江苏省南通市2016届高三数学全真模拟试题4
2019届江苏省高2016级高三百校联考数学试卷及答案

2019届江苏省高2016级高三百校联考数学试卷★祝考试顺利★考生注意:1.本试卷共200分。
考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考全部内容。
―、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上。
1.设全集 U=R ,集合 A={0<2|2x x x -},B={0>|x x },则集合=)(CuB A ▲ .2.设复数z 满足i i z 21)2(-=+ (i 为虚数单位),则z 的模为 ▲ .3.已知双曲线12222=-by a x (a>0,b>0)的一条渐近线经过点(1,2),则该双曲线的离心率为 ▲ .4.各项均为正数的等比数列{n a }中,n S 为其前n 项和,若13=a ,且225+=S S ,则公比q 的值为 ▲ .5.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调査数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了 8人,则n 的值为 ▲ . 6.根据如图所示的伪代码,输出I 的值为 ▲ .7.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场 的两名运动员编号相同的概率为 ▲ .8.函数)23ln(x x y -=的定义域为▲ .9.设y x ,满足约束条件⎪⎩⎪⎨⎧≥++≤--≤-+01201022y x y x y x ,则21++=y x z 的取值范围是▲ .10.将函数x x f sin )(=的图象向右平移3π个单位长度后得到)(x g y =函数的图象,则函数)()(x g x f 的最大值为 ▲ .11.如图,在直四棱柱ABCD-A 1B 1C 1D 1,中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近Q 的三等分点,且三棱锥A 1一AEF 的体积为2,则四棱柱ABCD-A 1B 1C 1D 1,的体积为 ▲ . 12. 在面积为26的△ABC 中,32=⋅,若点M 是AB 的中点,点N 满足NC AN 2=,则CM BN ⋅的最大值是 ▲ .13.在平面直角坐标系xOy 中,已知圆C :1)1(22=-+y x 及点A(3,0),设点P 是圆C 上的 动点,在△ACP 中,若∠ACP 的角平分线与AP 相交于点Q(n m ,),则22n m +的取值范围是 ▲ .14.已知函数⎪⎩⎪⎨⎧++=0>x x,-lnx 0<,2161)(2x x a x x f ,若关于z 的方0)()(=-+x f x f 在定义域上有四个不同的解,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分。
高三数学三模试卷 理(含解析)-人教版高三全册数学试题

2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。
苏北四市2016高三一模数学试题(含答案)

苏北四市2016高三一模数学试题一、填空题:本大题共14小题,每小题5分,共70分,请把答案填写在答题卡相应的位置。
1、已知集合{0,},{0,1,3}A a B ==,若{0,1,2,3}AB =,则实数a 的值为2、已知复数z 满足24z =,若z 的虚部大于0,则z =3、交通部门对某路段公路上行驶的汽车速度实施监控,从速度在50~90/km h 的汽车中抽取150辆进行分析,得到数据的频率分布直方图(如图所示),则速度在70/km h 以下的汽车有 辆。
4、运行如图所示的伪代码,则输出的结果S 为5、函数()2sin()(0)f x wx w ϕ=+>的部分图象如图所示,若5AB =,则w 的值为6、若随机安排甲乙丙三人在3天节日值班,每人值班1天,则甲与丙都不在第一天值班的概率为7、抛物线24y x =的交点到双曲线221169x y -=渐近线的距离为 8、已知矩形ABCD 的边4,3AB BC ==,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D-ABC 的体积为9、若公比不为1的等比数列{}n a 满足21213log ()13a a a =,等差数列{}n b 满足77b a =,则1213b b b +++的值为10、定义在R 上的奇函数()f x 满足当0x ≥时,()2log (2)(1)(,f x x a x b a b =++-+为常数),若()21f =-,则()6f -的值为11、已知2OA OB ==1OA OB ⋅=,若点C 满足1OA CB +=,则OC 的取值范围是12、已知函数()2cos ,0(),0x x x f x x a x x +≥⎧=⎨-<⎩,过关于x 的不等式()f x π<的解集为(,)2π-∞,则实数a 的取值范围是13、已知点(0,1),(1,0),(,0)A B C t ,点D 是直线AC 上的动点,若2AD BD ≤恒成立,则最小正整数t 的值为14、已知正数,,a b c 满足b c a +≥,则b cc a b++的最小值为 二、解答题:本大题共6小题,共计70分,请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或计算步骤。
江苏省苏州中学2016届高三上学期初考试数学试题 Word版含答案

代 x 令 6. 在约束条件代 y 以 以y x 令
x
令
以
y以的最小值为__________
7.设 α 平 是空间两个 同的 面 m n 是 面 α 及 平 外的两条 同直线 从 ⊥n
m
α⊥ 平
n⊥ 平
m⊥α 中选取 个作为条件 余 一个作为结论 写出你
认为 确的一个命题 ____________.(填序号) 8.在 面直角坐标系 xOy 中 已知 ∪ B 点 C 在 曲线的右支 别是 曲线 x
以
y以
3
令 的左 右焦点 △∪BC 的
sin∪ sinB 的值是____________ sinC
以
9. 已知点 ∪(代,以) 抛物线 y
以px(p 代)的焦点为 F
准线为 l 线段 F∪ 交抛物线于点
B 过 B 作 l 的垂线 垂足为 ≤ 若 ∪≤⊥≤F
令代. 若函数 则(x)
以 以
该函数图象 的两点 且 x令
x 以.
