【分析】根据题中所给的公式代值解出.【详解】因为S =S10.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1##-【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=- 当且仅当311m m+=+即1m =时,等号成立,所以当ACAB取最小值时,31m =-.故答案为:31-.11.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________【分析】运用正弦定理及余弦定理可得解.【详解】根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,得BC =△ABC 3sin 3=.故答案为 12.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 60B =︒,223a c +=,则b =________. 【答案】【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABC S ac B ==,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:13.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185或0 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】△,,A D P 三点共线,△可设()0PA PD λλ=>,△32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,△32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线,△321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=,△9AP =,△3AD =,△4AB =,3AC =,90BAC ∠=︒,△5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.△根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,△()cos cos 0θπθ+-=,△()()2570665x x x --+=-,解得185x =,△CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185. 14.(2020·全国·高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB △AC ,AB △AD ,△CAE =30°,则cos△FCB =______________.【答案】14-【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC ,同理得BD BF BD ∴==ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.15.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】34π.【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D .【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.(2019·全国·高考真题(理))ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC的面积为__________.【答案】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-2a c ==11sin 22ABC S ac B ∆==⨯=1.(2022·江西·模拟预测(文))在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足1cos A A +=,sin 6cos sin A B C =,则bc的值为( )A .1B .1+C .1+D .1+【答案】A【分析】由题设化简1cos A A +=可得120A =︒,余弦定理结合sin 6cos sin A B C =可得(1b c =,即可得出答案.【详解】由题设可得22sin cos 222A A A =,即tan 2A ,则120A =︒,故由余弦定理可得222a b c bc =++;。
专题14 正弦定理和余弦定理(解析版)

由余弦定理可得 cosA = b2 + c2 − a2 = 1 ,
2bc
2
sinA = 3 , 2
又 a = 2,4 = b2 + c2 − bc 2bc − bc = bc ,即 bc 4 ,
SABC
=
1 bc sinA 2
1 4 2
3= 2
3,
即 ABC 最大面积为 3 ,故选 B. 3.(余弦定理与导数求最值)在 ABC 中, B = 30 , BC = 3, AB = 2 3 ,点 D 在边 BC 上,点 B,C 关于直线 AD 的对称点分别为 B,C ,则 BBC 的面积的最大值为
sin MDB sin DBM sin DMB
即
BM sin60
=
DM sin θ
=
1
sin (120 − θ)
,因此 BM
=
sin60
sin (120 − θ)
=
3
2
=
3 cos + 1 sin
2
2
13 = 1 BC , 44
DM
=
sin
sin θ
(120
−
θ)
=
sin θ
=1
3 cos + 1 sin 4 ,
∴当 k<− 3 时,f′(k)>0,当 − 3<k<− 3 时,f′(k)<0, 3
∴当 k = − 3 时,f(k)取得最大值 f( − 3 ) = 3 3 . 2
故选 D.
4.(解三角形与向量结合)赵爽是我国古代数学家、天文学家,大约在公元 222 年,赵爽为《周髀算经》 一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由 4 个全等的直角三角形再 加上中间的一个小正方形组成的),类比“赵爽弦图”,可类似地构造如图所示的图形,它是由 3 个全等的三
2020版高考数学新增分大一轮新高考专用讲义:第四章 4.6 正弦定理和余弦定理含解析

