一元二次方程实际应用的传播,循环,数字问题

合集下载

一元二次方程应用题1(传播问题)电子教案

一元二次方程应用题1(传播问题)电子教案

解:设每个支干长出x
个小分支,
小 分
小 分
……
小 分
小 分
…… ……
则1+x+x●x=91


x

支x即支干 Nhomakorabea…… 支干
x2x90 0
x
解得, x1=9,x2=-10(不合题意,舍去)
主 干
答:每个支干长出9个小分支.
1
2.某种电脑病毒传播非常快,如果一台电脑被 感染,经过两轮感染后就会有81台电脑被感染. 请你用学过的知识分析,每轮感染中平均一台 电脑会感染几台电脑?若病毒得不到有效控制, 3轮感染后,被感染的电脑会不会超过700台?
一元二次方程应用题1(传播问题 )
练习:甲型H1N1流感病毒的传染性极强,某地因1人患了甲型 H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了 甲型H1N1流感,每天平均一个人传染了几人?如果按照这个 传染速度,再经过5天的传染后,这个地区一共将会有多少人 患甲型H1N1流感?
分析:第一天人数+第二天人数=9,1xx(1x)9
一次足球比赛中第一轮实行单循环赛制,在 每场比赛中赢着计2分,负着记零分,如果平 局双方各计1分,现有四位同学统计比赛各对 得分的总分,分别是551,552,553,554,经核 实只有一位同学统计无误,则这次比赛共有 多少个队参加?
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
1、要组织一场篮球联赛,赛制为单循环形式,即每 两队之间都赛一场,计划安排15场比赛,应邀请多少 个球队参加比赛?
2、参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
3象棋比赛中,每个选手都与其他选手恰好比赛一局,每 局赢者记2分,输者记0分.如果平局,两个选手各记1分, 有四个同学统计了中全部选 手的得分总数,分别是1979, 1980,1984,1985.经核实,有一位同学统计无误 .试计算这次比赛共有多少个选手参加.

【精品】一元二次方程应用(传染问题)

【精品】一元二次方程应用(传染问题)

【精品】一元二次方程应用(传染问题)受新冠疫情的影响,今年全国多个地方的中考时间延迟了。

新型冠状病毒之所以可怕,其较强的传染性是一个主要原因。

这与我们中考中的“病毒传播”问题的知识点正好契合,所以这个类型的题目应该是各地中考题目中的热点题目。

“病毒传播”问题是初中一元二次方程中的典型题目。

我们看一下例题:
某种病毒传播非常快、如果一台电脑中毒、经两轮感染后就会有81台电脑被感染.
问:(1)每轮感染中平均一台电脑会感染几台电脑?
解答这类问题,要注意“本体”是否还具有“传染性”的问题,此例题中“本体”是具有传染性的,所以可以利用计算“增长率(降低率)”的公式进行解答。

传播问题公式:
其中a表示传染之初携带病毒的个体数量,x表示每轮感染中每个个体可以传染的数量,n表示传播了几轮,b表示经过n轮传播后,已经感染病毒的个体的总数量。

所以这个例题的解答可以为:
从这个问题中,我们也不能看到病毒传播是多么可怕,如果不加以控制隔离,传染速度是多么快。

温馨提示:这个例题中,“本体”具有传播能力,要注意与题目“某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出小分支的个数是多少?”区分开。

初中九年级数学教案- 实际问题与一元二次方程(传播问题)【全国一等奖】

初中九年级数学教案- 实际问题与一元二次方程(传播问题)【全国一等奖】

胞的个数共有多少个

纳入知识系 统,总结本节 课内容,让学 生体会方程刻
四小结归纳 三类传播问题的区别
1 每名患者每轮都传染 2 每个树枝只能分支一次 3 每个细胞分裂后消失。 三类传播问题的联系 1 审、设、列、解、检、答; 2 关注起始值,新增数量,找出变化规律 五、作业设计 必做:教科书复习题 21 第 7 题 选做:P19:10
教学时间
课 题 实际问题与一元二次方程(传播问题)
新 课型

