(最新整理)北师大版初三数学上册中考复习课之概率专题

合集下载

北师大版初三数学上册3.1用树状图或表格表示概率

北师大版初三数学上册3.1用树状图或表格表示概率

中考练兵
3.[2015·哈尔滨] 从甲、乙、丙、丁4名三好学 生中随机抽取2名学生担任升旗手,则抽取的2 名学生是甲和乙的概率为________.
本课小 结
用树状图和列表法,可以方便地求出某些事件 发生的概率.
在借助于树状图或表格求某些事件发生的概 率时,可以不重、不漏地列出所有可能的结果
作业:P62习题3.1知识技能1、2
红白 A盘
黄蓝 绿 B盘
理性的结论源于实践操作
从一定高度随机掷一枚均匀的硬币,落地后其朝上 的一面可能出现正面和反面这样两种等可能的结果. 小明在做掷硬币的试验,他已经掷了3次硬币,不巧的 是这3次都是正面朝上.那么,你认为小明第4次掷硬 币,出现正面朝上的可能性大,还是反面朝上的可能 性大,还是一样大?说说你的理由,并与同伴进行交流.
n
1 用树状图或表格求概率
第1课时 用树状图或表格求概率
小颖、小明和小凡都想去看周末的电影,但 只有一张电影票,三人决定一起做游戏,谁获 胜谁就去看电影.游戏规则如下:连续掷两枚 质地均匀的硬币.若两枚正面朝上,则小明获 胜;若两枚反面朝上,则小颖获胜;若一枚正 面朝上、一枚反面朝上,则小凡获胜.你认为 这个游戏公平吗?
中考练兵
1.[2015•湖州] 一个布袋内只装有1个黑球和2 个白球,这些球除颜色外其余都相同,随机摸出 一个球后放回并搅匀,再随机摸出一个球,则两 次摸出的球都是黑球的概率是________.
中考练兵
2.[2015•德州] 经过某十字路口的汽车,可能直 行,也可能左转或者右转,如果这三种可能性大 小相同,则经过这个十字路口的两辆汽车一辆左 转,一辆右转的概率是________.
用心做一做
Байду номын сангаас

北师大版九年级数学上册3.1用树状图或表格求概率课件(共21张PPT)

北师大版九年级数学上册3.1用树状图或表格求概率课件(共21张PPT)
根据你所做的 30 次试验的记录,分别统计一下,摸得第一张牌的牌面 数字为 1 时,摸第二张牌的牌面数字为 1 和 2 的次数。
二、合作交流,探究新知
小明对自己的试验记录进行了统计,结果如下:
第一张牌的牌面数 字为1(16次)
摸得第二张牌的牌面数 字为1(7次)
摸得第二张牌的牌面数 字为2(9次)
概率的等可能性 因此小明认为,如果摸得第一张牌的牌面数字为 1 ,那么摸第二张牌时,摸得牌面数字为 2 的可能性比较大。
从上面的树状图或表格可以看出,一次试验可能出现的结果共有 4 种:(1 , 1), (1 , 2), (2 , 1), (2 , 2), 而且每种结果出现的可能性相同。 两球均为红球的概率为 _______。 (1)随机从中摸出一球,恰为红球的概率是 ; 第二次摸球号
一般地,若一件实验中所有可能结果出现的可能性是一样,那么事件A发生的概率为 因此,我们可以用右面的树状图或下面的表格来表示所有可能出现的结果: 对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗? 用树状图或表格表示概率。
二、合作交流,探究新知
频率的等可能性如何表示? 对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每 种结果出现的可能性相同吗? 会出现三种可能的结果:牌面数字和为 2, 牌面数字和为 3, 牌 面数字和为 4; 每种结果出现的可能性相同。
三、运用新知
分析 二、合作交流,探究新知
(3)随机从中一次摸出两个球,两球均为红球的概率是 。
将全班同学的试验记录汇总,然后再统计一下!
(1)随机从中摸出一球,恰为红球的概率是 ;
从会上出面 现的四树种状可图能(或的表结3格果)可:牌随以面看数机出字,一为从次(1中试, 1验),一牌可面能次数出字摸现为的出(1结,果两2),共牌个有面数4球种字:,为(1 (,2两1,),1()1球,牌, 2面)均, 数(2为字, 1为),红((22 ,,球22)),。而的且概每种率结果是出现的可能。性相同。

