《创新设计》2017届高考数学二轮复习(浙江专用)教师1(专题一)
《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题二+三角函数与平面向量+第2讲

一、选择题1.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin ⎝ ⎛⎭⎪⎫α+π4=35,则cos α等于( ) A.-210 B.7210 C.-210或7210 D.-7210解析 ∵α∈⎝ ⎛⎭⎪⎫π2,π,∴α+π4∈⎝ ⎛⎭⎪⎫34π,54π. ∵sin ⎝⎛⎭⎪⎫α+π4=35,∴cos ⎝ ⎛⎭⎪⎫α+π4=-45, ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4 =cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4 =-45×22+35×22=-210. 答案 A 2.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A.5B. 5C.2D.1解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.答案 B3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C=π3,则△ABC 的面积是( )A.3B.932C.332D.3 3解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①.∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.答案 C4.(2016·山东卷)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B. π3C.π4D.π6解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ),∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.答案 C5.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )A.310B.1010C.55D.31010解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以sin A =31010. 答案 D二、填空题6.(2016·四川卷)sin 750°=________.解析 ∵sin θ=sin(k ·360°+θ),(k ∈Z ),∴sin 750°=sin(2×360°+30°)=sin 30°=12.答案 127.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BC sin ∠BAC =AB sin ∠ACB,即BC sin 30°=600sin 45°,所以BC =300 2.在Rt △BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6. 答案 100 68.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154, S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得,a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8. 答案 8三、解答题9.(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)cos ⎝ ⎛⎭⎪⎫A -π6的值. 解 (1)由cos B =45,且0<B <π,则sin B =1-cos 2B =35,又∵C =π4,AC =6,由正弦定理,得AC sin B =AB sin π4,即635=AB 22⇒AB =5 2. (2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210,cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210,则cos ⎝ ⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.10.(2016·广西南宁测试)在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.解(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cosA+2)=0,解得cos A=12或cos A=-2(舍去),因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc·32=34bc=53,得bc=20,又b=5,知c=4,由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=21.又由正弦定理得sin B sin C=ba sin A·ca sin A=bca2sin2A=2021×34=57.11.(2016·南昌调研)△ABC中内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.解(1)由已知及正弦定理得sin A=sin B cos C+sin C sin B,①又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C.②由①,②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=π4.(2)△ABC的面积S=12ac sin B=24ac.由已知及余弦定理得4=a2+c2-2ac cos π4.又a2+c2≥2ac,故ac≤42-2,当且仅当a=c时,等号成立.因此△ABC面积的最大值为2+1.。
创新设计(浙江专用)2017届高考数学二轮复习 教师用书3 专题四-专题五