§4.6 正弦定理和余弦定理最新考纲 通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)===2R a sin A b sin B c sin C(2)a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(3)a =2R sin A ,b =2R sin B ,c =2R sin C ;(4)sin A =,sin B =,sin C =;a 2R b 2R c 2R (5)a ∶b ∶c =sin A ∶sin B ∶sin C ;(6)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A(7)cos A =;cos Bb 2+c 2-a 22bc =;cos C =c 2+a 2-b 22aca 2+b 2-c22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形常用面积公式(1)S =a ·h a (h a 表示边a 上的高);12(2)S =ab sin C =ac sin B =bc sin A ;121212(3)S =r (a +b +c )(r 为三角形内切圆半径).12概念方法微思考1.在△ABC 中,∠A >∠B 是否可推出sin A >sin B?提示 在△ABC 中,由∠A >∠B 可推出sin A >sin B .2.如图,在△ABC 中,有如下结论:b cos C +c cos B =a .试类比写出另外两个式子.提示 a cos B +b cos A =c ;a cos C +c cos A =b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( × )(2)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × )(3)在△ABC 中,=.( √ )a sin A a +b -csin A +sin B -sin C(4)在三角形中,已知两边和一角就能求三角形的面积.( √ )题组二 教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为 .答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =,π2所以这个三角形为等腰三角形或直角三角形.3.在△ABC 中,A =60°,AC =4,BC =2,则△ABC 的面积为 .3答案 23解析 ∵=,∴sin B =1,∴B =90°,23sin 60°4sin B∴AB =2,∴S △ABC =×2×2=2.1233题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( )A .钝角三角形 B .直角三角形C .锐角三角形 D .等边三角形答案 A解析 由已知及正弦定理得sin C <sin B cos A ,∴sin(A +B )<sin B cos A ,∴sin A cos B +cos A sin B <sin B cos A ,又sin A >0,∴cos B <0,∴B 为钝角,故△ABC 为钝角三角形.5.(2018·桂林质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解 B .有两解C .无解D .有解但解的个数不确定答案 C解析 由正弦定理得=,b sin B csin C∴sin B ===>1.b sin Cc 40×32203∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则C = .答案 2π3解析 由3sin A =5sin B 及正弦定理,得3a =5b .又因为b +c =2a ,所以a =b ,c =b ,5373所以cos C ===-.a 2+b 2-c 22ab(53b )2+b 2-(73b )22×53b ×b 12因为C ∈(0,π),所以C =.2π3题型一 利用正弦、余弦定理解三角形例1 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos .(B -π6)(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理=,a sin A bsin B 可得b sin A =a sin B .又由b sin A =a cos ,得a sin B =a cos ,(B -π6)(B -π6)即sin B =cos ,所以tan B =.(B -π6)3又因为B ∈(0,π),所以B =.π3(2)在△ABC 中,由余弦定理及a =2,c =3,B =,π3得b 2=a 2+c 2-2ac cos B =7,故b =.7由b sin A =a cos ,可得sin A =.(B -π6)217因为a <c ,所以cos A =.277因此sin 2A =2sin A cos A =,437cos 2A =2cos 2A -1=.17所以sin(2A -B )=sin 2A cos B -cos 2A sin B=×-×=.4371217323314思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.跟踪训练1 (1)(2018·天津河西区模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2B -sin 2C -sin 2A =sin A sin C ,则B 的大小为( )3A .30° B .60° C .120° D .150°答案 D解析 因为sin 2B -sin 2C -sin 2A =sin A sin C ,3所以b 2-c 2-a 2=ac ,3即a 2+c 2-b 2=-ac ,3则cos B ==-,a 2+c 2-b 22ac 32又0°<B <180°,则B =150°.(2)如图所示,在△ABC 中,D是边AC 上的点,且AB =AD,2AB =BD ,BC =2BD ,则sin 3C 的值为.答案 66解析 设AB =a ,∵AB =AD,2AB =BD ,BC =2BD ,∴AD =a ,BD =,BC =.在△ABD 32a34a3中,cos ∠ADB ==,∴sin ∠ADB =,∴sin ∠BDC =.在△BDC 中,=a 2+4a 23-a 22a ×2a 3336363BDsin C,BCsin ∠BDC∴sin C ==.BD ·sin ∠BDCBC 66题型二 和三角形面积有关的问题例2 (2018·济南模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且b cos A -a cos B =2c .(1)证明:tan B =-3tan A ;(2)若b 2+c 2=a 2+bc ,且△ABC 的面积为,求a .33(1)证明 根据正弦定理,由已知得sin B cos A -cos B sin A =2sin C =2sin(A +B ),展开得sin B cos A -cos B sin A =2(sin B cos A +cos B sin A ),整理得sin B cos A =-3cos B sin A ,所以tan B =-3tan A .(2)解 由已知得b 2+c 2-a 2=bc ,3所以cos A ===,b 2+c 2-a 22bc 3bc 2bc32由0<A <π,得A =,tan A =,∴tan B =-,π6333由0<B <π,得B =,所以C =,a =c ,2π3π6由S =ac sin =×a 2=,得a =2.122π312323思维升华 (1)对于面积公式S =ab sin C =ac sin B =bc sin A ,一般是已知哪一个角就使用哪121212一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练2 (1)(2018·承德质检)若AB =2,AC =BC ,则S △ABC 的最大值为( )2A .2 B. C. D .3232232答案 A解析 设BC =x ,则AC =x .根据三角形的面积公式,2得S △ABC =·AB ·BC sin B =x .①121-cos 2B 根据余弦定理,得cos B ===.②AB 2+BC 2-AC 22AB ·BC 4+x 2-2x 24x 4-x 24x 将②代入①,得S △ABC =x =.1-(4-x 24x )2128-(x 2-12)216由三角形的三边关系,得Error!