第10章 曲线积分和曲面积分
对弧长的曲线积分教案

第十章曲线积分与曲面积分 第一节 对弧长的曲线积分一.对弧长的曲线积分的概念 1.引入平面曲线构件L 的线密度ρ是常数,则平面曲线L 的质量为L M ρ=平面曲线构件L 的线密度ρ非均匀的,即ρ是非常数,却是曲线构件L 上点的函数),(y x f =ρ,则平面曲线构件L 质量的计算是把曲线弧L 分成n 个小段:n s s s ∆∆∆,,,21 ,其中i s ∆也表示第i 段小弧的长(0≥i s )。
在小段弧i s ∆上任意取一点),(i i ηξ,则该小段弧的质量近似为i i i s f ∆),(ηξ曲线构件L 的质量近似为∑=→∆ni i i i s f 1),(lim ηξλ那么,曲线构件L 的质量为∑=→∆=ni i i i s f M 1),(lim ηξλ其中}{max 1i ni s ∆=≤≤λ2.对弧长的曲线积分的概念定义 设定义在平面曲线L 上的有界函数),(y x f ,将曲线弧L 任意分割成n 小段弧i s ∆,且并以i s ∆表示第i 段小弧的长,在每小段弧i s ∆上任意取一点),(i i ηξ,作和式∑=∆ni iiisf 1),(ηξ当最大小段弧的长趋于零时,和式的极限存在∑=→∆ni i i i s f 1),(lim ηξλ则此极限值称为函数),(y x f 在平面曲线L 上对弧长的曲线积分(或称为第一类曲线积分)。
记作⎰Lds y x f ),(∑=→∆=ni i i i s f 1),(lim ηξλ其中}{max 1i ni s ∆=≤≤λ,),(y x f 叫做被积函数,ds y x f ),(叫做被积表达式,ds 称为弧微分,L 称为积分路径。
如果L 是封闭曲线,则曲线积分记为⎰Lds y x f ),(3.对弧长的曲线积分的性质 对弧长的曲线积分与积分路径无关,即⎰⎰=BAABds y x f ds y x f 弧弧),(),(。
由于对弧长的曲线积分的定义与定积分、重积分的定义类似,因此也有与它们相类似的性质。
10曲线积分与曲面积分-2

线性性质.
∫∫∑ [k1 f (x, y, z) ± k2g(x, y, z)]d S = k1∫∫ f (x, y, z) dS ± k2 ∫∫ g(x, y, z) dS ∑ ∑
二,对面积的曲面积分的计算法
定理1: 定理 设有光滑曲面 f (x, y, z) 在 ∑ 上连续, 则曲面积分
z
其中, λ 表示 n 小块曲面的直径的
x
最大值 (曲面的直径为其上任意两点间距离的最大者).
定义: 定义: 设 ∑ 为光滑曲面, "乘积和式极限"
f (x, y, z) 是定义在 ∑ 上的一
个有界函数, 若对∑ 做任意分割和局部区域任意取点,
记作
∫∫ f (x, y, z)d S
∑
都存在, 则称此极限为函数 f (x, y, z) 在曲面 ∑ 上对面积 的曲面积分 或第一类曲面积分. 其中 f (x, y, z) 叫做被积 函数, ∑ 叫做积分曲面. 据此定义, 曲面形构件的质量为 曲面面积为
xdS ; xdS ;
( 2000 考研 )
1
1
备用题 1. 已知曲面壳
质量 M . 解: ∑ 在 xOy 面上的投影为
的面密度
求此曲面壳在平面 z =1以上部分∑ 的
Dx y : x2 + y2 ≤ 2 , 故
M = ∫∫ d S = ∫∫
∑
3 1+ 4( x2 + y2 ) d xdy Dx y z
解
积分曲面 ∑:z = 5 y ,
投影域 : D xy = {( x , y ) | x 2 + y 2 ≤ 25 }
dS = 1 + z ′x + z ′y dxdy
曲线积分与曲面积分-第一类曲线积分

2 近似 在小弧段 Ai 1 Ai 上任取一点 M i ( ξ i , ηi ), 该弧段 的质量可近似表示为 ΔM i ≈ μ( ξ i , ηi )Δsi ( i = 1,2,L, n) 3 求和 整个构件质量的近似值
M = ∑ ΔM i ≈ ∑ μ( ξ i , ηi )Δsi
i =1 i =1 n n
第十章 曲线积分与曲面积分
本章基本要求
1. 理解两类曲线积分的概念,知道两类曲 线积分的性质. 2. 掌握两类曲线积分的计算方法. 3. 熟悉格林公式(Green),会用平面曲线积分 与路径无关的条件. 4. 知道两类曲面积分的概念及高斯公式 (Gauss)、斯托克斯公式(Stokes),并会计算两类 曲面积分.