2017届高考数学二轮复习 教师用书3 专题四-专题五第1讲 立体几何中的计算与位置关系高考定位 (1)以三视图和空间几何体为载体考查面积与体积,难度中档偏下;(2)以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理对命题的真假进行判断,属基础题;空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问.真 题 感 悟1.(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π解析 由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π,故选A.答案 A2.(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+365 B.54+18 5 C.90D.81解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B3.(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 由三视图可知,该几何体为两个相同长方体组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2). 答案 72 324.(2016·浙江卷)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P -BCD的体积的最大值是________. 解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ×sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD的最大值为16×3=12.答案 12考 点 整 合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,高平齐,宽相等.3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.4.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 5.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.热点一 空间几何体的表面积与体积的求解[微题型1] 以三视图为载体求几何体的面积与体积【例1-1】 (1)(2016·衡水大联考)如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为( ) A.203 B.8 C.223D.163(2)某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+6 5 B.30+6 5 C.56+12 5 D.60+12 5解析 (1)由图知此几何体为边长为2的正方体裁去一个三棱锥.所以此几何体的体积为2×2×2-13×12×1×2×2=223.故选C.(2)由几何体的三视图可知,该三棱锥的直观图如图所示, 其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD , 所以AC =41,且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5. 在Rt △BCD 中,BD =5,CD =4, 故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5.因此,该三棱锥的表面积为S =30+6 5. 答案 (1)C (2)B探究提高 截割体、三棱锥的三视图是高考考查的热点和难点,解题的关键是由三视图还原为直观图,首先确定底面,再根据正视图、侧视图确定侧面.[微题型2] 求多面体的体积【例1-2】 (1)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD 则几何体EFC 1-DBC 的体积为( )A.66B.68C.70D.72(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析 (1)如图,连接DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-BDC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66. 故所求几何体EFC 1-DBC 的体积为66. (2)利用三棱锥的体积公式直接求解.V D 1-EDF =V F -DD 1E =13S △D 1DE ·AB =13×12×1×1×1=16.另解(特殊点法):让E 点和A 点重合,点F 与点C 重合, 则V D 1-EDF =13×S △ACD ×D 1D =13×12×1×1×1=16.答案 (1)A (2)16探究提高 (1)求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法求解.[微题型3] 与球有关的面积、体积问题【例1-3】 (1)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( ) A.8π B.16π C.32πD.64π(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( ) A.26 B.36 C.23D.22解析 (1)由三视图可知,几何体为一横放的四棱锥,其底面是边长为4的正方形,高为2,平面SAB ⊥平面ABCD ,易知SA =SB =2 2.如图所示.故可补全为以DA 、SA 、SB 为棱的长方体, 故2R =DA 2+SA 2+SB 2=32= 42,∴R =22,∴S 表=4πR 2=32π.(2)法一 (排除法)V <13×S △ABC ×2=36,排除B 、C 、D ,选A.法二 (直接法):在Rt △ASC 中,AC =1,∠SAC =90°,SC =2,所以SA =4-1= 3.同理,SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因为△SAC ≌△SBC ,所以BD ⊥SC ,AD=BD ,故SC ⊥平面ABD ,且△ABD 为等腰三角形.因为∠ASC =30°,故AD =12SA =32,则△ABD的面积为12×1×AD 2-⎝ ⎛⎭⎪⎫122=24,则三棱锥S -ABC 的体积为13×24×2=26.答案 (1)C (2)A探究提高 涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【训练1】 (1)(2017·东营模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72(2)(2016·北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1解析 (1)还原为如图所示的直观图,S 表=S △ABC +S △DEF +S 矩形ACFD +S 梯形ABED +S 梯形CBEF=12×3×4+12×3×5+5×3+12×(2+5)×4+12×(2+5)×5=60. (2)由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.答案 (1)B (2)A热点二 空间中的平行与垂直 [微题型1] 空间线面位置关系的判断【例2-1】 已知平面α、β,直线m ,n ,给出下列命题: ①若m ∥α,n ∥β,m ∥n ,则α∥β; ②若α∥β,m ∥α,n ∥β,则m ∥n ; ③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________(填写所有真命题的序号).解析若m∥α,n∥β,m∥n,则α,β可能平行或相交,①是假命题;若α∥β,m∥α,n∥β,则m,n可能是平行、相交、异面中的任何一种位置关系,②是假命题;由线面垂直的性质和面面垂直的判定可知③④是真命题,故真命题序号是③④.答案③④探究提高长方体(或正方体)是一类特殊的几何体,其中蕴含着丰富的空间位置关系.