解得2-2<x <2+2,22故当x =2时,S △ABC 取得最大值2,故选A.32(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =,则△ABCπ3的面积是________.答案 332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6. ①∵C =,π3∴c 2=a 2+b 2-2ab cos =a 2+b 2-ab .②π3由①②得-ab +6=0,即ab =6.∴S △ABC =ab sin C =×6×=.121232332题型三 正弦定理、余弦定理的应用命题点1 判断三角形的形状例3 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 方法一 由余弦定理可得a =2b ·,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c ,a 2+b 2-c 22ab 从而△ABC 为等腰三角形.方法二 由正弦定理可得sin A =2sin B cos C ,因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C ,于是sin(B -C )=0,因此B -C =0,即B =C ,故△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =,∴△ABC 为直角三角形.π2引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状.解 ∵2sin A cos B =sin C =sin(A +B ),∴2sin A cos B =sin A cos B +cos A sin B ,∴sin(A -B )=0.又A ,B 为△ABC 的内角.∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状.解 ∵a 2+b 2-c 2=ab ,∴cos C ==,a 2+b 2-c 22ab 12又0<C <π,∴C =,π3又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B ,故△ABC 为等边三角形.命题点2 求解几何计算问题例4 (2018·云南11校跨区调研)如图,在四边形ABCD 中,∠DAB =,AD ∶AB =2∶3,BD =π3,AB⊥BC .7(1)求sin ∠ABD 的值;(2)若∠BCD =,求CD 的长.2π3解 (1)因为AD ∶AB =2∶3,所以可设AD =2k ,AB =3k .又BD =,∠DAB =,7π3所以由余弦定理,得()2=(3k )2+(2k )2-2×3k ×2k cos ,解得k =1,所以AD =2,AB =3,7π3sin ∠ABD ===.AD sin ∠DAB BD 2×327217(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =,217所以sin ∠DBC =,所以=,277BD sin ∠BCD CD sin ∠DBC 所以CD ==.7×27732433思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示;②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练3 (1)(2018·安徽六校联考)在△ABC 中,cos 2=(a ,b ,c 分别为角A ,B ,CB 2a +c2c 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案 B解析 ∵cos 2=,cos 2=,B 21+cos B 2B 2a +c2c ∴(1+cos B )·c =a +c ,∴a =cos B ·c =,a 2+c 2-b 22a ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.(2)(2018·洛阳统考)在△ABC 中,B =30°,AC =2,D 是AB 边上的一点,CD =2,若∠ACD 5为锐角,△ACD 的面积为4,则BC = .答案 4解析 依题意得S △ACD =CD ·AC ·sin ∠ACD =2·sin ∠ACD =4,sin ∠ACD =.12525又∠ACD 是锐角,因此cos ∠ACD ==.1-sin 2 ∠ACD 15在△ACD 中,AD ==4,CD 2+AC 2-2CD ·AC ·cos ∠ACD =,sin A == .AD sin ∠ACD CDsin A CD ·sin ∠ACD AD 15在△ABC 中,=,BC ==4.AC sin B BC sin A AC ·sin A sin B1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =,b =3,A =60°,则边c 等13于( )A .1B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A ,∴13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =2,C =30°,则B 等于( )3A .30° B .60°C .30°或60° D .60°或120°答案 D解析 ∵c =2,b =2,C =30°,∴由正弦定理可得3sin B ===,由b >c ,可得30°<B <180°,b sin Cc 23×12232∴B =60°或B =120°.3.(2018·南昌模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( )A. B. C .1 D .21214答案 A解析 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =(负值舍去),由bc =2,可得△ABC12的面积S =bc sin A =×2×=.121212124.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =,n =,p =(a ,cos A 2)(b ,cos B2)共线,则△ABC 的形状为( )(c ,cos C2)A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形答案 A解析 ∵向量m =,n =共线,(a ,cos A 2)(b ,cos B2)∴a cos =b cos .B 2A2由正弦定理得sin A cos =sin B cos .B 2A2∴2sin cos cos =2sin cos cos .A 2A 2B 2B 2B 2A2则sin =sin .∵0<<,0<<,∴=,即A =B .A 2B 2A 2π2B 2π2A 2B2同理可得B =C .∴△ABC 的形状为等边三角形.故选A.5.(2018·合肥质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =,b cos A +a cos223B =2,则△ABC 的外接圆面积为( )A .4π B .8π C .9π D .36π答案 C解析 c =b cos A +a cos B =2,由cos C =,得sin C =,再由正弦定理可得2R ==6,R22313c sin C =3,所以△ABC 的外接圆面积为πR 2=9π,故选C.6.