1≤ i ≤ n
Ai 1 Ai 上任取一点 M i ( ξ i , ηi ), 作乘积 f ( ξ i , ηi )Δsi
(i = 1,2,L, n)并作黎曼和 ∑ f ( ξ i , ηi )Δsi . ,
n
令λ → 0, 若此和的极限总存在, 即极限值与曲线
L的分法及点 M i的取法无关,
i =1
y
θ= π
4
解 L 的极坐标方程为:
1o 求 d s
ρ = a cos 2θ
2
2
2
O
2
x
a sin 2θ 2 ρ (θ ) ρ ′(θ ) = 2a sin 2θ , ρ ′(θ ) = ρ (θ )
ρ 2 (θ ) + ρ ′ 2 (θ ) d θ
2
ds =
=
a2 ρ (θ ) + ( a sin 2θ ) dθ dθ = ρ (θ ) ρ (θ )
Γ : x = φ( t ), y = ψ ( t ) , z = ω( t ) (α ≤ t ≤ β )
曲线积分与曲面积分

曲线积分与曲面积分曲线积分与曲面积分是微积分中重要的概念和计算方法,它们在物理、工程和其他科学领域中的应用广泛。
本文将重点介绍曲线积分和曲面积分的概念、计算方法和应用。
一、曲线积分曲线积分是对曲线上的函数进行积分运算的方法。
它可以用来计算曲线上的物理量或者曲线周围的环量。
曲线积分可以分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分也叫标量场的曲线积分,是对曲线上函数的积分。
设曲线C为参数方程r(t) = {x(t), y(t), z(t)},函数f(x, y, z)在曲线C上有定义,则第一类曲线积分的计算公式为:∫[C]f(x, y, z)ds = ∫[a,b]f(x(t), y(t), z(t))|r'(t)|dt其中ds表示曲线上的长度元素,|r'(t)|表示参数方程的导数的模。
2. 第二类曲线积分第二类曲线积分也叫矢量场的曲线积分,是对曲线上的矢量场进行积分。
设曲线C为参数方程r(t) = {x(t), y(t), z(t)},矢量场F(x, y, z)在曲线C上有定义,则第二类曲线积分的计算公式为:∫[C]F(x, y, z)•dr = ∫[a,b]F(x(t), y(t), z(t))•r'(t)dt其中•表示矢量的点积运算。
二、曲面积分曲面积分是对曲面上的函数进行积分运算的方法。
曲面积分可以分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分也叫标量场的曲面积分,是对曲面上函数的积分。
设曲面S为参数方程r(u, v) = {x(u, v), y(u, v), z(u, v)},函数f(x, y, z)在曲面S上有定义,则第一类曲面积分的计算公式为:∬[S]f(x, y, z)dS = ∬[D]f(x(u, v), y(u, v), z(u, v))|ru × rv|dudv其中dS表示曲面上的面积元素,D为参数化区域,ru和rv分别为参数方程r(u, v)对u和v的偏导数,ru × rv表示它们的叉积。
对面积的曲面积分

被柱面
x y 25
所截得的部分.
2 2
解 曲面 : z 5 y 投影域: D xy {( x , y ) | x y 25 } 故 ( x
z
O
y z )d S
x
y
2 ( x y 5 y ) dxdy
D xy
dS
的二 对重 称积 性分
z a a x y
2 2 2
O
x
y
2
投影域 Dxy : x
y a
2
2
17
对面积的曲面积分
Σ 是球面 x y z 2 az
2 2 2
对上半球 z a
dS
2 2
a x y
2 2
2
1 z x z y dxdy
2
a a x y
2 2
2
若 可分为分片光滑的曲面
1及 2 , 则
f ( x , y , z )d S
1
f ( x , y , z )d S
2
f ( x , y , z )d S
5
对面积的曲面积分
补充:第一类面积分对称性
设分片光滑的 曲面Σ 关于yOz面对称,
则
f ( x , y , z )d S
1
O
1
x
16
对面积的曲面积分
计算曲面积分 I
( x y z )d S
2 2 2
的值.