因此,对于某些研究空间直线与直线、直线与平面、平面与平面之间的平行、垂直关系问题,常构造长方体(或正方体),把点、线、面的位置关系转移到长方体(或正方体)中,对各条件进行检验或推理,根据条件在某一特殊情况下不真,则它在一般情况下也不真的原理,判断条件的真伪,可使此类问题迅速获解.[微题型2] 平行、垂直关系的证明【例2-2】(2016·昆明统考)如图,在侧棱与底面垂直的四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥BC,且AA1=AB=BC=1,CD=2.(1)求证:AB1⊥平面A1BC;(2)在线段CD上是否存在点N,使得D1N∥平面A1BC?若存在,求出三棱锥N-AA1C的体积;若不存在,请说明理由.(1)证明因为四棱柱ABCD-A1B1C1D1的侧棱垂直底面,所以A1A⊥平面ABCD,又BC⊂平面ABCD,所以BC⊥AA1,因为BC⊥AB,AB∩AA1=A,AB⊂平面AA1B1B,AA1⊂平面AA1B1B,所以BC⊥平面AA1B1B.又AB1⊂平面AA1B1B,所以AB1⊥BC,因为A1A⊥AB,A1A=AB=1,所以四边形AA1B1B为正方形,所以AB1⊥A1B,因为A1B∩BC=B,A1B,BC⊂平面A1BC,所以AB1⊥平面A1BC.(2)解法一在线段CD上存在点N,且当N为CD的中点时,D1N∥平面A1BC.证明如下:连接BN、D1N,因为AB∥CD,AB=1,CD=2,所以AB∥DN且AB=DN,所以四边形ABND为平行四边形,所以BN∥AD且BN=AD.在四棱柱ABCD-A1B1C1D1中,A1D1∥AD且A1D1=AD,所以A 1D 1∥BN 且A 1D 1=BN ,所以四边形A 1BND 1为平行四边形,所以D 1N ∥A 1B . 又D 1N ⊄平面A 1BC ,A 1B ⊂平面A 1BC , 所以D 1N ∥平面A 1BC .连接A 1N 、AN 、AC ,所以S △ACN =S △BCN =12×1×1=12,又A 1A ⊥平面ABCD ,且A 1A =1,所以V N -AA 1C =V A 1-ACN =13S △ACN ×A 1A =13×12×1=16,即三棱锥N -AA 1C 的体积为16.法二 在线段CD 上存在点N ,且当N 为CD 的中点时,D 1N ∥平面A 1BC ,证明如下:取C 1D 1的中点M ,连接AN 、A 1M 、D 1N 、MC ,因为四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AB =1,CD =2, 所以A 1B 1∥C 1D 1,A 1B 1=1,C 1D 1=2,所以A 1B 1∥MC 1且A 1B 1=MC 1,所以四边形A 1B 1C 1M 为平行四边形, 所以A 1M ∥B 1C 1且A 1M =B 1C 1.又BC ∥B 1C 1且BC =B 1C 1,所以A 1M ∥BC 且A 1M =BC , 所以四边形A 1BCM 为平行四边形,所以A 1B ∥CM , 又D 1M =NC =1且D 1M ∥NC , 所以四边形D 1MCN 为平行四边形, 所以CM ∥D 1N ,所以D 1N ∥A 1B . 又D 1N ⊄平面A 1BC ,A 1B ⊂平面A 1BC , 所以D 1N ∥平面A 1BC .连接A 1N 、AC ,所以S △ACN =12×1×1=12,又A 1A ⊥平面ABCD ,且A 1A =1,所以V N -AA 1C =V A 1-ACN =13S △ACN ×A 1A =13×12×1=16,即三棱锥N -AA 1C 的体积为16.探究提高 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练2】 (2016·深圳模拟)如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.求证:(1)CE ∥平面PAD ; (2)平面EFG ⊥平面EMN .证明 (1)法一 如图1,取PA 的中点H ,连接EH ,DH . 又因为E 为PB 的中点,所以EH ∥AB ,且EH =12AB .图1又AB ∥CD ,CD =12AB ,所以EH ∥CD ,且EH =CD .所以四边形DCEH 是平行四边形.所以CE ∥DH . 又DH ⊂平面PAD ,CE ⊄平面PAD ,因此,CE ∥平面PAD .图2法二 如图2,连接CF .因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD . 又CF ⊄平面PAD ,AD ⊂平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA .又EF ⊄平面PAD ,PA ⊂平面PAD , 所以EF ∥平面PAD . 因为CF ∩EF =F , 故平面CEF ∥平面PAD .又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又AB ⊥PA ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥DC ,又AB ∥DC , 所以MN ∥AB , 所以MN ⊥平面EFG . 又MN ⊂平面EMN , 所以平面EFG ⊥平面EMN .1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)求解几何体的表面积时要注意S 表=S 侧+S 底.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a . 3.锥体体积公式为V =13Sh ,在求解锥体体积中,不能漏掉13.4.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.5.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .6.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥n C.n ⊥lD.m ⊥n解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C. 答案 C2.(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D.1+26π解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π,故选C. 答案 C3.(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6πD.32π3解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.答案 B4.(2014·全国Ⅰ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2 B.4 2 C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD ,最长的棱为AD =(42)2+22=6,选C.答案 C5.已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( ) A.存在某个位置,使得直线AC 与直线BD 垂直 B.