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,sin A ,sin B ,sin C 成等比数列,且c =2a ,则cos B 的值为( )A. B. C. D.14342423答案 B解析 因为sin A ,sin B ,sin C 成等比数列,所以sin 2B =sin A sin C ,由正弦定理得b 2=ac ,又c =2a ,故cos B ===.a 2+c 2-b 22ac a 2+4a 2-2a 24a 2347.(2018·成都模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =ac ,3则角B 的值为 .答案 或π32π3解析 由余弦定理,得=cos B ,a 2+c 2-b 22ac 结合已知等式得cos B ·tan B =,32∴sin B =,又0<B <π,∴B =或.32π32π38.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =,sin B =,C =,则b312π6= .答案 1解析 因为sin B =且B ∈(0,π),12所以B =或B =.π65π6又C =,B +C <π,π6所以B =,A =π-B -C =.π62π3又a =,由正弦定理得=,3a sin A bsin B 即=,332b 12解得b =1.9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =,C =,则△ABC 的面π6π4积为 .答案 +13解析 ∵b =2,B =,C =.π6π4由正弦定理=,b sin B c sin C 得c ===2,A =π-=,b sin C sin B 2×22122(π6+π4)7π12∴sin A =sin =sin cos +cos sin(π4+π3)π4π3π4π3=.6+24则S △ABC =bc sin A =×2×2×=+1.121226+24310.如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =,AB =3,AD =3,2232则BD 的长为________.答案 3解析 因为sin ∠BAC =,且AD ⊥AC ,223所以sin =,(π2+∠BAD )223所以cos ∠BAD =,在△BAD 中,由余弦定理,223得BD =AB 2+AD 2-2AB ·AD cos ∠BAD==.(32)2+32-2×32×3×223311.(2018·珠海模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =,且B 为钝角,求A ,B ,C .34(1)证明 由正弦定理知===2R ,a sin Ab sin B csin C ∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得sin A =sin B ·,又∵A ∈(0,π),∴sin A >0,sin Acos A ∴1=,即sin B =cos A .sin Bcos A(2)解 由sin C -sin A cos B =知,34sin(A +B )-sin A cos B =,∴cos A sin B =.3434由(1)知,sin B =cos A ,∴cos 2A =,由于B 是钝角,34故A ∈,∴cos A =,A =.(0,π2)32π6sin B =,B =,∴C =π-(A +B )=.322π3π612.(2018·北京)在△ABC 中,a =7,b =8,cos B =-.17(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-,17所以sin B ==.1-cos 2B 437由正弦定理得sin A ==.a sin Bb 32由题设知<∠B <π,所以0<∠A <,π2π2所以∠A =.π3(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =,3314所以AC 边上的高为a sin C =7×=.331433213.在△ABC 中,a 2+b 2+c 2=2ab sin C ,则△ABC 的形状是( )3A .不等腰的直角三角形B .等腰直角三角形C .钝角三角形D .正三角形答案 D解析 易知a 2+b 2+c 2=a 2+b 2+a 2+b 2-2ab cos C =2ab sin C ,即a 2+b 2=2ab sin ,3(C +π6)由于a 2+b 2≥2ab ,当且仅当a =b 时取等号,所以2ab sin ≥2ab ,sin ≥1,故只(C +π6)(C +π6)能a =b 且C +=,所以△ABC 为正三角形.π6π214.(2018·大理模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =b cos 3A .若a =4,则△ABC 周长的最大值为________.答案 12解析 由正弦定理=,a sin A bsin B可将a sin B =b cos A 转化为sin A sin B =sin B cos A .33又在△ABC 中,sin B >0,∴sin A =cos A ,3即tan A =.3∵0<A <π,∴A =.π3由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-32,(b +c 2)则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立),∴△ABC 的周长l =a +b +c =4+b +c ≤12,即最大值为12.15.在△ABC 中,C =60°,且=2,则△ABC 面积S 的最大值为.a sin A 答案 334解析 由C =60°及==2,可得c =.c sin C asin A3由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号),∴S =ab sin C ≤×3×=,121232334∴△ABC 的面积S 的最大值为.33416.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2-(b -c )2=(2-)bc ,且sin B =1+cos 3C ,BC 边上的中线AM 的长为.7(1)求角A 和角B 的大小;(2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-)bc ,3得a 2-b 2-c 2=-bc ,即b 2+c 2-a 2=bc ,33∴cos A ==,b 2+c 2-a 22bc 32又0<A <π,∴A =.π6又sin B =1+cos C,0<sin B <1,∴cos C <0,即C 为钝角,∴B 为锐角,且B +C =,5π6则sin=1+cos C ,化简得cos =-1,(5π6-C )(C +π3)解得C =,∴B =.2π3π6(2)由(1)知,a =b ,sin C =,cos C =-,3212在△ACM 中,由余弦定理得AM 2=b 2+2-2b ··cos C (a 2)a2=b 2++=()2,解得b =2,b 24b 227故S △ABC =ab sin C =×2×2×=.1212323。
余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)

变式 1.(2011 年上海)在相距 2 千米的 A,B 两点处测量目标 C,
若∠CAB=75°,∠CBA=60°,求 A,C 两点之间的距离.