2 2 2 其中Σ 是球面 x y z 2 az .
(a 0)
曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。
下面对曲线积分和曲面积分进行总结和拓展。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
根据曲线的参数方程给出曲线积分的计算公式。
曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。
它主要应用于测量曲线长度、质量等问题。
2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。
它主要应用于计算曲线上的力的做功、电流的环路积分等问题。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
曲面积分也有两类:第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。
它主要应用于计算场的通量、质量通量等问题。
2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。
它主要应用于计算磁通量、电通量等问题。
曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。
对于一些简单的曲线和曲面,也可以通过直接计算来求解。
此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。
这些概念可以帮助我们理解和计算曲线和曲面上的积分值。
总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。
通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。
掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。
曲线积分与曲面积分
曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。
曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。
本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
通常将曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。
2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
同样,曲面积分也分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。
对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。
曲线积分与曲面积分
第十一章曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.教学目标1.理解对弧长曲线积分和对坐标曲线积分的概念和性质;2.掌握对弧长曲线积分和对坐标曲线积分的计算方法;3.理解两类曲线积分之间的关系;4.掌握格林公式;5.会应用平面曲线积分与路径无关的条件;6.理解对弧长曲线面积分和对坐标曲面积分的概念和性质;7.掌握对弧长曲面积分和对坐标曲面积分的计算方法;8.理解两类曲面积分之间的关系。
教学要求1.掌握对弧长曲线积分和对坐标曲线积分的计算方法。
2.掌握格林公式。
3.应用平面曲线积分与路径无关的条件解决相关类型的问题。
4.掌握对弧长曲面积分和对坐标曲面积分的计算方法。
知识点、重点归纳1.分析实际问题,将其转化为相关的数学问题;2.应用曲线或者曲面积分的计算方法求解问题;3.理解格林公式的实质;4.应用平面曲线积分与路径无关的条件解决相关类型的问题。
第一节 对弧长的曲线积分一、对弧长曲线积分的概念与性质定义 L 为xoy 面内的一条光滑曲线弧,),(y x f 在L 上有界,用i M 将L 分成n 小段i S ∆,任取一点i i i S ∆∈),(ηξ()1,2,3...,i n =, 作和ini iiS f ∆∑=1),(ηξ,令},,,m ax {21n s s s ∆∆∆= λ,当λ0→时,01lim (,)ni i i i f S λξη→=∆∑存在,称此极限值为),(y x f 在L 上对弧长的曲线积分(第一类曲线积分)记为=⎰ds y x f L),(01lim (,)ni i ii f S λξη→=∆∑注意:(1)若曲线封闭,积分号⎰ds y x f ),((2)若),(y x f 连续,则ds y x f L⎰),(存在,其结果为一常数.(3)几何意义),(y x f =1,则ds y x f L⎰),(=L (L 为弧长)(4)物理意义 M =ds y x L⎰),(ρ(5)此定义可推广到空间曲线ds y z x f ⎰Γ),,(=01lim (,,)ni i i ii f S λξηζ→=∆∑(6)将平面薄片重心、转动惯量推广到曲线弧上重心:Mxdsx L⎰=ρ,Mydsy L⎰=ρ,Mzdsz L⎰=ρ。