存在某个位置,使得直线AB 与直线CD 垂直 C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直解析 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .答案 B 二、填空题6.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析 如图,过D 作DG ⊥AF ,垂足为G ,连接GK , ∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF . ∴AF ⊥平面DKG ,∴AF ⊥GK .容易得到,当F 接近E 点时,K 接近AB 的中点,当F 接近C 点时,K 接近AB 的四等分点.所以t 的取值范围是⎝ ⎛⎭⎪⎫12,1. 答案 ⎝ ⎛⎭⎪⎫12,1 7.一个四面体的三视图如图所示,则该四面体的表面积是________.解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+ 3.答案 2+ 38.(2016·浙江卷)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由A ⎝ ⎛⎭⎪⎫0,62,0,B ⎝ ⎛⎭⎪⎫302,0,0,C ⎝ ⎛⎭⎪⎫0,-62,0,作DH ⊥AC 于H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝ ⎛⎭⎪⎫-306cos α,-63,306sin α,则BD ′→=⎝ ⎛⎭⎪⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD →·n |BD →|·|n |=639+5cos α, 所以cos α=-1时,cos θ取最大值66. 答案66三、解答题9.在正三角形ABC 中,E ,F ,P 分别是AB ,AC ,BC 边上的点,满足AE ∶EB =CF ∶FA =CP ∶PB =1∶2(如图1),将△AEF 折起到△A 1EF的位置,连接A 1B ,A 1C (如图2).(1)求证:FP ∥平面A 1EB ; (2)求证:EF ⊥A 1B .证明 (1)∵CP ∶PB =CF ∶FA ,∴FP ∥BE , 又BE ⊂平面A 1EB ,FP ⊄平面A 1EB , ∴FP ∥平面A 1EB .(2)不妨设正三角形ABC 的边长为3, 则AE =1,AF =2.又∵∠EAF =60°,∴EF 2=AE 2+AF 2-2AE ·AF cos ∠EAF =12+22-2×1×2cos 60°=3,∴EF = 3. 在△AEF 中,有AF 2=AE 2+EF 2,∴EF ⊥AE , 即EF ⊥AB .则在题图2中,有EF ⊥A 1E ,EF ⊥BE ,又A 1E ,BE ⊂平面A 1BE ,A 1E ∩BE =E ,∴EF ⊥平面A 1EB ,又∵A 1B ⊂平面A 1EB ,∴EF ⊥A 1B .10.(2017·江南十校联考)如图1,等腰梯形ABCD 中,BC ∥AD ,CE ⊥AD ,AD =3BC =3,CE =1.求△CDE 沿CE 折起得到四棱锥F -ABCE (如图2),G 是AF 的中点.(1)求证:BG ∥平面ECE ;(2)当平面FCE ⊥平面ABCE 时,求三棱锥F -BEG 的体积. (1)证明 如图,取EF 的中点M ,连接GM 、MC ,则GM 綊12AE .∵等腰梯形ABCD 中,BC =1,AD =3, ∴BC 綊12AE .∴GM 綊BC ,∴四边形BCMG 是平行四边形, ∴BG ∥CM .又CM ⊂平面FCE ,BG ⊄平面FCE , ∴BG ∥平面FCE .(2)解 ∵平面FCE ⊥平面ABCE ,平面FCE ∩平面ABCE =CE ,EF ⊂平面FCE ,FE ⊥CE ,∴FE ⊥平面ABCE .又V F -BEG =V B -GEF =12V B -AEF =12V F -ABE ,S △ABE =12×2×1=1,∴V F -BEG =12×13×1×1=16.11.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE , ∵AE ⊂平面ABE , ∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE , ∴AE ⊥平面BCE . 又BE ⊂平面BCE , ∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE , ∴MG ∥平面ADE . 同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN , ∴平面MGN ∥平面ADE . 又MN ⊂平面MGN , ∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.第2讲 立体几何中的向量方法高考定位 以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.真 题 感 悟(2016·浙江卷)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC , 且AC ⊥BC ,所以AC ⊥平面BCK , 因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,且CK ∩AC =C ,CK ,AC ⊂平面ACFD , 所以BF ⊥平面ACFD .(2)解 法一 如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向, 建立空间直角坐标系O -xyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32.因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角B -AD -F 的平面角的余弦值为34. 法二 过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角.在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以,二面角B -AD -F 的平面角的余弦值为34. 考 点 整 合1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cosa ,μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cosμ,v |.热点一 向量法证明平行与垂直【例1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点,运用向量方法求证:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .法一 证明 由题意,得AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12. (1)OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF , ∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1),由⎩⎪⎨⎪⎧n 1·DF →=0,n 1·DM →=0.