三角恒等变换题型大全
三角恒等变换专题(蛮全的)

三角恒等变换专题复习一.要点精讲1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±; S αβ±()简记: βαβαβαsin sin cos cos )cos( =±; C αβ±()简记: tan tan tan()1tan tan αβαβαβ±±=。
()T αβ±简记:2.二倍角公式αααcos sin 22sin =; 2S α简记ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 2C α简记22tan tan 21tan ααα=-。
(242k k πππααπ≠+≠+且)2T α简记二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,2α是4α的两倍, 3α是32α的两倍,3α是6α的两倍等,所有这些都可以应用二倍角公式。
因此,要理解“二倍角”的含义,即当=2αβ时,α就是β的二倍角。
凡是符合二倍角关系的就可以应用二倍角公式。
3.半角公式2cos 12sinαα-±=2c o s12c o s αα+±=αααc o s1c o s 12t a n +-±=【.2α±公式前的号,取决于所在的象限,注意讨论】(αααααsin cos 1cos 1sin 2tan-=+=)4. (1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。
(αα2cos 1sin22-= αα2c o s 1c o s 22+=)(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中(3)万能公式5.三角函数式的化简、求值、证明(1)三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
三角恒等变换大题(含详细解答)

三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。
三角恒等变换的常见题型

三角恒等变换的常见题型湖南浏阳九中 吴志华三角恒等变换也是高考复习的重点之一,三角函数的化简、求值及三角恒等式的证明是三角变换的基本问题。
历年高考中,在考察三角公式的掌握和运用的同时,还注重考察思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。
题型一:三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
例1.(06北京理,15)已知函数1)4()cos x f x xπ-=. 设α的第四象限的角,且tan α43=-,求()f α的值。
分析:先利用公式βαβαβαsin cos cos sin )sin(-=-将)42sin(π-x 展开,再利用公式x x 2cos 22cos 1=+将分子变换,从而将函数化简。
再利用αtan 的值求出ααcos ,sin 的值,最后得出)(αf 的值。
解析:xx xx x x x x x x x x f sin 2cos 2cos cos sin 2cos 2cos 2cos 2sin 1cos )42sin(21)(2-=-=+-=--=π∵α是第四象限的角且34tan -=α,∴53cos ,54sin =-=αα∴514sin 2cos 2)(=-=αααf 点评:能化简的先化简后求值,可以使计算简便题型二:三角函数的求值 三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。
三角恒等变换(知识、题型、训练及答案)

三角恒等变换知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan α. 3.辅助角公式函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2·cos(α-φ).(其中,ab =ϕtan )注意:1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.在三角求值时,往往要借助角的范围求值.基础自检测1.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.792.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.453.tan 20°+tan 40°+3tan 20°·tan 40°=________.4.sin 347°cos 148°+sin 77°·cos 58°=________.题型解析题型一 三角函数式的化简【例1】(1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.【训练1】 cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α题型二 三角函数式的求值【例2】(1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.(2)若sin ⎪⎭⎫ ⎝⎛-απ3=14,则cos ⎪⎭⎫ ⎝⎛+απ23=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.【训练2】 (1)已知x ∈(0,π),且cos ⎪⎭⎫ ⎝⎛-22πx =sin 2x ,则tan ⎪⎭⎫ ⎝⎛-4πx =( )A.13B.-13C.3D.-3(2)已知α∈⎥⎦⎤⎢⎣⎡20π,,cos ⎪⎭⎫ ⎝⎛+3πα=-23,则cos α=________.题型三 三角变换的简单应用【例3】 △ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B 2的最大值.【训练3】已知函数f (x )=3cos ⎪⎭⎫ ⎝⎛-32πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡-4,4ππ时,f (x )≥-12.答案诊 断 自 测1.A2.D3.34.22【例1】 (1)sin(α+γ) (2)cos α 【训练1】 D 【例2】(1)6 (2)-78 (3)-3π4【训练2】(1)A (2)15-26【例3】解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A-cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝ ⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,B +A >π2,所以π6<B <π2, 所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 此时B =π3,y max =2.【训练3】 (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12. ∴f (x )≥-12成立.。