北师大版九年级数学上册课件 3.1 第1课时 用树状图或表格求概率

北师大版九年级数学上册课件 3.1 第1课时 用树状图或表格求概率
所以 p(两次都摸到红球)= .
(2)观察可知,两次都摸到不同颜色的结果有 2 种. 所以 p(两次都摸到不同颜色的球)= .
4. 小明从一定高度随机掷一枚质地均匀的硬币,他已经掷了两 次硬币,结果都是“正面朝上”.那么,你认为小明第三次 掷硬币时,“正面朝上”与“反面朝上”的可能性相同吗? 如果不同,哪种可能性大?说说你的理由,并与同伴交流.
探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现“正面 朝上”和“反面朝上”的概率相同。无论抛掷第一枚硬币 出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和 “反面朝上”的概率也是相同的。所以,抛掷两枚均匀的 硬币,出现的(正,正)(正,反)(反,正)(反,反) 四种情况是等可能的。
因此,我们可以用树状图或表格表示所有可能出现 的结果。
白色上衣和白色裤子的概率是多少?
解:画树状图如下:
上衣
红 开始

裤子
公共有 4 种等可能得结

果,其中恰好是白色上衣和

白色裤子的结果有 1 种,所

以概率 p = .

2. 准备两组相同的牌,每组两张且大小一样,两张牌的牌面数 字分别是 1 和 2. 从每组牌中各摸出一张牌,称为一次试验. (1)一次试验中两张牌的牌面数字和可能有哪些值?
用列表法求概率
用列表法求概率是用表格的形式反映事件 发生的各种情况出现的次数和方式,以及某一 事件发生或出现的次数和方式,并求出概率的 方法.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
问题:通过实验数据,你认为该游戏公平吗?
从上面的试验中我们发现,试验次数较大时,试 验频率基本稳定,而且在一般情况下,“一枚正面朝 上.一枚反面朝上”发生的概率大于其他两个事件发生 的概率.所以,这个游戏不公平,它对小凡比较有利.

九年级数学上册期末拔高专题概率及其求法(含中考真题解析)北师大版

九年级数学上册期末拔高专题概率及其求法(含中考真题解析)北师大版

概率及其求法☞解读考点☞2年中考1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A . 12B . 13C . 14 D . 1【答案】C .考点:概率公式.2.下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .考点:随机事件.3.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15 B.25 C.35 D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=3 5.故选C.考点:1.概率公式;2.中心对称图形.4.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0 xC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 【答案】C.考点:概率的意义.7.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b 大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112 B.512 C.16 D.12【答案】A.考点:概率公式.9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16 B.13 C.12 D.23【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B .考点:列表法与树状图法. 10.如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( )A .43B .32C .31D .21【答案】B . 【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B .考点:1.列表法与树状图法;2.图表型.11.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A .12B .14C .38 D .58考点:列表法与树状图法.12.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A .13B .23C .16D .34【答案】B . 【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B .考点:1.概率公式;2.分式的定义;3.综合题.13.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x =图象上的概率是( )A .12B .13C .14D .16【答案】D . 【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x =图象上的概率是:212=16.故选D .考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( )A .21B .31C .41D .51考点:1.列表法与树状图法;2.三角形三边关系.15.如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( )A .12B .23C .25D .35【答案】C . 【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C .考点:1.列表法与树状图法;2.新定义.17.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率.18.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理.19.写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】试题分析:21(1)32y x m x =--+,12bx m a =-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____. 【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是 .【答案】25.【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x =+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x =+的自变量取值范围内的有﹣3,﹣2,4;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25.考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题. 22.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 .【答案】35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为 .【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA=4,OB=3,在Rt △OAB 中,,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t ,则CA=CA′=4﹣t ,在Rt △OA′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t=32,∴C 点坐标为(0,32),设直线BC 的解析式为y kx b =+,把B (3,0)、C (0,32)代入得3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+.故答案为:1322y x =-+.考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)2 3.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)12.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P (一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差. 27.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x (1≤x≤13且x 为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张. (1)求两次抽得相同花色的概率;(2)当甲选择x 为奇数,乙选择x 为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x )【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.29.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)1 3.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)2 3.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法.32.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→ → ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=1 3;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数1+=xy图象上的概率.【答案】(1)点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)1 3.∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=xy图象上,∴P(点P在一次函数y=x+1的图象上)=26=13.考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.1.一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13 B.属于不可能事件 C.属于随机事件 D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16 B.15 C.12 D.1【答案】A.考点:概率公式.3.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】1 20.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用.6.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9.【解析】试题分析:∵从3只红球,n只白球的袋中任取一个球,摸出白球的概率为34,∴n3n34=+.解得:n=9,经检验:x=9是原分式方程的解.∴n=9.考点:1.概率公式;2.分式方程的应用7.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是.【答案】1 3.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41123 .考点:1.列表法或树状图法;2.概率.8.从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:23.考点:概率.9.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n .(1)请画出树状图并写出(m ,n )所有可能的结果;(2)求所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.【答案】(1)答案见试题解析;(2)16.试题解析:解:(1)画树状图得:∴(m ,n )共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3). (2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:21 126.考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.【答案】(1)答案见试题解析;(2)这个游戏公平.考点:1.列表法或树状图法;2.概率;3.游戏公平性.☞考点归纳归纳 1:概率的有关概念基础知识归纳:1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件.不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件.2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件.3、概率的概念一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).3.频率与概率的关系当我们大量重复进行试验时,某事件出现的频率逐渐稳定到某一个数值,把这一频率的稳定值作为该事件发生的概率的估计值.基本方法归纳:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.注意问题归纳:判断事件是必须根据定义判断.【例1】下列事件中是必然事件的是()A.明天太阳从西边升起 B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底 D.抛出一枚硬币,落地后正面向上【答案】C.。