得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎪⎨⎪⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 法二 证明 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA → =12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·BA →=0,OM →·FC →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·(BC →-BF →)=-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD . 又OM ⊂平面MDF , ∴平面MDF ⊥平面EFCD .探究提高 解决本类问题的关键步骤是建立恰当的坐标系,用坐标表示向量或用基底表示向量,证法的核心是利用向量的数量积或数乘运算.【训练1】 如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,PA =AB =2,∠BAD =60°,E 是PA 的中点. (1)求证:直线PC ∥平面BDE ; (2)求证:BD ⊥PC .证明 设AC ∩BD =O .因为∠BAD =60°,AB =2,底面ABCD 为菱形,所以BO =1,AO =CO =3,AC ⊥BD如图,以O 为坐标原点,以OB ,OC 所在直线分别为x 轴,y 轴,过点O 且平行于PA 的直线为z 轴,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0),D (-1,0,0),E (0,-3,1).(1)设平面BDE 的法向量为n 1=(x 1,y 1,z 1),因为BE →=(-1,-3,1),BD →=(-2,0,0), 由⎩⎪⎨⎪⎧n 1·BD →=0,n 1·BE →=0,得⎩⎨⎧-2x 1=0,-x 1-3y 1+z 1=0,令z 1=3,得y 1=1, 所以n 1=(0,1,3). 又PC →=(0,23,-2), 所以PC →·n 1=0+23-23=0, 即PC →⊥n 1,又PC ⊄平面BDE , 所以PC ∥平面BDE .(2)因为PC →=(0,23,-2),BD →=(-2,0,0), 所以PC →·BD →=0. 故BD ⊥PC .热点二 利用空间向量求空间角 [微题型1] 求线面角【例2-1】 (2016·全国Ⅲ卷)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1). 于是cos 〈n ,AN →〉=n ·AN →|n ||AN →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成的角的正弦值为8525.探究提高 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. [微题型2] 求二面角【例2-2】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.探究提高 利用法向量的根据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在能断定所求二面角的平面角是锐角、直角或钝角的情况下,这种方法具有一定的优势,但要注意,必须能断定“所求二面角的平面角是锐角、直角或钝角”,在用法向量法求二面角的大小时,务必要作出这个判断,否则解法是不严谨的.【训练2】 (2015·福建卷)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.法一 (1)证明 如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形, 所以GF ∥DH .又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)解 如图,在平面BEC 内,过B 点作BQ ∥EC .因为BE ⊥CE ,所以BQ ⊥BE . 又因为AB ⊥平面BEC , 所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1). 因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量. 又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0.取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA →|n |·|BA →|=42×3=23,所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.法二 (1)证明 如图,取AB 中点M ,连接MG ,MF . 又G 是BE 的中点,可知GM ∥AE . 又AE ⊂平面ADE ,GM ⊄平面ADE , 所以GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD . 又AD ⊂平面ADE ,MF ⊄平面ADE . 所以MF ∥平面ADE .又因为GM ∩MF =M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE . 因为GF ⊂平面GMF , 所以GF ∥平面ADE . (2)解 同法一.热点三 向量法解决立体几何中的探索性问题【例3】 如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,PA =PD =2,BC =12AD =1,CD = 3. (1)求证:平面PQB ⊥平面PAD ;(2)在棱PC 上是否存在一点M ,使二面角M -BQ -C 为30°,若存在,确定M 的位置;若不存在,请说明理由.(1)证明 ∵AD ∥BC ,BC =12AD ,Q 为AD 的中点,∴BC ∥DQ 且BC =DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ . ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD , ∵PA =PD ,∴PQ ⊥AD ,∵PQ ∩BQ =Q ,PQ ,BQ ⊂平面PBQ ,∴AD ⊥平面PBQ , ∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)解 当M 是棱PC 上靠近点C 的四等分点时,有二面角M -BQ -C 为30°,理由如下: 由(1)知PQ ⊥AD . ∵平面PAD ⊥平面ABCD , 且平面PAD ∩平面ABCD =AD , ∴PQ ⊥平面ABCD .以Q 为原点,QA 为x 轴,QB 为y 轴,QP 为z 轴建立空间直角坐标系,则平面BQC 的一个法向量n =(0,0,1),Q (0,0,0),P (0,0,3),B (0,3,0),C (-1,3,0). 