三角恒等变换问题(典型题型)

三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减)已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++=两式相加得,1322(cos sin sin cos )36αβαβ+-=化简得,59sin()72βα-=-即59sin()72αβ-=方法评析:式的变换包括:➢ 1、tan(α±β)公式的变用 ➢ 2、齐次式➢ 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) ➢ 4、两式相加减,平方相加减➢ 5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化) 已知27sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故333482534tan()31113tan 331παα-+-+===-+方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin33x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得 方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=. 方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】高中数学53个题型归纳与方法技巧总结篇专题18三角恒等变换知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα==sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【方法技巧与总结】1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±;1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;;2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3.拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-;④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明题型二:给式求值题型三:给值求值题型四:给值求角题型五:正切恒等式及求非特殊角【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+;②倍角公式(2)S α,(2)C α,(2)T α.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数22sin 26cos 3426cos34+ ;22sin 39cos 2139cos 21+ ;()()22sin 52cos 11252cos112-+- ;22sin 30cos 3030cos30+ .(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=()ABCD例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为()A .13B .13-C .23D .23-例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=()AB .12C .12-D.例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos 25β=,()4cos 5αβ+=,则cos α=___________.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭sin 2α的值为_____________.例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin 2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+()A .12B .12-C .2D .-2例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭()A .78-B .78C .D 例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=()A .B .C .12D 例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .2325B .2325-C D .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α()A .2425B .2425-C .725D .725-例17.(2022·广东茂名·模拟预测)已知1sin 62πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭()A .B .12-C .12D(多选题)例18.(2022·江苏·高三专题练习)已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+=则()A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ=【方法技巧与总结】给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.题型四:给值求角例19.(2022·全国·模拟预测)已知263ππα<<,sin 4sin cos tan 15315315πππππαα⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭则α=______.例20.(2022·河南·南阳中学高三阶段练习(文))已知3sin 44ππαβ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,求αβ-的值为_____.