(令)指出函数 则(x)的单调区间 (以)若函数 则(x)的图象在点 ∪ B 处的 线互相垂直 且 x以 代 证明 (3) 若函数 则(x)的图象在点 ∪ B 处的 线重合 求 a 的取值范围
x以 x令 令
-4-
江
省 州中学 以代令5-以代令6 学 度第一学期期初考试 数学 II(理科附加) 本试卷满 以令. 选做题 4代 ,考试时间 3代 钟,将 确的答案写在答题卡的相 位置 小题 令代 共 以代 解答
y令
4
x 4
若在 t(t 4)天时进行第一次复
增加一倍(复 时间忽略 计) 其后 留 为 复
y以 随时间变化的曲线恰为直线的一部
2016届新课标高三数学(文)一轮复习习题 §6.4数列求和、数列的综合应用 2年模拟

§ 6。
4 数列求和、数列的综合应用A 组 2014-2015年模拟·基础题组限时:35分钟1。
(2014河南安阳二模,6)已知数列{a n }中,a n =—4n+5,等比数列{b n }的公比q 满足q=a n —a n —1(n≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A.1-4n B 。
4n —1 C.1-4n3 D.4n-132。
(2014辽宁五校协作体联考,15)已知数列{a n }满足a n =1+2+3+…+nn,则数列{1a n a n+1}的前n 项和为 。
3.(2014广东揭阳3月模拟,13)对于每一个正整数n,设曲线y=x n+1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99= 。
4。
(2015河北石家庄调研)在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3lo g 14a n (n∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n }满足c n =a n +b n ,求{c n }的前n 项和S n .5.(2014广东湛江二模,19)已知等差数列{a n}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的b2,b3,b4。
(1)求数列{a n}和{b n}的通项公式;(2)设数列{c n}对任意正整数n均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 014的值。
B组2014—2015年模拟·提升题组限时:50分钟1.(2015长春外国语学校期中)若数列{a n}满足1a n+1—pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A。
2016全国高中数学联赛江苏省预赛试题及答案word

2016年全国高中数学联赛江苏赛区初赛一、填空题(每小题7分,共70分))1.关于x 的不等式b a x <+的解集为{}42<<x x ,则ab 的值是 -3。
2.从1, 2,3.4.5.6.7.8. 9中任取两个不同的数,则取出的两数之和为偶数的概率。
4/93.已知()x f 是周期为4的奇函数且当()2,0∈x 时()60162+-=x x x f ,则()102f 的值是。
-364.己知直线l 是函数()2ln 2x x x f +=图象的切线,当的斜率最小时l 的方程是。
034=--y x5.在平面直角坐标系XOY 中,如果直线l 将圆04222=--+y x y x 平分,且不经过第四象限,那么l 的斜率的取位范围是。
[]2,06.己知等边△ABC 的边长为2,若()BC AP AQ AC AB AP 21,31+=+=,则△APQ 面积是。
337.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 在棱BC 上,点Q 为棱CC1的中点.若过点A,P .Q的平面截该正方体所得的截面为五边形.则BP 的取值范围为。
⎪⎭⎫ ⎝⎛1,218.己知数列{}n a 的奇数项依次构成公差为1d 的等差数列,偶数项依次构成公差为2d 的等差数列.且对任意,*∈N n 都有.1+<n n a a 若,2,121==a a 且数列{}n a 的前10项和,7510=S 则=8a 119.己知正实数y x ,满足()()162222=+++x y y x 则=+y x 。
410.设M 表示满足下列条件的正整数n 的和:n 整除22016,且2016整除2n .那么M 的所有不同正因子几的个数为。
360二、解答题(每小题20分,共80分))11.已知,2,0,1235cos 1sin 1⎪⎪⎭⎫ ⎝⎛∈=+πθθθ求θtan 。
3/4或4/312.如图,点P 在△ABC 的边AB 上且 AB=4AP ,过点P 的直线MN 与△ABC 外接圆交于点M, N ,且点A 是弧M N 的中点.求证:(1)△ABN ≈△ANP 。