北师大版初三(上)数学第77讲:概率(教师版)

北师大版初三(上)数学第77讲:概率(教师版)

概率____________________________________________________________________________________________________________________________________________________________________1.掌握求概率的两种方法列举法和频率估计法;2.掌握求概率的不同方法的应用.1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p 就叫做事件A 的概率,记为P (A )=p .(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现. (3)概率取值范围:_________.(4)必然发生的事件的概率P (A )=1;不可能发生事件的概率P (A )=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0. (5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题. 4.求概率的方法(1)用_______求概率 (2)利用________概率 5.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数. 参考答案:3.(3)0≤p≤14.(1) 列举法(2) 频率估计1.事件与概率【例1】下列事件是必然发生事件的是( )A.打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【解析】必然事件的定义是一定会发生的事,可选出答案。

初三数学概率北师大版知识精讲

初三数学概率北师大版知识精讲

初三数学概率北师大版【本讲教育信息】一. 教学内容: 概率二. 教学目标: 通过对概率基础知识的复习,解决中考中常见的问题.三. 教学重点、难点: 熟练地解决与概率相关的问题.四. 课堂教学: 中考导航⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧必然事件概率的应用实验估算理论计算概率的计算随机事件发生的概率随机事件概率中考课程标准要求【典型例题】例1. 如图所示,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光. (1)任意闭合其中一个开关,则小灯泡发光的概率等于____________; (2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)41(2)正确画出树状图(或列表)任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是21例2. 某初级中学准备组织学生参加A 、B 、C 三类课外活动,规定每班2人参加A 类课外活动、3人参加B 类课外活动、5人参加C 类课外活动,每人只能参加一项课外活动,各班采取抽签的方式产生上报名单.假设该校每班学生人数均为40人,请给出下列问题的答案(给出结果即可): (1)该校某个学生恰能参加C 类课外活动的概率是多少? (2)该校某个学生恰能参加其中一类课外活动的概率是多少? (3)若以小球作为替代物进行以上抽签模拟实验,一个同学提供了部分实验操作:①准备40个小球;②把小球按2:3:5的比例涂成三种颜色;③让用于实验的小球有且只有2个为A 类标记、有且只有3个为B 类标记、有且只有5个为C 类标记;④为增大摸中某类小球的机会,将小球放入透明的玻璃缸中以便观察.你认为其中哪些操作是正确的(指出所有正确操作的序号)?答案:(1)81(2)41 (3)①,③例3. 有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图所示).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.解:(1)树状图如下:列表如下:(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况,即:(B ,B ),(B ,C ),(C ,B ),(C ,C ).故所求概率是164=41例4. 有两个可以自由转动的均匀转盘A 、B ,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.阅读下面的游戏规则,并回答下列问题:(1)用树状图或列表法,求出两数相加和为零的概率; (2)你认为这个游戏规则对双方公平吗?若公平,请说明理由;若不公平,请修改游戏规则中的赋分标准,使游戏变得公平. 解:(1)树状图或列表法:(树状图或列表有一个即可)和为0的概率为P =164=41 (2)不公平.李明平均每次得分:241⨯=21(分); 王亮平均每次得分:143⨯=43(分).∵4321<,∴不公平.修改游戏规则中的赋分标准为:如果和为0,李明得3分,王亮不得分; 如果和不为0,李明不得分,王亮得1分. (评分标准不唯一)例5. 有一块表面是咖啡色,内部是白色,形状是正方体的烤面包,小明用刀在它的上表面、前表面和右侧表面沿虚线各切两刀(如图1所示),将它切成若干块小正方体形面包(如图2所示). (1)小明从若干块小面包中任取一块,求该块面包有且只有两个面是咖啡色的概率; (2)小明和弟弟边吃边玩,游戏规则是:从中任取一块小面包,若它有奇数个面为咖啡色时,小明赢,否则弟弟赢.