例21.(2022·河北石家庄·一模)已知角π0,2α⎛⎫∈ ⎪⎝⎭,πsin sinπ12tan π12cos cos 12αα-=+,则α=______.例22.(2022·上海市大同中学高三开学考试)若()0,απ∈,且cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则α的值为___________.例23.(2022·全国·高三专题练习)若sin 2α=()sin βα-=且ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是______.例24.(2022·吉林·延边州教育学院一模(理))若sin 2α=,()sin βα-=且π,π4α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .7π4B .π4C .4π3D .5π3例25.(2022·上海交大附中高三开学考试)已知α、β都是锐角,且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=,那么α、β之间的关系是()A .4παβ+=B .4αβ-=πC .24παβ+=D .22παβ+=例26.(2022·江苏省江阴高级中学高三开学考试)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=()A .4πB .4π-C .34π-D .34π-或4π【方法技巧与总结】给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.题型五:正切恒等式及求非特殊角例27.(2022·湖北·襄阳四中模拟预测)若角α的终边经过点()sin 70,cos70P ︒︒,且tan tan 2tan tan 2m αααα++⋅=,则实数m 的值为()A.B.CD例28.(2021·重庆八中高三阶段练习)sin10︒︒=()A .14B C .12D例29.(2020·=()A .1BC D .例30.(2022·全国·高三专题练习)()tan 30tan 70sin10︒+︒︒=___________.例31.(2022·江苏南通·高三期末)若11sin α=,则α的一个可能角度值为__________.例32.(2022·江苏扬州·模拟预测)1tan 751tan 75-︒=+︒___________.例33.(2022·贵州黔东南·一模(文))若()1tan 3αβ+=,()1tan 6a β-=,则tan 2α=___________.例34.(2022·山东·青岛二中高三开学考试)tan10tan 35tan10tan 35︒+︒+︒︒=______.【方法技巧与总结】正切恒等式:当A B C k π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅.证明:因为tan tan tan()1tan tan A BA B A B++=-,tan tan ()C A B =-+,所以tan tan tan (1tan tan )A B C A B +=--故C B A C B A tan tan tan tan tan tan ⋅⋅=++.【过关测试】一、单选题1.(2022·四川省泸县第二中学模拟预测(文))已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于x 轴对称.若3cos 5α=,则()()cos cos αβαβ+-=()A .725-B .15C .15-D .7252.(2022·全国·模拟预测(理))已知sin cos 1αβ+=,cos sin αβ+=,则cos()αβ-=()A .0B .12C D .13.(2022·青海·大通回族土族自治县教学研究室三模(文))已知πtan 34α⎛⎫+= ⎪⎝⎭,()1tan 3αβ+=,则tan β=()A .17-B .17C .1D .2或64.(2022·湖北·黄冈中学模拟预测)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为2sin18m =︒,若24m n +=,=()A .-4B .-2C .2D .45.(2022·山东烟台·三模)若21π2cos cos 23αα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .BC .D 6.(2022·全国·模拟预测(文))设角α,β的终边均不在坐标轴上,且()tan tan tan αββα-+=,则下列结论正确的是()A .()sin 0αβ+=B .()cos 1αβ-=C .22sin sin 1αβ+=D .22sin cos 1αβ+=7.(2022·河南·通许县第一高级中学模拟预测(文))已知15αβ+= ,则1tan tan tan tan 1tan tan tan tan αβαβαβαβ++-=---()A .BC .1D8.(2022·全国·高三专题练习)若10,0,cos ,cos 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+=⎪⎝⎭()A B .C D .二、多选题9.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则()A .tan α=B .1cos 2α=C .tan β=D .1cos 7β=10.(2022·河北邯郸·二模)下列各式的值为12的是().A .sin17π6B .sinπ12cos π12C .22cossin 121π2-πD .2πtan 8π1tan 8-11.(2022·重庆·西南大学附中模拟预测)已知α,β,0,2πγ⎛⎫∈ ⎪⎝⎭,且2παβγ++=,则()A.若sin cos αα+=,则tan 1α=B .若tan 2α=,则sin()βγ+=C .tan α,tan β可能是方程2670x x -+=的两根D .tan tan tan tan tan tan 1αββγβα++=12.(2022·重庆巴蜀中学高三阶段练习)已知()4cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是()A .3sin 25α=B .()cos αβ-=C.cos cos αβ=D .1tan tan 3αβ=三、填空题13.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.