安徽省安庆市重点中学2016届高三4月模拟考试文科数学试题及答案
2016年安庆市重点中学高三模拟考试数学(文科)试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,复数z 满足20162)1(i z i =-,则复数z 的虚部为( ).A.-1B.1C.iD.i -2. 已知集合{}3,2,1,0=A ,集合{}R x x y y B ∈+-==,2,则B A ⋂的元素个数为( ).A.0B.1C.2D.33. 在等比数列{}n a 中,1a =16,7562a a a ⋅=,则4a =( ). A.4 B.2 C.1 D.214. 阅读如图所示的程序框图,若运行该程序后输出的y 的值为4,则输入的实数x 的值为( )A .4B .16C .-1或16D .-1或1615.“角α为钝角”是“0sin >α且0cos <α”的( )条件。
A .充要B .必要不充分C .充分不必要D .既不充分又不必要6. 记样本1x ,2x ,···,m x 的平均数为-x ,样本1y ,2y ,···,n y 的平均数为-y (--≠y x ),若样本1x ,2x ,···,m x ,1y ,2y ,···,n y 的平均数为---+=y x z 4341,则n m的值为( )A .3B .4C .41 D .317.如图,网格纸上每个正方形小格的边长为1,图中粗线画出的是某多面体的三视图,则该几何体的表面积为( ) A .21656+ B .2856+ C .64 D .728. 在矩形ABCD 中,AB=2,AD=1,点P 为矩形ABCD 内一点,则使得1≥⋅→→AC AP 的概率为( ) A .81 B .41C .43 D .879.在正四面体A-BCD 中,有下列四个命题,其中真命题的个数为( )①每组对棱异面垂直;②连接每组对棱的中点,则这三线交于一点;③在棱CD 上至少存在一个点E ,使∠AEB=2π;④正四面体的外接球的半径是其棱长的46倍。
江苏省苏州中学2016届高三上学期初考试数学试题 Word版含答案[ 高考]
苏省苏州中学2015-2016学年度第一学期期初考试高三数学I本试卷满分160分,考试时间120分钟,将正确的答案写在答题卡的相应位置上。
一、 填空题:本大题共14小题,每小题5分,共70分.1. 若a +i 1-i(i 是虚数单位)是实数,则实数a 的值是____________.2. 已知集合A ={x |x >1},B ={x |x 2-2x <0},则A ∪B =____________.3. 命题“若实数a 满足a ≤2,则a 2<4”的否命题是______ (填“真”或“假”)命题.4.在如图所示的算法流程图中,若输入m =4,n =3,则输出的a =__________.(第4题)5.把一个体积为27 cm 3的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为____________.6. 在约束条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1下,则x -2+y 2的最小值为__________.7.设α、β是空间两个不同的平面,m 、n 是平面α及β外的两条不同直线.从“① m ⊥n ;② α⊥β;③ n ⊥β;④ m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(填序号).8.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线x 2-y 23=1的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin A -sin Bsin C的值是____________.9. 已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段FA 交抛物线于点B ,过B 作l 的垂线,垂足为M ,若AM ⊥MF ,则p =__________.10. 若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是____________.11. 如图所示,在直三棱柱A 1B 1C 1—ABC 中,AC ⊥BC ,AC =4,BC =CC 1=2.若用平行于三棱柱A 1B 1C 1—ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.(第11题)12. 已知椭圆x 24+y 22=1,A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________.13. 