你认为这样的游戏规则公平吗?为什么?如果不公平,请你修改游戏规则,使之公平.解:(1)按上述方法可将面包切成27块小面包,有且只有两个面是咖啡色的小面包有12块,2712=94.所以,所求概率是94. (2)27块小面包中有8块是有且只有3个面是咖啡色,6块是有且只有1个面是咖啡色.从中任取一块小面包,有且只有奇数个面为咖啡色的共有14块,剩余的面包块共有13块.小明赢的概率是2714,弟弟赢的概率是2713.所以,上述规则弟弟赢的概率小于小明赢的概率,游戏不公平.游戏规则修改举例:任取一块小面包,恰有奇数个面为咖啡色时,哥哥得13分;恰有偶数个面为咖啡色时,弟弟得14分,积分多者获胜.【模拟试题】(答题时间:40分钟)一、选择题:1. 下列成语所描述的事件是必然事件的是( ) A. 水中捞月 B. 拔苗助长 C. 守株待兔 D. 瓮中捉鳖2. 投掷一枚普通的正方体骰子,四位同学各自发表了以下见解: ①出现“点数为奇数”的概率等于出现“点数为偶数”的概率.②只要连掷6次,一定会“出现一点”. ③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大. ④连续投掷3次,出现的点数之和不可能等于19. 其中正确的见解有( ) A. 1个 B. 2个 C. 3个 D. 4个3. 假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法( ) A. 7 B. 8 C. 9 D. 104. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为31,那么口袋中球的总数为( ) A. 12个 B. 9个 C. 6个 D. 3个5. 有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )A. 41B. 31C. 21D. 32二、填空题1. 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩.请你根据下面回答者对甲、乙两人回答的内容进行分析,则这四人的名次排列共可能有_________种不同情况.2. 要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是2/5,可以怎样放球____________________(只写一种).3. 含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有_____________张.4. 甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由.____________________________________________________5. 一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有__________个黑球.三、解答题1. 在电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论. (1)写出三位评委给出A 选手的所有可能的结论; (2)对于选手A ,只有甲、乙两位评委给出相同结论的概率是多少?2. 甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”. 请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?3. 小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.4. 小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如下图所示:(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;解:(1)树状图为:(2)求一个回合能确定两人先下棋的概率.5. 小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.[参考答案] http//一、 1. D 2. B 3. B 4. A 5. D二、 1. 42. 在袋中放2个黄球,3个白球3. 94. 不公平.因为出现偶数的概率为95,而出现奇数的概率为94 5. 48三、 1. 解:(1)画出树状图来说明评委给出A 选手的所有可能结果:(2)由上可知评委给出A 选手所有可能的结果有8种.对于A 选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过——通过——待定”、“待定——待定——通过”,所以对于A 选手“只有甲、乙两位评委给出相同结论”的概率是41. 2. 解:树状图如下:)(P 甲赢=83;)(P 乙赢=85 ∵P (甲赢)<P (乙赢) ∴这个规则对甲、乙双方不公平 3. 解:从表中可以得到:P (小明获胜)=95,P (小亮获胜)=94 ∴小明的得分为195⨯=95,小亮的得分为194⨯=94∵9495>∴游戏不公平.修改规则不唯一.如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分. 4. 解:(1)(2)由(1)中的树状图可知:P (确定两人先下棋)=435. 解:这个游戏对双方公平.理由如下:从表中可以看出,总共有12种结果,每种结果出现的可能性相同,而两数和为奇数的结果有6种. ∴P 小莉=126=21 因此,这个游戏对双方公平。