教学媒体
多媒体
1 能根据以流感为问题背景,按一定传播速度逐步传播的问题,体会方程刻画现实

知识
世界的模型作用
技 能 2 培养学生的阅读能力与分析能力

3 能根据具体问题的实际意义,检验结果是否合理
通过自主探究,独立思考与合作交流,弄清实际问题的背景,挖掘隐藏的数
点题,板书课题
联系上节课内
容,进一步学习
一元二次方程
教师提出问题,并指导 的应用
学生进行阅读,独立思
考,学生根据个人理
解,回答教师提出的问
题弄清题意,设出未知 弄清问题背
数,并表示相关量,根 景,特别注意
据相等关系尝试列方 分析清楚题
程,求根根据实际问题 意,题中没有
要求,对根进行选择确 特别说明,那
一类题型
播,这些问题有通性,在解题时有规律可循:它实际是一
个完全平方问题,设每轮传染中平均一个人传染了个人,
经两次传染共有 M 人被传染,则有
1(1)=(1)2=M
完全平方
教师提出问题,让学生
补充例题
结合画图独立理解并解
某种植物的主干长出若干数目的支干,每个支干又 答问题,培养学生对实

九年级上册数学精品课件: 传播问题与一元二次方程

九年级上册数学精品课件: 传播问题与一元二次方程

1+x+(1+x)x(1=+x)2
1(+1x+x) (1+x)2∙
第三轮 2
x
(1+x)2+(1+x)2∙x(1+x)3
=
(1+x)n
第n轮 经过n轮传染后共有 (1+x)n 人患流感.
例1:某种植物的主干长出若干数目的支干,每个支干又 长出同样数目的小分支,主干,支干和小分支的总数是91, 每个支干长出多少小分支?
答:平均一个人传染了____1__0__个人.
注意:一元二次方程的解有可能不符合题意,所以 一定要进行检验.
想一想:如果按照这样的传染速度,三轮传染后有多 少人患流感? 分析
第一轮传染后 第二轮传染后的 第三轮传染后的
的人数
人数
人数
(1+x)1
(1+x)2
(1+x)3
第1种做法 以1人为传染源,3轮传染后的人数是:
导入新课
视频引入
导入新课
图片引入
传染病,一传十, 十传百… …
讲授新课
一 传播问题与一元二次方程
合作探究
引例:有一人患了流感,经过两轮传染后共有121人 患了流感,每轮传染中平均一个人传染了几个人?
分析 :设每轮传染中平均一个人传染了x个人. 传染
源记作小明,其传染示意图如下:
第2轮
第1轮 1
2
•••
小明
x
注意:不要 忽视小明的 二次传染
小明
第1轮传染后人数
x+1
第2轮传染后人数
x(x+1)+x+1
根据示意图,列表如下:

21.3实际问题与一元二次方程(教师版)

21.3实际问题与一元二次方程(教师版)