解:由条件知:C=180°-75°-60°=45°, 由正弦定理得sAinCB=sAinBC, 即siAn6C0°=sin245°. 解得 AC= 6.
例2:在△ABC 中,若 2cosBsinA=sin ,试判断CABC 的形 状.
2.余弦定理
a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,c2
= a2+b2-2abcos C .余弦定理可以变形:cos A
b2+c2-a2
a2+c2-b2
a2+b2-c2
= 2bc ,cos B= 2ac ,cos C= 2ab .
3.三角形中常用的面积公式
(1)S=12ah(h 表示边 a 上的高);
2
2
整理,得4cos2 C 4cos C 1 0,解得cos C 1 , 2
0 C 180,C 60.
(2)由余弦定理得c2 a2 b2 2abcos C,
即7=a2+b2-ab,∴7=(a+b)2-3ab, 由条件a+b=5,得7=25-3ab,ab=6,
SABC
1 2
absin
b=2,a=x,如 c 有两组解,则 x 的取值范围是
.
解 : 当 asinB< b< a 时 , 三 角 形 ABC 有 两 组 解 . 又 b=2, B=60°, a=x, 如 果 三 角 形 ABC 有 两 组 解 ,
那 么 x 应 满 足 xsin60°< 2< x, 即 2< x< 4
3
,
10
正弦定理和余弦定理 (含详解)

第三章第七节正弦定理和余弦定理1.(2009·广东高考)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b = ( )A .2B .4+2 3C .4-2 3 D.6- 2解析:如图所示.在△ABC 中,由正弦定理得sin 30b == =4, ∴b=2. 答案:A2.在锐角△ABC 中,BC =1,B =2A ,则AC cos A的值等于______,AC 的取值范围为________. 解析:由正弦定理得AC sin2A =BC sin A. 即AC 2sin A cos A =1sin A .∴AC cos A =2. ∵△ABC 是锐角三角形,∴0<A <π2,0<2A <π2,0<π-3A <π2,解得π6<A <π4. 由AC =2cos A 得AC 的取值范围为(2,3).答案:2 (2,3)3.(2009·全国卷Ⅰ)在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .解:由余弦定理得a 2-c 2=b 2-2bc cos A .又a 2-c 2=2b ,b ≠0,所以b =2c cos A +2.①又sin A cos C =3cos A sin C ,sin A cos C +cos A sin C =4cos A sin C ,sin(A +C )=4cos A sin C ,sin B =4sin C cos A .由正弦定理得sin B =b c sin C ,故b =4c cos A .②由①、②解得b =4.4.(2010·天津模拟)在△ABC 中,cos 2B 2=a +c 2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:∵cos 2B 2=a +c 2c ,∴cos B +12=a +c 2c,∴cos B =a c , ∴a 2+c 2-b 22ac=a c , ∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.答案:B5.在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形解析:法一:因为在△ABC 中,A +B +C =π,即C =π-(A +B ),所以sin C =sin(A +B ).由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,即sin(A -B )=0.又因为-π<A -B <π,所以A -B =0,即A =B .所以△ABC 是等腰三角形.法二:利用正弦定理和余弦定理2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0, 即a 2=b 2,故a =b .所以△ABC 是等腰三角形.答案:B6.在△ABC 中,AB =3,AC =1,B =π6,则△ABC 的面积等于 ( ) A.32 B.34 C.32或 3 D.32或34解析:由正弦定理知AB sin C =AC sin B ,∴sin C =AB sin B AC =32, ∴C =π3或2π3,A =π2或π6,∴S =32或34. 答案:D7.在△ABC 中,面积S =a 2-(b -c )2,则cos A = ( )A.817B.1517C.1315D.1317解析:S =a 2-(b -c )2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴sin A =4(1-cos A ),16(1-cos A )2+cos 2A =1,∴cos A =1517. 答案:B8.(2009·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB ·AC =3. (1)求△ABC 的面积;(2)若c =1,求a 的值.解:(1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45. 又由AB ·AC =3,得bc cos A =3,所以bc =5. 因此S △ABC =12bc sin A =2. (2)由(1)知,bc =5,又c =1,所以b =5,由余弦定理,得a 2=b 2+c 2-2bc cos A =20,所以a =2 5.9.若△ABC ( )A .5B .6C .7D .8解析:依题意及面积公式S =12bc sin A , 得103=12bc sin60°,得bc =40. 又周长为20,故a +b +c =20,b +c =20-a ,由余弦定理得:a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos60°=b 2+c 2-bc =(b +c )2-3bc ,故a 2=(20-a )2-120,解得a =7.答案:C10.(文)在三角形ABC 中,已知∠B =60°,最大边与最小边的比为3+12,则三角形的最大角为 ( )A .60°B .75°C .90°D .115°解析:不妨设a 为最大边.由题意,a c =sin A sin C =3+12, 即sin A sin(120°-A )=3+12, ∴sin A 32cos A +12sin A =3+12, (3-3)sin A =(3+3)cos A ,∴tan A =2+3,∴A =75°.答案:B(理)锐角△ABC 中,若A =2B ,则a b的取值范围是 ( ) A .(1,2) B .(1,3) C .(2,2) D .(2,3)解析:∵△ABC 为锐角三角形,且A =2B ,∴⎩⎨⎧0<2B <π2,0<π-3B <π2,∴π6<B <π4, ∴sin A =sin2B =2sin B cos B ,a b =sin Asin B =2cos B ∈(2,3).答案:D11.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ),若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =________.