数学北师大版九年级上册用树状图或表格求概率


习题第1、2、3题
由于硬币质地均匀。因此掷第一次硬币出现“正 面朝上”和“反面朝上”的概率相同;无论掷第一次 硬币出现怎样的结果,掷第二枚硬币时出现“正面朝 上”和“反面朝上”的概率都是相同的,第二次掷出 正面还是反面与前面的结果无关。
三、学习新知
1、我们通常借助树状图或表格列出所有 可能出现的因此至少有一次正面朝上的概率是 4
.
趁胜追击
1、问题探究
准备两组相同的牌,每组两张,两 张牌面的数字分别是1和2.从两组牌 中各摸出一张为一次试验所有等可能 的情况有几种?
1 2
1 2
第一组
第二组
用树状图来研究上述问题
开始
第一张牌的 牌面的数字
1 1 2 1
2 2
第二张牌的 牌面的数字
3
树 状 图
1
2
2
3
所有可能 (1,1) (1,2)(1,3)(2,1) (2,2) 出现的结果 (2,3) (3,1)(3,2)(3,3)
第二张牌的牌面数字 第一张牌的牌面数字
1 2 3 1 (1,1) (2,1) 2 (1,2) (2,2) 3 (1,3) (2,3) (3,3)
表 格
(3,1)
所有可能出 (1,1) (1,2)(2,1)(2,2) 现的结果
2、问题深入
准备两组相同的牌,每组三张,三张牌面 的数字分别是1、2、3.从两组牌中各摸出 一张为一次试验,上述结果又会是怎样呢?
1 2 3
1 2 3
第一组
第二组
开始
第一张牌的 牌面的数字 第二张牌的 牌面的数字
1
2 3 1 2 3 1
用频率估计概率: 在独立随机事件中,如果某一事件在全部事件 中出现的频率,在更大的范围内比较明显地稳定 在某一固定常数附近,就可以认为这个事件发生 的概率为这个常数.

初中数学北师大版九年级上册《3.1 用树状图或表格求概率(1)》课件


课堂练习
1.三张外观相同的卡片分别标有数字1,2,3,从中随机一 次抽出两张,这两张卡片上的数字恰好都小于3的概率是( A )
A .1 3
B. 2 3
C. 1 6
D. 1 9
课堂练习
2.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机 取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后, 再随机取出一个小球,让其标号为这个两位数的个位数字,则组 成的两位数是3的倍数的概率为( B )
新知讲解
做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三 人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
两枚正面朝上,我 获胜
你认为这个游戏公平吗?
一枚正面朝上、 一枚反面朝上,
我获胜
两枚反面朝上,我 获胜
新知讲解
连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相 同. 其中:
做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、
“两枚反面朝上”、“一枚正面朝上、一枚反面朝上”这三个事件
发生的概率相同吗?
(1)独立实验,并完成下表:
掷硬币的结果
两枚正面朝上
两枚反面朝上
一枚正面朝上、 一枚反面朝上
频数
频率
新知讲解
(2)小组活动:4个同学为一个小组,把4个人的试验数据汇 总,得到小组试验(200次)结果.
掷硬币的结果 频数
两枚正面朝上
两枚反面朝上
一枚正面朝上、 一枚反面朝上
频率
新知讲解
(2)小组活动:4个同学为一个小组,把4个人的试验数据汇
总,得到小组试验(200次)结果.
1
事件“两枚正面朝上”的概率为: 4 事件“两枚反面朝上”的概率为: 1 事件“一枚正面朝上、一枚反面朝上4”的概率为:2 1

期末拔高专题北师大版九年级上册数学 概率及其求法(含中考真题解析)