设满足条件的点M (x ,y ,z )存在,则PM →=(x ,y ,z -3),MC →=(-1-x ,3-y ,-z ), 令PM →=tMC →,其中t >0,∴⎩⎨⎧x =t (-1-x ),y =t (3-y ),z -3=t (-z ),∴⎩⎪⎨⎪⎧x =-t1+t ,y =3t 1+t,z =31+t .在平面MBQ 中, QB →=(0,3,0),QM →=⎝ ⎛⎭⎪⎫-t 1+t ,3t 1+t ,31+t ,∴平面MBQ 的一个法向量m =(3,0,t ), ∵二面角M -BQ -C 为30°, ∴cos 30°=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=|t |3+0+t2=32,解得t =3.所以满足条件的点M 存在,M 是棱PC 的靠近点C 的四等分点.探究提高 (1)确定点的坐标时,通常利用向量共线来求,如本例PM →=tMC →来求M 点的坐标. (2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【训练3】 (2016·北京卷)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由. (1)证明 ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD .又AB ⊥AD ,AB ⊂平面ABCD . ∴AB ⊥平面PAD .∵PD ⊂平面PAD .∴AB ⊥PD . 又PA ⊥PD ,PA ∩AB =A . ∴PD ⊥平面PAB .(2)解 取AD 中点O ,连接CO ,PO ,∵PA =PD ,∴PO ⊥AD . 又∵PO ⊂平面PAD ,平面PAD ⊥平面ABCD , ∴PO⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0).则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PDC 的一个法向量.由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝ ⎛⎭⎪⎫12,-1,1.设PB 与平面PCD 的夹角为θ.则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪⎪⎪12-1-114+1+1×3 =33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0,即(-1,-λ,λ)·⎝ ⎛⎭⎪⎫12,-1,1=0,解得λ=14,所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.1.两条直线夹角的范围为⎣⎢⎡⎦⎥⎤0,π2.设直线l 1,l 2的方向向量分别为n 1,n 2,其夹角为θ,则cos θ=|cosn 1,n 2|=|n 1·n 2||n 1||n 2|.2.二面角的范围为[0,π].设半平面α与β的法向量分别为n 1与n 2,二面角为θ,则|cos θ|=|cosn 1,n 2|=|n 1·n 2||n 1||n 2|. 3.利用空间向量求解二面角时,易忽视二面角的范围,误以为两个法向量的夹角就是所求的二面角,导致出错.4.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特。
创新设计(浙江专用)2017届高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线中的定点、定值、最

专题五 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题练习一、选择题1.在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点,则k 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-∞,-22 B.⎝⎛⎭⎪⎫22,+∞ C.⎣⎢⎡⎭⎪⎫22,+∞ D.⎝⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 由已知可得直线l 的方程为y =kx +2,与椭圆的方程联立,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0,因为直线l 与椭圆有两个不同的交点,所以Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. 答案 D2.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B3.已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A.1 B. 2 C.32D. 3解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中通径最短,即2b 2a=3,可求得b 2=3,即b = 3.答案 D4.(2017·榆林模拟)若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =3x 无交点,则离心率e的取值范围是( ) A.(1,2) B.(1,2] C.(1,5)D.(1,5]解析 因为双曲线的渐近线为y =±bax ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有ba ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2.答案 B5.抛物线y 2=8x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-2,0),则|PA ||PF |的最大值为( ) A.1 B. 2 C. 3D.2解析 由点P (x ,y )在抛物线y 2=8x 上,得y 2=8x (x ≥0). 由抛物线的定义可得|PF |=x +2,又|PA |=(x +2)2+y 2=(x +2)2+8x , 所以|PA ||PF |=(x +2)2+8x x +2=(x +2)2+8x(x +2)2=1+8xx 2+4x +4.当x =0时,|PA ||PF |=1;当x ≠0时,|PA ||PF |=1+8x +4x+4, 因为x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时取等号, 故x +4x+4≥8,0<8x +4x+4≤1,所以1+8x +4x+4∈(1,2]. 综上,|PA ||PF |∈[1,2].所以|PA ||PF |的最大值为 2.答案 B 二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2.因为直线bx ±ay =0和圆(x -2)2+y 2=2相交,所以|2b |a 2+b2<2,整理得b 2<a 2,从而c2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)7.