(2022·山东师范大学附中模拟预测)已知ππ0sin 24αα⎛⎫<<-= ⎪⎝⎭sin 1tan αα=+________.15.(2022·3cos()cos()12παπα-++=-,则cos(23α2π-=_____________.16.(2022·陕西·宝鸡中学模拟预测)()()()sin 75cos 4515θθθ++++=__________.四、解答题17.(2022·江苏南京·模拟预测)已知02πα<<,1cos 43πα⎛⎫+= ⎪⎝⎭.(1)求sin α的值;(2)若02πβ-<<,cos 24βπ⎛⎫-= ⎪⎝⎭αβ-的值.18.(2022·江西·高一期中)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.19.(2022·河南·唐河县第一高级中学高一阶段练习)(1)已知tan 2θ=-,求sin (1sin 2)sin cos θθθθ++的值;(2)已知1tan()2αβ-=,1tan 7β=-,且α,(0,)βπ∈,求2αβ-.20.(2022·江西·高一阶段练习)在①4tan 23α=,②sin α补充到下面的问题中,并解答.已知角α是第一象限角,且.(1)求tan α的值;(2)求()π3πsin 2cos πcos 22ααα⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭的值.注:如果选择两个条件分别解答,按第一个解答计分.21.(2022·北京市第九中学高一期中)已知1tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,求(1)求sin α的值;(2)求()()()2212sin πcos 2π5πsin sin 2αααα+---⎛⎫--- ⎪⎝⎭的值;(3)若()sin αβ+cos β的值.22.(2019·黑龙江·哈尔滨三中高三阶段练习(文))()1的值;()2已知30,,,242ππαβπ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,()1tan 2αβ-=,17tan β=-,求2αβ-的值.23.(2020·全国·高三专题练习)在ABC ∆中,满足222sin cos sin cos A B A B C -=-.(1)求C ;(2)设()()2cos cos cos cos cos A B A B ααα++=,tan α的值.。
三角恒等变换之题型总结及解题策略分析

撷英篇三角恒等变换是解决三角函数问题的重要工具.三角恒等变换是高中数学的一个重要模块,在历年的高考中都是必考内容,同时也是很多学生学习,考试的难点.本文将三角恒等变换的一些常见题型及解决策略作了梳理,仅供参考,希望能对学生学习有所帮助.一、公式的变形三角公式是变换的基础,应熟练地掌握公式的顺用、逆用及变形应用.1.化简(1)cos (α+β)cos β+sin (α+β)sin β;(2)sin (α+β)cos β-cos (α+β)sin β解:(1)cos (α+β)cos β+sin (α+β)sin β=cos [(α+β)-α]=cos β(2)sin (α+β)cos β-cos (α+β)sin β=sin [(α+β)-α]=sin α2.求证:tan20°+tan40°+3√tan20°tan40°=3√.证明:由tan (20°+40°)=tan20°+tan40°1-tan20°tan40°得tan20°+tan40°=3√(1-tan20°tan40°),所以3√(1-tan20°tan40°)+3√tan20°tan40°=3√.二、角的变换在表达式中或者在已知条件和所求问题中出现较多的相异角,可以通过观察,寻找两角之间的和差、倍半、互补、互余等关系,从而应用角的变换,建立已知和结论之间的联系,使问题得以解决.1.已知cos α=17,cos (α+β)=-1114且α,β均为锐角,求cos β.思路分析:通过寻找题目中的角α,α+β,β三者之间的关系,利用角的变换来解决.解:因为cos α=17,cos (α+β)=-1114,且α,β均为锐角,所以sin α=1-17()2√=43√7,sin (α+β)=1--1114()2√=53√14cos β=cos [(α+β)-β]=cos (α+β)cos β+sin (α+β)sin β=-1114×17+53√14×43√7=122.已知cos (α-β)=-45,cos (α+β=)45,且(α-β)∈π2,π()(α+β)∈3π2,2π(),求cos2α.思路分析:通过寻找题目中的角α-β,α+β,2α三者之间的关系,利用角的变换来解决.解:因为cos (α-β)=-45,(α-β)∈π2,π(),所以sin (α-β)=1--45()2√=35.因为cos (α+β)=45,(α+β)∈3π2,2π(),所以sin (α+β)=1-45()2√=-35.所以cos2α=cos [(α-β)+(α+β)]=cos (α-β)cos (α+β)-sin (α-β)sin (α+β)=-45×45-35×-35()=-725三、函数名称的改变三角变形中,常常需要变不同函数名称为同名函数.如在三角函数中正余弦是基础,通常化切为弦,化弦为切,变异名为同名.1.求sin15°sin30°sin75°值.解:sin15°sin30°sin75°=12sin15°cos15°=14sin30°=14×12=182.化简2cos 2α-1tan π4-α()sin 2π4+α().解:原式=cos 2αsin π4-α()cosπ4-α()sin 2π4+α()=cos2αsinπ4-α()cos π4-α()cos 2π4-α()=cos2αsinπ4-α()cos π4-α()=cos2α12sin π2-2α()=cos2α12cos2α=2.四、常数变换,巧用“1”在三角函数运算,求值,证明中,有时需要将常数1转化为三角函数值来代换,以达到解决问题的目的.1.已知tan π4+θ()=3,求sin2θ-2cos 2θ.解:由tan π4+θ()=3得,tan θ=12.sin2θ-2cos 2θ=2sin θcosθ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=2×12-212()2+1=-45.2.求1-tan15°tan60°+3√tan15°.解:原式=tan45°-tan15°3√+3√tan15°=tan45°-tan15°3√(1+tan45°tan15°)=13√tan30°=13五、幂的变换升降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法,降幂并非绝对,有时需要升幂.