21.3 实际问题与一元二次方程同步讲解·新课堂知识点1 传播/传染问题1.传播/传染模型1 最初传播源在以后每一轮仍然传播问题(病毒感染类)方程模型:传播源×(1+每轮传播人数x)2=最终传染人数2.传播/传染模型2 最初传播源在以后每一轮不再传播问题(数值分叉类)方程模型:传播源+传播源×每轮传播人数+传播源×每轮传播人数×每轮传播人数=最终传染人数知识点2 平均增长率(降低率)问题1.平均增长率问题模型1 最后产量是b表示不累计的量方程模型:原数×(1+平均增长率)2=新数即a(1+x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均增长率)(注意:解方程一般用直接开平方法,注意方程根的取舍问题.)2.平均增长率问题模型2 最后产量是b表示总共累计的量方程模型:原数+原数×(1+平均增长率)+原数×(1+平均增长率)2=新数即a+a(1+x)+a(1+x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均增长率)3.平均降低率模型原数×(1—平均增长率)2=新数即a(1—x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均降低率)(注意:1与x的位置不能调换,解方程一般用直接开平方法,注意方程根的取舍问题.)知识点3 比赛/握手/增贺卡/发微信/问题1.单循环比赛/握手模型 方程模型:12=⨯总人数(总人数-)总次数2.双循环比赛/互赠贺卡模型方程模型:()-1⨯=总人数总人数总次数知识点4 营销利润问题(每每型问题)1.方程模型:总利润=(售价-进价)×销售数量题干中已知量为进价a 元,原售价b 元,销量m 件,销量随售价提高(降低)d 元而减少(增加)c 件,获得利润w 元.(1)若设提(降)价x 元,方程模型为: ①提价减销量:(b +x -a )(m -cx d)=w ①降价提销量:(b -x -a )(m +cx d )=w (2)若设售价x 元,方程模型为:①提价减销量:(x -a )[m -c (x b d-)]=w ①降价提销量:(x -a )[m +c (b x d -)]=w (3)题干中已知量为盈利a 元,销量m 件,销量随售价提高(降低)d 元而减少(增加)c 件,获得利润w 元.设提(降)价x 元,方程模型为:(a ±x )(m -+cx d)=w(要注意题设中“在顾客得实惠的前提下”“减少库存压力”等语句,这是进行答案取舍的重要信息.)知识点5 几何图形面积问题(1)阴影部分面积几何模型①(空白部分宽均为x)方程模型:(a-2x)(b-2x)=阴影部分面积几何模型②(阴影部分宽均为x)方程模型:ab-(a-x)(b-x)=阴影部分面积知识点6 篱笆围墙问题1.无缺口型的篱笆围墙问题(设垂直墙面长x)方程模型:(篱笆总长-垂直墙面长×个数)×垂直墙面长=矩形面积2.有缺口型的篱笆围墙问题(设垂直墙面长x)方程模型:(篱笆总长+所有缺口长-垂直墙面长×个数)×垂直墙面长=矩形面积考点梳理·新认知考点1 传染问题例1 有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?【答案】见解析.【解析】解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x-80=0,解得:x1=8,x2=-10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.考点2 树枝分叉问题例2 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?【答案】见解析.【解析】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:1+x+x2=91,解得:x=9或x=-10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.考点3 平均增长率问题(不累计增长量)例3 互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.(1)求平均每年增长率;(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.(参考数据:⎷≈1.414)【答案】见解析.【解析】解:(1)设平均每年增长率为x,依题意,得:4.5(1+x)2=9,解得:x1=0.414=41.4%,x2=-2.414(舍去).答:平均每年增长率为41.4%.(2)9×(1+41.4%)2≈17.995(亿).∵17.995>17,∴2020底全球支付宝用户数会超过17亿.考点4 平均增长率问题(累计增长量)例4某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?【答案】见解析.【解析】解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=-3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.考点5 单循环比赛/握手问题例5我校九年级组织一次班际篮球赛,若赛制为单循环形式(每两班之间都赛一场),则需安排45场比赛.问共有多少个班级球队参加比赛?【答案】见解析.【解析】解:设共有x个班级球队参加比赛,根据题意得:()1452x x-=,整理得:x2-x-90=0,即(x-10)(x+9)=0,解得:x=10或x=-9(舍去).则共有10个班级球队参加比赛.考点6 双循环比赛/互赠贺卡、礼物问题例6新年到了,班上数学兴趣小组的同学互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共送了210张贺年卡,那么数学兴趣小组的人数是多少?【答案】见解析.【解析】解:设数学兴趣小组的人数为x人.根据题意,得x(x-1)=210,解得x=15或x=-14(不合题意,应舍去).答:数学兴趣小组的人数为15人.考点7 营销利润问题例7 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【答案】见解析.【解析】解:(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为:2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.例8 某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.【答案】见解析.【解析】解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:25220.5×1+8=14,则此时,平均每周的销售利润是:(22-15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25-x-15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25-5=20(万元),答:每辆汽车的售价为20万元.考点8 旅游花费问题例9为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】见解析.【解析】解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100-2(x-30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100-2(35-30)=90>80,符合题意;当x=45时,人均旅游费用为100-2(45-30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.考点9 几何图形面积问题例10 如图所示,在长为32m、宽20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作试验田,要使试验田面积为570m2,问道路应多宽?【答案】见解析.【解析】解:设道路为x米宽,由题意得:(32-2x)(20-x)=570,整理得:x2-36x+35=0,解得:x1=1,x2=35,经检验是原方程的解,但是x=35>20,因此不合题意舍去,答:道路为1m宽.例11如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度相同,则人行道宽为多少米?【答案】见解析.【解析】解:设人行道的宽度为x米(0<x<3),根据题意得:(18-3x)(6-2x)=60,整理得,(x-1)(x-8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行道的宽度是1米.考点10 篱笆围墙问题例12如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙).用砌60米长的墙的材料,当矩形的长AB为多少米时,矩形花园的面积为300平方米.【答案】见解析.【解析】解:设矩形花园BC的长为x米,则其宽为12(60-x+2)米,依题意列方程得:12(60-x+2)x=300,x2-62x+600=0,解这个方程得:x1=12,x2=50,∵28<50,∴x2=50(不合题意,舍去),∴x=12.答:当矩形的长BC为12米时,矩形花园的面积为300平方米.考点11 动态几何问题例13 如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分①ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.【答案】见解析.【解析】解:(1)设经过x秒,△PBQ的面积等于8cm2则:BP=6-x,BQ=2x,所以S△PBQ= 12×(6-x)×2x=8,即x2-6x+8=0,可得:x=2或4,即经过2秒或4秒,△PBQ的面积等于8cm2.(2)设经过y秒,线段PQ恰好平分①ABC的面积,①PBQ的面积等于12cm2,S①PBQ=12×(6-y)×2y=12,即y2-6y+12=0,因为①=b2-4ac=36-4×12=-12<0,所以①PBQ的面积不会等于12cm2,则线段PQ不能平分①ABC的面积.分层巩固·新空间1.永辉超市以每袋25元的成本价收购一批桂圆,当桂圆售价为每袋40元时,一月份销售256袋。