解析:∵m ⊥n ,∴3cos A -sin A =0,∴tan A =3,∴A =π3. ∵a cos B +b cos A =c sin C ,∴sin A cos B +sin B cos A =sin C sin C ,∴sin(A +B )=sin 2C ,∴sin C =sin 2C ,∵sin C ≠0,∴sin C =1.∴C =π2,∴B =π6. 答案:π612.(文)(2010·长郡模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2C sin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围.解:(1)由b a -b =sin2C sin A -sin2C及正弦定理得sin B =sin2C , ∴B =2C ,且B +2C =π,若B =2C ,π3<C <π2, ∴23π<B <π,B +C >π(舍); ∴B +2C =π,则A =C ,∴△ABC 为等腰三角形.(2)∵|BA +BC |=2,∴a 2+c 2+2ac ·cos B =4,∴cos B =2-a 2a 2(∵a =c ), 而cos B =-cos2C ,π3<C <π2, ∴12<cos B <1, ∴1<a 2<43, 又BA ·BC =ac cos B =2-a 2,∴BA ·BC ∈(23,1).(理)(2010·广州模拟)在△ABC 中,A ,B ,C 分别是三边a ,b ,c 的对角.设m =(cos C 2,sin C 2),n =(cos C 2,-sin C 2),m ,n 的夹角为π3. (1)求C 的大小;(2)已知c =72,三角形的面积S =332,求a +b 的值. 解:(1)m ·n =cos 2C 2-sin 2C 2=cos C , 又m ·n =|m ||n |cos π3=12, 故cos C =12,∵0<C <π,∴C =π3. (2)S =12ab sin C =12ab sin π3=34ab , 又已知S =332,故34ab =332,∴ab =6. ∵c 2=a 2+b 2-2ab cos C ,c =72, ∴494=a 2+b 2-2ab ×12=(a +b )2-3ab . ∴(a +b )2=494+3ab =494+18=1214, ∴a +b =112.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点31 正弦定理、余弦定理【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等 【基础知识回顾】1.正弦定理a sin A =b sin B =csin C =2R (R 为△ABC 外接圆的半径).a 2=b 2+c2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1、 在△ABC 中,若AB =13,BC =3,C =120°,则AC 等于( )A .1B .2C .3D .4 【答案】:A 【解析】:设在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则a =3,c =13,C =120°,由余弦定理得13=9+b 2+3b ,解得b =1或b =-4(舍去),即AC =1. 2、 已知△ABC ,a =5,b =15,A =30°,则c 等于( )A .2 5 B.5 C .25或 5 D .均不正确【答案】:C 【解析】:∵a sin A =b sin B ,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°. 若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3、 在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B.3 C .2 3 D .2 【答案】:B 【解析】:因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1, 所以BC 2=AB 2+AC 2-2AB ·AC cos A =3.所以BC = 3. 4、 在△ABC 中,cos C 2=55,BC =1,AC =5,则AB 等于( )A .4 2 B.30 C.29 D .25【答案】:A 【解析】:∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =32=4 2.故选A.5、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】:B 【解析】:由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.6、在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 【答案】:B 【解析】:∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a , ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.7、 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC的面积为 . 【答案】:233 【解析】:由b sin C +c sin B =4a sin B sin C , 得sin B sin C +sin C sin B =4sin A sin B sin C ,因为sin B sin C ≠0,所以sin A =12.因为b 2+c 2-a 2=8,所以cos A =b 2+c 2-a 22bc >0, 所以bc =833,所以S △ABC =12×833×12=233.8、 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为__________. 【答案】:3 【解析】:由正弦定理a sin A =b sin B =csin C ,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B , 即(cos A -3cos C )sin B =(3sin C -sin A )·cos B , 化简可得sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin Csin A =3.考向一 运用正余弦定理解三角形例1、(2020届山东实验中学高三上期中)在ABC △中,若3,120AB BC C ==∠=,则AC =( ) A .1 B .2C .3D .4【答案】A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.变式1、(2021·山东泰安市·高三三模)在中,,,,则( )ABC .D .【答案】DABC3AC =2BC =3cos 4C =tan A =33【解析】由余弦定理可以求出,有可判断,进而可以求出. 【解析】由余弦定理得:, 所以,因为,所以,所以, 故选:D .变式2、【2020江苏淮阴中学期中考试】在ABC 中,如果sin :sin :sin 2:3:4A B C =,那么tan C =________.