高数下册-曲线积分与曲面积分复习题
24、 选择题
下列结论正确的是( )
A. ∫∫ e x+ydxdy = 4∫∫ e x+ydxdy , D:| x | + | y |≤ 1, D1:x + y ≤ 1, x ≥ 0, y ≥ 0;
13、
计算
∫L
(x
+
y)dx x2
− +
(x y2
−
y)dy
,其中
L
为圆周
x2
+
y2
=
a2(按逆时针方
向绕行);
14、
计算
∫ xydx + ( x − y)dy + x2dz Γ
,其中
Γ
为螺旋线
x = a cos t,
y = a sin t, z = at (0 ≤ t ≤ π ) 上从点 A(a,0,0) 到点 B(−a,0, aπ ) 的一段
∫ e x (cos L
ydx − sin ydy)
17、 计算 ∫Γ xdx + ydy + zdz ,其中曲线 Γ 为从点 A(1,1,1) 到点 B(2,3,4) 的
直线段;
18、 计算 ∫L xy2dy − x2 ydx ,其中 L 为圆周 x2 + y2 = R2 的逆时针方向; 19、 利用格林公式计算 I = ∫L (2xy − x2 )dx + ( x + y2 )dy ,其中 L 是由抛物
线 y = x2和 y2 = x 所围区域的正向边界曲线;
20、
∫ 利用格林公式计算 I = (e x sin y − my)dx + (e x cos y − m)dy ,其中 AnO
∫′-华东师范大学上海市精品课程-高等数学A
第十章 曲线积分和曲面积分1. 第一型曲线积分和第二型曲线积分有什么关系?答:第二型曲线积分是借助于第一型曲线积分定义的,但是它与第一型曲线积分的一个主要区别是:它和曲线的方向有关,这是因为切向量)cos ,cos ,(cos γβα和曲线的方向有关,因此∫∫−++−=++LL Rdz Qdy Pdx Rdz dy Q Pdx ,其中−L 表示与L 方向相反的曲线。
这种区别在计算公式上的表现是:在光滑曲线L :βαωψϕ≤≤===t t z t y t x ),(),(),(上的第一型曲线积分为:dt t t t t t t f ds z y x f L 222)()()())(),(),((),,(ωψϕωψϕβα′+′+′=∫∫。
右边的定积分的上限总大于下限,而对于第二型曲线积分,如果取L 的方向与参数t 增加的方向一致,则有:∫++Ldz z y x R dy z y x Q dx z y x P ),,(),,(),,( ∫′=βαϕωψϕ)())(),(),(({t t t t P Q +))(),(),((t t t ωψϕdt t t t t R t )}())(),(),(()(ωωψϕψ′+′ 而∫−++L Rdz Qdy Pdx∫′=αβϕωψϕ)())(),(),(({t t t t P Q ++′)())(),(),((t t t t ψωψϕdt t t t t R )}())(),(),((ωωψϕ′ 即右端定积分的上下限与曲线的方向有关,下限对应于曲线的起点,上限对应于曲线的终点。
2.试判断下列结果是否正确,为什么? 设∫=L xdy I ,L 是圆周:222a y x =+,取逆时针方向,由于积分曲线是关于y 轴对称,被函数x 是关于x 的奇函数,所以∫=Lxdy I 0=。
答:这是不对的,因为第二型曲线积分不能这样用“对称性”,事实上,2220220cos )sin (cos a d a a d a I πθθθθππ===∫∫这是因为第二型曲线积分(以及第二型曲面积分)涉及积分域的定向问题,奇偶对称性比较复杂. 设L 关于y 轴对称,(1L 为L 在y 轴右侧的部分)有∫∫=L L dy y x Q dy y x Q 为偶函数关于当为奇函数关于当x )y ,x (Q 0x )y ,x (Q ),(2),(1如图10-14设21L L L +=,1:(), :0L yx x a ϕ=→,2:(),:0L y x x a ϕ=−−→ 则∫∫∫+=LL L dy y x Q dy y x Q dy y x Q 12),(),(),( dx x x x Q dx x x x Q a a)())(,()())(,(00−′−−++′+=∫∫−ϕϕϕϕ对dx x x x Q a )())(,(0−′−−∫−ϕϕx t =−0(,())()a Q t t t dt ϕϕ′−∫ 则dx x x x Q x x Q dy y x Q La)())](,())(,([),(0ϕϕϕ′−−=∫∫=′=∫∫为偶函数关于为奇函数关于x y x Q x y x Q dy y x Q dx x x x Q a L ),(0),(),(2)())(,(201ϕϕ3.在与路径无关的等价命题中,为什么要限制D 为单连通区域?答:若D 不是单连通域,则与路径无关的等价命题可能不成立. 如,例:计算∫+−=L y x ydx xdy I 22,其中L 为一条分段光滑且不经过原点的连通闭曲线,L 的方向为逆时针方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第10章 曲线积分和曲面积分 参考解答 1、计算下列对弧长的曲线积分: (1)Lxds,其中L为由Oxy平面上的直线yx及抛物线2yx所围成区域的边界。