已知椭圆x 225+y 216=1内有两点A (1,3),B (3,0),P 为椭圆上一点,则|PA |+|PB |的最大值为________.解析 在椭圆中,由a =5,b =4,得c =3,故焦点为(-3,0)和(3,0),点B 是右焦点,记左焦点为C (-3,0),由椭圆的定义得|PB |+|PC |=10,所以|PA |+|PB |=10+|PA |-|PC |,因为||PA |-|PC ||≤|AC |=5,所以当点P ,A ,C 三点共线时,|PA |+|PB |取得最大值15. 答案 158.(2016·江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B 、C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0),则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案63三、解答题9.(2015·陕西)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0),经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.10.(2016·重庆诊断二)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c ,0),由条件知2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心,以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值. 解 (1)由题意知2a =4,则a =2, 又c a =32,a 2-c 2=b 2, 可得b =1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. (ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝ ⎛⎭⎪⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.(ⅱ)设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,① 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t , 将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.② 由①②可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t , 故S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由(ⅰ)知,△ABQ 面积为3S , 所在△ABQ 面积的最大值为6 3.。
《创新设计》2017届高考数学(理)二轮复习(江苏专用)教师word文档 专题二

第1讲 三角函数的图象与性质高考定位 高考对本内容的考查主要有:三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量综合考查,构成低档题.真 题 感 悟1.(2013·江苏卷)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为________.解析 利用函数y =A sin(ωx +φ)的周期公式求解.函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的最小正周期为T =2π2=π. 答案 π2.(2011·江苏卷)函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)=________. 解析 因为由图象可知振幅A =2,T 4=7π12-π3=π4, 所以周期T =π=2πω,解得ω=2,将⎝ ⎛⎭⎪⎫7π12,-2代入f (x )=2sin(2x +φ),解得一个符合的φ=π3,从而y =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (0)=62.答案 623.(2014·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析 根据题意,将x =π3代入可得cos π3=sin ⎝ ⎛⎭⎪⎫2×π3+φ,即sin ⎝ ⎛⎭⎪⎫2π3+φ=12,∴2π3+φ=2k π+π6或23π+φ=2k π+56π(k ∈Z ). 又∵φ∈[0,π),∴φ=π6. 答案 π64.(2015·浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________. 解析 f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z , ∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z . 答案 π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z ) 考 点 整 合1.常用三种函数的易误性质2.三角函数的常用结论(1)y=A sin(ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.(2)y=A cos(ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.(3)y=A tan(ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的两种常见变换热点一三角函数的图象【例1】 (1)(2016·无锡高三期末)将函数f (x )=2sin 2x 的图象上每一点向右平移π6个单位,得函数y =g (x )的图象,则g (x )=________.(2)(2016·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.解析 (1)将f (x )=2sin 2x 的图象向右平移π6个单位得到g (x )=2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象.(2)由函数图象得A =3,2πω=2[3-(-1)]=8,解得ω=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ,又因为(3,0)为函数f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ的一个下降零点,所以π4×3+φ=(2k +1)π(k ∈Z ),解得φ=π4+2k π(k ∈Z ),又因为φ∈(0,π),所以φ=π4, 所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +π4,则f (0)=3sin π4=322.答案 (1)2sin ⎝⎛⎭⎪⎫2x -π3 (2)322探究提高 (1)对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.