《实际问题与一元二次方程》(传播、增长率问题问题)课件

《实际问题与一元二次方程》(传播、增长率问题问题)课件
2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间, 红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这 种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传 染健康鸡的只数为( C )传播第三轮后感染的鸡有 2197 只 A.10只 B.11只 C.12只 D.13只
探究2:某种植物的主干长出若干数目的支干, 每个支干又长出同样数目的小分支,主干、 支干、小分支的总数是111.求每个支干长出 多少个小分支.设:每个支干长出x个小分支
每两人赠两次
1个人
赠送(x-1)人
共计 x(x-1)图书
探究一:循环问题
2、在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参
加这次聚会,则列出方程正确的是( B )
A.x(x-1)=10
B. xx 1 10
C. x(x + 1)=10
D. xx2 1 10
2
1个人
3、某商品经过连续两次降价,销售单价由原来的125元降 到80元,则平均每次降价的百分率为____2_0_%__.
小结
本节课我们学习了几种问题: 传播问题、增长率问题 解决问题的步骤: 审、设、列、解、答
探究一:循环问题
1、“山野风”文学社在学校举行的图书共享仪式上互
赠图书,每个同学都把自己的图书向本组其他成员赠送
设每轮传染中平均一个人传染了x个人, 则第一轮的传染源有 1 人,有 x 人被传染,
第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
1 x 传染源 1人
每人传染x人
传染了
传染后
结果
(x+1)人
传染源
每人传染x人
传染后