求使函数f (x )=12cos 4x +3√sin x cos x -12sin 4x 为正值的x 的集合.解:f (x )=12cos 4x +3√sin x cos x -12sin 4x =12(cos 4x -sin 4x )+3√2sin2x =12(cos 2x -sin 2x )(cos 2x +sin 2x )+3√2sin2x =12cos2x +3√2sin2x =sin 2x+π6(),由sin 2x+π6()>0得2k π<2x +π6<2k π+π,k ∈z .解得-π12+k π<x <k π+5π12.所以x 的集合为x -π12+k π<x <k π+5π12,k ∈z {}.六、结构的变换通过表达式结构特点,通过构造上的变换,从而使问题得到解决.求cos20°cos40°cos80°的值.解析:根据式子结构特点,乘以并除以2sin20°.解:cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°2sin20°=sin40°cos40°cos80°2sin20°=12sin80°cos80°2sin20°=14sin160°2sin20°=sin20°8sin20°=18.参考文献:[1]牛晓伟.三角恒等变换的技巧及其应用[J ].考试周刊,2012(49).[2]黄伟军.三角恒等变换之七变[J ].泛舟学海(高中),2008.[3]华丽凤.三角恒等变换之“差异分析”策略[J ].高中数理化,2011(22).[4]杜春辉.例谈三角恒等变换中的“变角”技巧及其应用[J ].考试周刊(数理系),2011(78).•编辑谢尾合三角恒等变换之题型总结及解题策略分析王传勇(诸城市实验中学,山东诸城)337--. All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换一、基础梳理1.两角和与差的余弦公式C (α-β):cos(α-β)=__________________. C (α+β):cos(α+β)=__________________. 2.两角和与差的正弦公式S (α+β):sin(α+β)=__________________________. S (α-β):sin(α-β)=____________________________. 3.两角互余或互补(1)若α+β=________,其α、β为任意角,我们就称α、β互余.例如:π4-α与__________互余,π6+α与________互余.(2)若α+β=________,其α,β为任意角,我们就称α、β互补.例如:π4+α与______________互补,____________与23π-α互补.4.两角和与差的正切公式(1)T (α+β):tan(α+β)=_____________________________________________________. (2)T (α-β):tan(α-β)=______________________________________________________. 5.两角和与差的正切公式的变形 (1)T (α+β)的变形:tan α+tan β=____________________________________________________________. tan α+tan β+tan αtan βtan(α+β)=____________.tan α·tan β=______________________________________________________________. (2)T (α-β)的变形:tan α-tan β=______________________________. tan α-tan β-tan αtan βtan(α-β)=____________.tan αtan β=______________________________________________________________. 6.倍角公式(1)S 2α:sin 2α=2sin αcos α,sin α2cos α2=12sin α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1 =1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α.7.倍角公式常用变形(1)sin 2α2sin α=__________,sin 2α2cos α=__________; (2)(sin α±cos α)2=__________;(3)sin 2α=______________,cos 2α=______________. 8.半角公式(1)S α2:sin α2=____________________;(2)C α2:cos α2=____________________________;(3)T α2:tan α2=______________(无理形式)=________________=______________(有理形式).9.辅助角公式使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定.二、例题精讲考点一 三角函数的化简求值例1 (1)o 15cos ;(2)oo o o 33sin 117sin 57sin 63cos +;(3)ββαβαβsin )sin(cos )cos(+++;(4)15tan 115tan 1-+.例2 (1)x x sin 23cos 21- (2)x x cos sin 3+例3 化简求值:(1)22cos 75sin 75cos75cos15++;(2)sin cos 12cos sin 3αααα+=-,则tan2α=_________。