在△ABC 中,过中线AD 中点E 任作一直线分别交边AB 、AC 于M 、N 两点,设AM →=xAB →,AN →=yAC →(x 、y ≠0),则4x +y 的最小值是______________.14.设m ∈N ,若函数f (x )=2x -m 10-x -m +10存在整数零点,则m 的取值集合为______________.二、 解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,平面PAC ⊥平面ABC ,点E 、F 、O 分别为线段PA 、PB 、AC 的中点,点G 是线段CO 的中点,AB =BC =AC =4,PA =PC =2 2.求证:(1) PA ⊥平面EBO ; (2) FG ∥平面EBO .16. (本小题满分14分)已知函数f (x )=2cos x 2⎝⎛⎭⎪⎫3cos x 2-sin x2.(1) 设θ∈⎣⎢⎡⎦⎥⎤-π2,π2,且f (θ)=3+1,求θ的值;(2) 在△ABC 中,AB =1,f (C )=3+1,且△ABC 的面积为32,求sin A +sin B 的值.17. (本小题满分14分)在平面直角坐标系xOy 中,如图,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1、A 2,上、下顶点分别为B 1、B 2.设直线A 1B 1的倾斜角的正弦值为13,圆C 与以线段OA 2为直径的圆关于直线A 1B 1对称.(1) 求椭圆E 的离心率;(2) 判断直线A 1B 1与圆C 的位置关系,并说明理由; (3) 若圆C 的面积为π,求圆C 的方程.18. (本小题满分16分)心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x 天后的存留量y 1=4x +4;若在t (t >4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y 2随时间变化的曲线恰为直线的一部分,其斜率为a t +2(a <0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.(1) 若a =-1,t =5求“二次复习最佳时机点”; (2) 若出现了“二次复习最佳时机点”,求a 的取值范围.19. (本小题满分16分)已知各项均为正数的等差数列{a n }的公差d 不等于0,设a 1、a 3、a k 是公比为q 的等比数列{b n }的前三项.(1) 若k =7,a 1=2.① 求数列{a n b n }的前n 项和T n ;② 将数列{a n }与{b n }中相同的项去掉,剩下的项依次构成新的数列{c n },设其前n 项和为S n ,求S 12--n n -22n -1+3·2n -1的值;(2) 若存在m >k ,m ∈N *使得a 1、a 3、a k 、a m 成等比数列,求证:k 为奇数.20. (本小题满分16分)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a ,x <0,ln x ,x >0,其中a 是实数.设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2.(1)指出函数f (x )的单调区间;(2)若函数f (x )的图象在点A ,B 处的切线互相垂直,且x 2<0,证明:x 2-x 1≥1; (3)若函数f (x )的图象在点A ,B 处的切线重合,求a 的取值范围.江苏省苏州中学2015-2016学年度第一学期期初考试数学II(理科附加)本试卷满分40分,考试时间30分钟,将正确的答案写在答题卡的相应位置上。
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
长郡中学2016届高三第4次月考数学试题与答案
" "
*+)
,+)1
-+!)
0+!)1
" )!已知随机变量 ' 服从正态分布 ( !)%""%且 )!#*'*2"($!%&#%%则
" "
)!'$2"(
"
*+$!"'&&
,+$!"'&3
-+$!"'&%
0+$!"'&'
"
" "
2!下列说法中%不正确的是
*+已知*%+%,%%命题#+若*,#++,#%则*++,为真命题
首次出现故障发生在保修期内的概率/ !"若该厂生产的ห้องสมุดไป่ตู้电均能售出%记生产一件甲品牌的利润为 '"%生产
一件乙品牌家电的利润为 '#%如果该厂预计今后这两种品牌家电销 量相当%由于资金限制%只能生产其中一种品牌的家电!若从经济效 益的角度考虑%你认为应生产哪种品牌的家电- 说明理由!
炎德英才大联考理科数学!长郡版"!!)
"
-+0+"%-
0+0+"3-
" "
%!若!$#.*$.""%!*$$"的展开式中$# 的系数是%%%则实数
"
*的值为
"
"
*+2