一元二次方程的实际应用(病毒传播、增长率、单(双)循环、图形面积、涨降价销售问题)含答案


7.(8 分 ) 树 西 瓜 经 营 户 以 2 元 / 千 克 的 进 价 购 进 一 批 小 型 西 瓜 , 以 3 元 / 千 克 的 价 格 出 售 , 每 天 可 售 出 200 千 克 , 为了 促 销 , 该 经 营 户 决 定 降 价 销 售 , 经 调 查 发 现 , 这 种 小 型 西 瓜 每 降 价 0.1 元 / 千 克 , 每 天 可 多 售 出 40 千 克 , 另 外 , 每 天 的 房 租 等 固 定 成 本 共 24 元 , 该 经 营 户 要 想 每 天 赡 利 200 元 , 应 将 每 十 克 小 型 西 瓜 的 售价 降低 多少元 ?
11.分 )(菜 8机 械 厂 七 月 份 生 产 零 件 52 万 个 , 第 三 季 度 生 产 零 件 196 万 个 、 设 该 厂八 、 九 月 份 平 均 每 月 的 增 长 率 为 z, 那 么 满 足 的 方 程 是 ?
12.(8 分 )2015 年 树 市 曾 爆 发 登 革 热 疫 情 , 登 革 热 是 一 种 传 染 性 病 毒 , 在 病 毒 传 播 中 , 若 1 个 人 悦 病 , 则 经 过 两 轮 传 染 就 共 有 144 人 悟 病 . (D) 每 轮 传 染 中 平 均 一 个 人 传 染 了 几 个 人 ? (2) 若 病 毒 得 不 到 有 效 控 制 , 按 照 这 样 的 传 染 违 度 , 三 轮 传 染 后 , 患 病 的 人 数 共 有 多 少 人 ?
6.(8分 ) 桅 商 店 销 售 枸 种 电 扇 , 每 台 进 货 价 为 150 元 , 经 市 场 调 研 , 当 每 台 售 价 为 230 元 时 , 平 均 每 天 能 售 出8 台 : 当 每 台 售 价 每 降 10 元 时 , 平 均 每 天 就 能 多 售 出 4 台 。 若 商 店 要 想 使 这 种 电 扇 的 销 售 利 润 平 均 每 天 达 到 1000元 , 则 每 台 电 扇 的 定 价 应 为 多 少 元 ?

《传播问题与一元二次方程》课件精品 (公开课)2022年数学PPT


讲授新课
活动2:请观察这两个数,它们有什么异同点?你还能 列举两个这样的数吗?
符号不同
2.5
2.5
数字相同
要点归纳
1.定义:只有符号不同的两个数叫做互为相反数.
2.一般地,a和-a互为相反数.
代数意义
练一练
判断题:
(1)-5是5的相反数;(√ )Βιβλιοθήκη (2)-5是相反数;( × )
(3)2
1 2

1 2
情境引入1
成语故事《南辕北辙》讲了一个人…… 如果点O表示魏国的位置,点A表示楚国的位置, 假设楚国与魏国相距30 km,以魏国为原点0,我们规 定向南为正方向,而此人从魏国出发向北到了点B也走 了30 km,请同学们把这3个点在数轴上表示出来.
现在的位置
魏国
楚国
B
O
A
-30 -20 -10 0 10 20 30
探究二 相反数的几何意义
思考:在数轴上,画出几组表示相反数的点,并观 察这两个点具有怎样的特征?
-5
-a -1 0 1 a 5
位于原点两侧,且与原点的距离相等.
思考:数轴上到原点的距离相等的点所表示的数有什
么特点?借助数轴填一填:
1.数轴上与原点距离是2的点有_两___个,这些点表示的
数是_2_和__-_2___; 2.与原点的距离是5的点有_两___个,这些点表示的数是
A.10
B.9
C.8
D.7
4.为了宣传环保,小明写了一篇倡议书,决定用微博转 发的方式传播,他设计了如下的传播规则:将倡议书 发表在自己的微博上,再邀请n个好友转发倡议书,每 个好友转发倡议书之后,又邀请n个互不相同的好友转 发倡议书,以此类推,已知经过两轮传播后,共有111 个人参与了传播活动,则n=_1_0____.