专题 概率及其求法☞解读考点☞2年中考【2015年题组】 1.(2015梧州)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A . 12B . 13C . 14 D . 1【答案】C .考点:概率公式. 2.(2015河池)下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .考点:随机事件.3.(2015贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=3 5.故选C.考点:1.概率公式;2.中心对称图形.4.(2015钦州)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.(2015南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.(2015德阳)下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0 xC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 【答案】C.考点:概率的意义.7.(2015南充)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.(2015内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A.考点:概率公式.9.(2015北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16B.13C.12D.23【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B .考点:列表法与树状图法.10.(2015自贡)如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( )A .43B .32C .31D .21【答案】B . 【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B .考点:1.列表法与树状图法;2.图表型. 11.(2015荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A .12B .14C .38 D .58考点:列表法与树状图法.12.(2015甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.13.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12 yx图象上的概率是()A.12B.13C.14D.16【答案】D.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x =图象上的概率是:212=16.故选D .考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征. 14.(2015绥化)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( )A .21B .31C .41D .51【答案】C .考点:1.列表法与树状图法;2.三角形三边关系. 15.(2015鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积. 16.(2015泰安)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( )A .12B .23C .25D .35【答案】C . 【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C .考点:1.列表法与树状图法;2.新定义. 17.(2015扬州)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率. 18.(2015贵阳)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理. 19.(2015镇江)写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】试题分析:21(1)32y x m x =--+,12bx m a =-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.(2015成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____.【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.(2015重庆市)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是 .【答案】25.【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x =+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x =+的自变量取值范围内的有﹣3,﹣2,4;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25.考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题. 22.(2015重庆市)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为.【答案】3 5.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.(2015枣庄)如图,直线24y x=+与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.(2015枣庄)如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA=4,OB=3,在Rt △OAB 中,=5,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,∴BA′=BA=5,CA′=CA ,∴OA′=BA′﹣OB=5﹣3=2,设OC=t ,则CA=CA′=4﹣t ,在Rt △OA′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t=32,∴C 点坐标为(0,32),设直线BC 的解析式为y kx b =+,把B (3,0)、C (0,32)代入得3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+.故答案为:1322y x =-+. 考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.(2015南宁)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)2 3.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.(2015河池)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)12.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P (一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差. 27.(2015玉林防城港)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x (1≤x≤13且x 为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x 为奇数,乙选择x 为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x )【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.29.(2015咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)1 3.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.(2015南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)2 3.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.(2015常州)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法.32.(2015无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.(2015镇江)活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→ → ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=1 3;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.(2015盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数1+=xy图象上的概率.【答案】(1)点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)1 3.∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=xy图象上,∴P(点P在一次函数y=x+1的图象上)=26=13.考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.【2014年题组】1.(2014年福建南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13B.属于不可能事件C.属于随机事件D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.(2014年福建三明中考)小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16B.15C.12D.1【答案】A.考点:概率公式.3.(2014年湖南长沙中考)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】1 20.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.(2014年广东梅州中考)下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.(2014年江苏南通中考)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用. 6.(2014年新疆乌鲁木齐中考)在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n 只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9. 【解析】试题分析:∵从3只红球,n 只白球的袋中任取一个球,摸出白球的概率为34,∴n 3n 34=+.解得:n=9,经检验:x=9是原分式方程的解. ∴n=9.考点:1.概率公式;2.分式方程的应用 7.(2014年浙江台州中考)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是 .【答案】13.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41123=.考点:1.列表法或树状图法;2.概率.8.(2014年江苏南京中考)从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:2 3.考点:概率.9.(2014年内蒙古包头、乌兰察布中考)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.【答案】(1)答案见试题解析;(2)1 6.试题解析:解:(1)画树状图得:∴(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3).(2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的概率为:21126 . 考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.(2014年云南省中考)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去. (1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果; (2)你认为这个规则公平吗?请说明理由. 【答案】(1)答案见试题解析;(2)这个游戏公平.考点:1.列表法或树状图法;2.概率;3.游戏公平性.☞考点归纳归纳 1:概率的有关概念 基础知识归纳: 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件. 不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件. 2、随机事件:。

九年级数学上册第3章概率计算方法总结(北师大版)

概率计算方法总结在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0<P(随机事件)<1.例1 (河北)图1中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.解析: 本题考查用公式法求概率,在随机翻动木牌过程中,一共有6种可能的翻牌结果,其中有2种为中奖,所以P(中奖)=3162 .说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对随机事件发生概率值的计算. 二.面积法例2 如图2是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_______.解析:因为四块地板的面积各不相同,故应分别求出阴影部分的面积为2×1+2×3=8,总面积为:2×1+2×2+2×3+1×5=17,面积之比即为所求概率. 所以P(随意停留在阴影部分)=178. 评注:几何概型也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形的面积. 三.树形图法例3 不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12 . (1)试求袋中蓝球的个数.图1图2(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x个.由题意得21122=++x∴x=1答:蓝球有1个(2)树状图如下:∴两次摸到都是白球的概率=61122=.说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果.四.列表法例4 (山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.1 2 3图4图3黄白2白1蓝黄白1蓝黄白2解析:(1)所求概率是.2142= (2)解法一(树形图):共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122= 解法二(列表法):共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122= 评注:本题考查学生对用树状图或列表法求概率的掌握情况,用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上)完成时,用这两种方法求事件的概率很有效.第一次抽取13 4 第二次抽取 23 4 32 4 42 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档