【答案】【解析】∵sin A :sin B :sin C =2:3:4,∴由正弦定理可得:a :b :c =2:3:4,∴不妨设a =2t ,b =3t ,c =4t ,则cos C 2222224916122234a b c t t t ab t t +-+-===-⨯⨯,∵C ∈(0,π),∴tanC ==答案为变式3、(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 【答案】4 【解析】∵cos cos sin A B Ca b c+=, ∴由正弦定理得cos cos sin sin sin sin A B CA B C+=, ∴111tan tan A B+=, 又22265b c a bc +-=,∴由余弦定理得62cos 5A =,∴3cos 5A =,∵A 为ABC ∆的内角,∴4sin 5A =,∴4tan 3A =,∴tan 4B =, 故答案为:4.2AB =AB BC =A C =tan A 2222232cos 3223244AB AC BC BC AC C =+-⋅=+-⨯⨯⨯=2AB =AB BC =A C =3cos cos 4A C ==tan 3A =变式4、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=. (1)求a ,b 的值: (2)求sin C 的值.【答案】(1)3a =,7b =;(2. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin B =由正弦定理得5sin sin 7214c C B b ==⨯=方法总结:本题考查正弦定理、余弦定理的公式.在解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.考查基本运算能力和转化与化归思想.考向二 利用正、余弦定理判定三角形形状例2、已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,下列四个命题中正确的是( )A .若tan A +tanB +tanC >0,则△ABC 是锐角三角形 B .若a cos A =b cos B ,则△ABC 是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 是等腰三角形D .若a cos A =b cos B =ccos C ,则△ABC 是等边三角形 【答案】:ACD 【解析】:∵tan A +tan B +tan C =tan A tan B tan C >0, ∴A ,B ,C 均为锐角,∴选项A 正确;由a cos A =b cos B 及正弦定理,可得sin 2A =sin 2B , ∴A =B 或A +B =π2,∴△ABC 是等腰三角形或直角三角形,∴选项B 错; 由b cos C +c cos B =b 及正弦定理, 可知sin B cos C +sin C cos B =sin B , ∴sin A =sin B ,∴A =B ,∴选项C 正确;由已知和正弦定理,易知tan A =tan B =tan C , ∴选项D 正确.变式1、△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 【解析】 (1)由已知,根据正弦定理得:2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc ,由余弦定理得:a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由(1)得:sin 2A =sin 2B +sin 2C +sin B sin C ,∵A =120°,∴34=sin 2B +sin 2C +sin B sin C ,与sin B +sin C=1联立方程组解得:sin B =sin C =12,∵0°<B <60°,0°<C <60°,故B =C =30°,∴△ABC 是等腰钝角三角形.变式2、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形【答案】 (1)B (2)C 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12. 因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.方法总结: 判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系.正(余)弦定理是转化的桥梁.考查转化与化归思想. 考点三 运用正余弦定理研究三角形的面积考向三 运用正余弦定理解决三角形的面积例3、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A . (1) 求角A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积. 【解析】:(1) (解法1)在△ABC 中,由正弦定理,及b cos C +c cos B =2a cos A , 得sin B cos C +sin C cos B =2sin A cos A , 即sin A =2sin A cos A .因为A ∈(0,π),所以sin A ≠0, 所以cos A =12,所以A =π3.(解法2)在△ABC 中,由余弦定理,及b cos C +c cos B =2a cos A , 得b a 2+b 2-c 22ab +c a 2+c 2-b 22ac =2a b 2+c 2-a 22bc , 所以a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =12. 因为A ∈(0,π),所以A =π3.(2) 由AB →·AC →=cb cos A =3,得bc =23,所以△ABC 的面积为S =12bc sin A =12×23×sin60°=32变式1、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cosA -3sinB cos B . (1) 求角C 的大小;(2) 若sin A =45,求△ABC 的面积. 【解析】:(1) 由题意得 1+cos2A 2-1+cos2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3. (2) 由c =3,sin A =45,a sin A =c sin C ,得a =85. 由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.变式2、(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 【答案】4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.变式3、【2020江苏溧阳上学期期中考试】在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3b =,222sin sin 3sin A B C -=,1cos 3A =-,则ABC ∆的面积是______.【解析】3b =,222sin sin 3sin A B C -=,∴由正弦定理可得2222339a c b c =+=+,又1cos 3A =-,∴由余弦定理可得22222cos 92a b c bc A c c =+-=++,223992c c c ∴+=++,解得1c =,又sin A ==,11sin 3122ABC S bc A ∆∴==⨯⨯.