实际问题与一元二次方程(第1课时传播问题)九年级数学上册(人教版)

人教版数学九年级上册
人教版数学九年级上册
第21.3实际问题与一元二次方程 (第1课时传播问题)
学习目标
人教版数学九年级上册
1.会分析实际问题(传播问题)中的数量关系并会列一元二次 方程. 2.正确分析问题(传播问题)中的数量关系. 3.会找出实际问题(传播问题)中的相等关系并建模解决问题. 4.了解一元二次方程在实际问题中的应用价值.
拓展训练
人教版数学九年级上册
1.某种病毒传播速度非常快,如果最初有两个人感染这种病毒, 经两轮传播后,就有五十个人被感染,求每轮传播中平均一个 人会传染给几个人?若病毒得不到有效控制,三轮传播后将有 多少人被感染? 解:设每轮传播中平均一个人会传染给x个人,
根据题意列方程: 2+2x+x(2+2x)=50, 整理得:2(1+x)2=50, 解得:x1=4,x2=-6.(不合题意,舍去), ∴50×(1+4)=250(人). 答:每轮传播中平均一个人会传染给4个人,若病毒得 不到有效控制,三轮传播后将有250人被感染.
解:设每轮传染中平均一个人传染了x个人. 1+x+x(1+x)=121
解方程,得x1=10,x2=-12(不合题意,舍去) 答:平均一个人传染了10个人.
思考 如果按照这样的传染速度,三轮传染后有多少人患流感?
121+121×10=1331(人)
典例精析
人教版数学九年级上册
例1 某种植物的主干长出若干数目的支干,每个支干又 长出同样数目的小分支,主干、支干和小分支的总数是91, 每个支干长出多少个小分支?
第2轮传染后患病人数_[_1_+_x_+_(_1_+_x_)_x_]人. 规律发现

21.3实际问题与一元二次方程1传播问题(教案)

-鼓励学生提出创新性的解题思路,培养学生的发散性思维。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元二次方程1——传播问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过信息或病毒传播的情况?”(如微信朋友圈的谣言传播、流感病毒传播等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索传播问题的奥秘。
4.培养学生数据分析素养,使学生能够通过对传播问题的研究,理解数据背后的规律,为现实生活中的类似问题提供解决思路。
三、教学难点与重点
1.教学重点
(1)理解传播问题背景,能从实际问题中抽象出一元二次方程。
-通过案例分析,让学生明确如何从传播问题中提炼出一元二次方程,掌握方程构建的方法。
-强调一元二次方程在解决传播问题中的应用,如病毒传播、信息传播等。
3.通过传播问题,掌握解决实际问题时如何列出相关的一元二次方程,并求解。
4.分析以下案例:
(1)病毒传播问题:在某次疫情中,病毒通过接触传播,假设每个感染者在接触一个人后,有50%的概率将病毒传播给对方。如果已知病毒最初由一个人传播,求经过5次传播后,预计有多少人可能感染病毒。
(2)信息传播问题:在社交网络上,一个热门话题最初由一名用户发布,如果每个阅读该话题的用户有20%的概率转发,求经过3次转发后,预计有多少人看到该话题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的传播,循环,数字问题
一、传播问题:
1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81
台电脑被感染,求每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?
2、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
二、循环问题
1、在一个QQ群里有n个网友在线,每个网友都向其他网友发出一条信息,共有20条信息,则n为()
2.一个小组有若干人,新年互送贺卡,若全组共送了 72 张,则这个小组共有多少人?
3.要组织一场篮球联赛, 每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?
4.参加一次商品交易会的每两家之间都签订了一份合同,所有公司共签订了45份合同,有多少家公司参加商品交易会?
三、数字问题:
1、有两个连续整数,它们的平方和为25,求这两个数。

2.两个相邻偶数的积为168,则这两个偶数是多少?
3.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,求原两位数。

4.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数。

求这个两位数。

相关文档
最新文档