(3)(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ(0<θ<π); (4)1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).变式训练1 (1)cos75cos15-; (2)cos80cos35cos10cos55⋅+⋅;(3)313sin 253sin 223sin 163sin +; (4)sin100sin(160)cos200cos(280)⋅-+⋅-;(5) 15tan 3115tan 3+-; (6) sin 7cos15sin8cos7sin15sin8+-(7)tan()tan()tan()tan()6666ππππθθθθ-+++-+= .变式训练2 (1))cos (sin 2x x - (2)x x sin 6cos 2-(3)已知sin cos θθ-=,(0)2πθ≤≤,则sin cos θθ+=(4)在ABC 中,sin cos A A +的取值范围是变式训练3(1)化简求值:①2cos 75; ②cos 20°cos 40°cos 80°; ③ 2cos 10°-sin 20°sin 70°; ④22sin 20cos 50sin 20cos50++.(2)若1tan 4tan θθ+=,则θ2sin = .(3)是二次方程21(tan )10tan x x θθ-++=的一个根,tan 1θ<,则tan2θ=考点二 三角函数的给值求值、给值求角 例4 已知54sin =α,135cos ),,2(-=∈βππα,β是第三象限角,求)cos(βα-.例5 已知sin α=55,sin(α-β)=-1010,α,β均为锐角,求角β的值.例6 已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+=例7 已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值.例8 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则sin()______.αβ+=例9 设1cos cos 2αβ+=,1sin sin 3αβ+=,求cos()αβ-的值。
例10 已知ABC ∆中,120=A ,求C B sin sin +的最大值.例11 已知tan α与tan β是方程2330x x --=的两根,求22sin ()3sin()cos()3cos ()αβαβαβαβ+-++-+的值。
变式训练41.已知53sin )cos(cos )sin(=---ααβαβα,β是第三象限角,求)45tan(πβ+ . 2.已知432παβπ<<<,1312)cos(=-βα,53)sin(-=+βα,求α2cos 的值.3.已知ABC ∆中,)sin(B A +=54,32cos -=B ,求A cos .4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.5.已知3sin cos 10x x =,求4sin()sin()44x x ππ-+的值6.若()51cos =+βα,()53cos =-βα,则βαtan tan = .7.设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值为 .8.如果1sin 24α=且(,)42ππα∈,那么cos sin αα-= .9.若sin sin 1αβ-=1cos cos 2αβ-=-,则cos()αβ-=考点三 三角变换的简单应用例12 (1)函数f (x )=3sin x +cos(π3+x )的最大值为( )A .2B. 3C .1D.12(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.例13 已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.变式训练51.(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 2.(2)(2014·全国卷Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.3.已知tan α=-13,cos β=55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值.4.设函数f (x )=sin ⎝⎛⎭⎫π4x -π6-2cos 2π8x +1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈⎣⎡⎦⎤0,43时,y =g (x )的最大值.三、课后练习A 组 基础达标一、选择题1.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 2.cos 85°+sin 25°cos 30°cos 25°等于( )A .-32 B.22 C.12D .1 3.(2017·杭州二次质检)函数f (x )=3sin x 2cos x 2+4cos 2x2(x ∈R)的最大值等于( )A .5 B.92 C.52D .24.(2016·福建师大附中月考)若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78 B .-14 C.14 D.785.(2013·重庆)4cos 50°-tan 40°等于( ) A. 2 B.2+32C. 3 D .22-1 6.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( )A .-233B .±233 C .-1D .±1二、填空题7.sin 250°1+sin 10°________. 8.(2016·吉林东北师大附中等校联考)已知0<θ<π,tan ⎝⎛⎭⎫θ+π4=17,那么sin θ+cos θ=________. 9.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________.10.化简2+2cos 8+21-sin 8=________.三、解答题11.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.12.已知函数f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x.(1)求函数f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值.B 组 能力提升1.若cos 2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( )A .-72 B .-12 C.12 D.722.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3 3.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( )A .-255B .-3510C .-31010 D.2554.已知sin α+sin β=3(cos β-cos α),α,β∈⎝⎛⎭⎫0,π2,则sin 3α+sin 3β=________.5.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.第 11 页 因为川越 所以超越6.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.。