方法总结:1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.考向三 结构不良题型例4、(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sin sin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积. 【解析】 若选①:由正弦定理得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===,因为(0,)A π∈,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②:由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan 3A =,因为0A π<<,所以6A π=.又因为2222cos6a b c bc π=+-,所以2222bc =24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③:由正弦定理得sin sinsin sin 2B CB A B +=, 因为0B π<<,所以sin 0B ≠,所以sinsin 2B CA +=,又因为BC A +=π-, 所以cos 2sin cos 222A A A=,因为0A π<<,022A π<<,所以cos 02A≠,1sin 22A ∴=,26A π=,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 变式1、(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①b ac -=②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分) 【解析】(1)由①()33b a c c a b -+=+得,()2223a c b +-=-,所以222cos 2a c b B ac +-== 由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A =或cos 1A =-(舍),所以3A π=,因为1cos 32B =-<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾.所以ABC ∆不能同时满足①,②. 故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以28623c c =++⨯,即2420c c +-=.解得2c =.所以ABC ∆的面积1sin 2S ac B ==若ABC ∆满足②,③,④由正弦定理sin sin a b A B==sin 1B =,所以c =ABC ∆的面积1sin 2S bc A ==变式2、(2020cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.【解析】cos sin )sin sin B C A C B -=. 由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0,B =22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B = 又0B π<<,得23B π=.由余弦定理及b =得22222cos3a c ac π=+-, 即212()a c ac =+-.将4a c +=代入,解得4ac =.所以1sin 2ABC S ac B =△1422=⨯⨯= 在横线上填写“22cos a c b C +=”. 解:由22cos a c b C +=及正弦定理,得2sin sin 2sin cos A C B C ++=.又sin sin()sin cos cos sin A B C B C B C =+=+, 所以有2cos sin sin 0B C C +=. 因为(0,)C π∈,所以sin 0C ≠. 从而有1cos 2B =-.又(0,)B π∈, 所以23B π=由余弦定理及b =得22222cos3a c ac π=+-即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以11sin 4222ABCSac B ==⨯⨯=在横线上填写“sin sin2A Cb A +=”解:由正弦定理,得sin sin sin 2BB A A π-=.由0A π<<,得sin A θ≠,所以sin 2B B =由二倍角公式,得2sincos 222B B B =.由022B π<<,得cos 02B ≠,所以sin 22B =. 所以23B π=,即23B π=.由余弦定理及b =得22222cos3a c ac π=+-. 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以1sin 2ABC S ac B =△142=⨯=1、【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC =,根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =, 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .2、【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则 A.3、【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.4、【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 222ABC S ac B ==⨯=△ 5、【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.6、【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B ==由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).7、(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积. 【解析】 (Ⅱ)()2cos cos 0a c B b A ++=,()sin 2sin cos sin cos 0A C B B A ∴++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,()sin 2cos sin 0A B B C ++=, ()sin sin A B C +=.1cos 2B ∴=-,20,3B B ππ<<∴=.(Ⅱ)由余弦定理得221922a c ac ⎛⎫=+-⨯-⎪⎝⎭, ()2229,9a c ac a c ac ++=∴+-=,33,a b c b a c ++=+=∴+= 3ac ∴=,11sin 322ABCSac B ∴==⨯=. 8、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin 2B =由正弦定理得5sin sin 7c C B b ===9、【2020年新高考全国Ⅱ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.。