10.5123l2
l1
A
O 第1(1)题 解:110222lxdsxdx,
2
131222
00
12114145518312lxdsxxdxx
1221
551212Lllxdsxdsxds
(2)22234Lxyxyds,L为椭圆22143xy,其周长为a。 解:22222342341212LLLLxyxydsxydsxydsdsa 注意第一类曲线积分的对称性:若曲线关于x(y)轴对称,而被积函数关于y(x)为奇函数,则曲线积分为零! (3)22Lxyds,L为圆周22xyax(0a)。
解:圆周之参数方程为cos22sin2aaxtayt(02t),故 2
222222
001coscos2222Laaatxydstdtdt
2222
002
coscoscos2auduauduudua
(4)Lzds,L为0cossin0xttyttttzt 解:0322200122223tLzdsttdtt (5)2Lxds,L圆周为22220xyzaxyz 解:因222LLLxdsydszds,故 222223
112
333LLL
xdsxyzdsadsa
2、计算下列对坐标的曲线积分: (1)2222Lxydxxydy,其中L为折线11yx上从点0,0到点1,1再
到点2,0的二线段。
L2L
1
1,1
21
yxO
解:1:01Lyxx,2:212Lyxx 2222
LIxydxxydy
1222222222
LLxydxxydyxydxxydy
1222222
01222xdxxxxxdx
3
1222
01222xdxxdx
43(作代换2tx,知第二个定积分与第一个相等)
(2)23Lydxxzdyyzdz,L是圆周2222xyzz,从z轴正向看去,该圆周取逆时针方向。
Lyx
z
O 解:L的参数方程为2cos2sin 022xyz,故得 222
012sin8cos20Id
3、利用Green公式计算下列曲线积分: (1)1cossinxxLeydxeyydy, L由sinyx,0x与x轴围成,沿
逆时针方向。
O
x
yL
第3(1)题 解:L为封闭曲线,如图所示,直接运用Green公式。 4
1cossinxxLIeydxeyydy
sinsin xxDeyyeydxdy
(,|0sin,0Dxyyxx)
xDeydxdy
sin00xxedxydy
201sin2xexdx
0
1
1cos24xexdx
0
11
1cos244xeexdx
但
0cos2xexdx00cos22sin2xxexexdx
00
12sin22cos2xxeexexdx
014cos2xeexdx,
故得01cos215xexdxe。从而得 1111114205Ieee
(2)22Lxdyydxxy, L由1xy的正向。
lLOx
y
第3(2)题 5
解:22yPxy,22xQxy,22222QyxPxyxy。但Qx和Py在L所围正方形区域内并不连续(在点0,0处两者根本不存在),故不满足Green公式之条件。为此,采用“挖地雷”方法:取以原点为心、12(或小于2的任意正数)为半径的圆l,并取逆时针方向,如图所示。其参数方程为:
1cos2 021sin2xy
于是,l和L所围区域D成为“安全地带”,在D上,P和Q均具有一阶连续偏导数,Green公式成立。于是
222222LlLlxdyydxxdyydxxdyydxxyxyxy
0DQPdxdyxy
因此, 22
2
22220
1sincos4214Llxdyydxxdyydxdxyxy
4、计算积分333LyxdxyxdyIxy, 其中L是由点, 02A沿曲线cos2yx到点0, 2B的弧段。
LB
AyxO 第4题 6
解:这里3333, yxyxPQxyxy,46xyPQyxxy。因此,在曲线L和线段AB所围闭区域上,曲线积分与路径无关。这里,线段AB的方程为2yx,02x,方向为从点A指向点B。 因此, 333LyxdxyxdyIxy333AByxdxyxdyxy
032
3444222xxdx
。
5、验证21xyxyeexyydxeexydy是某函数,uxy的全微分,并求出这样的一个,uxy。 解:这里2, 1xyxyPeexyyQeexy,故 11, 11xyxyPQeexyeexyyx
因而PQyx,故知21xyxyeexyydxeexydy为某函数,uxy的全微分。以下我们用两种方法来求,uxy。 方法1(利用曲线积分):
,0,0,21xy
xyxyuxyeexyydxeexydy
0021xyxxyexdxeexydy
11xyxxyeye
方法2(利用待定函数法): 因2xyueexyyx,故得 ,2 xyuxyeexyydx
(将y看作常数)
1xyxxyeyepy(其中py为待定函数,与x无关)