(2)已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练1】 (1)(2015·苏北四市模拟)函数y =A sin(ωx +φ)(ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为________.(2)(2015·苏、锡、常、镇调研)函数f (x )=A sin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为________.解析 (1)由图象知T2=6-(-2)=8,∴T =16,A =4. ∴ω=2πT =2π16=π8. ∴y =4sin ⎝ ⎛⎭⎪⎫π8x +φ,把点(6,0)代入得: π8×6+φ=0, 得φ=-3π4.∴y =4sin ⎝ ⎛⎭⎪⎫π8x -3π4,又∵|φ|<π2. ∴y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4.(2)根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,由ω=2πT =2. 又函数过点⎝ ⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π,所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1. 答案 (1)y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4 (2)1热点二 三角函数的性质[微题型1] 三角函数的性质及其应用【例2-1】 (1)(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.(2)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.(3)(2016·苏北四市调研)将函数f (x )=sin(2x +φ)(0<φ<π)的图象上所有点向右平移π6个单位后得到的图象关于原点对称,则φ等于________. 解析 (1)由⎩⎨⎧y =2sin ωx ,y =2cos ωx 得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ). ∵ω>0,∴x =k πω+π4ω(k ∈Z ). 设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪⎪⎪5π4ω-π4ω=πω. 又结合图形知|y 2-y 1|=⎪⎪⎪⎪⎪⎪2×⎝ ⎛⎭⎪⎫-22-2×22=22,且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝ ⎛⎭⎪⎫πω2+(22)2=12,∴ω=π2.(2)由f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,得T 2≥π2-π6,即T ≥2π3;因为f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,所以f (x )的一条对称轴为x =π2+2π32=7π12;又因为f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,所以f (x )的一个对称中心的横坐标为π2+π62=π3.所以14T =7π12-π3=π4,即T =π.(3)将函数f (x )=sin(2x +φ)的图象向右平移π6后得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=sin ⎝ ⎛⎭⎪⎫2x -π3+φ的图象,因为该函数是奇函数,且0<φ<π,所以φ=π3.答案 (1)π2 (2)π (3)π3探究提高 此类题属于三角函数性质的逆用,解题的关键是借助于三角函数的图象与性质列出含参数的不等式,再根据参数范围求解.或者,也可以取选项中的特殊值验证.[微题型2] 三角函数图象与性质的综合应用【例2-2】 (2016·苏、锡、常、镇调研)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域.解 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴53x -π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,∴函数f (x )的值域为[-1-2,2-2].探究提高 求三角函数最值的两条思路:(1)将问题化为y =A sin(ωx +φ)+B 的形式,结合三角函数的性质或图象求解;(2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的性质或图象求解.【训练2】 已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+sin 2x -cos 2x .(1)求函数f (x )的最小正周期及其图象的对称轴方程; (2)设函数g (x )=[f (x )]2+f (x ),求g (x )的值域. 解 (1)f (x )=12cos 2x +32sin 2x -cos 2x =sin ⎝⎛⎭⎪⎫2x -π6.则f (x )的最小正周期为π, 由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ),所以函数图象的对称轴方程为x =k π2+π3(k ∈Z ).(2)g (x )=[f (x )]2+f (x )=sin 2⎝ ⎛⎭⎪⎫2x -π6+sin ⎝⎛⎭⎪⎫2x -π6=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6+122-14.当sin ⎝ ⎛⎭⎪⎫2x -π6=-12时,g (x )取得最小值-14,当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,g (x )取得最大值2,所以g (x )的值域为⎣⎢⎡⎦⎥⎤-14,2.1.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min 2,B =y max +y min 2. (2)由函数的周期T 求ω,ω=2πT . (3)利用“五点法”中相对应的特殊点求φ. 2.运用整体换元法求解单调区间与对称性类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.(1)令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程; (2)令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标;(3)将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. 3.函数y =A sin(ωx +φ)+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.一、填空题1.(2016·山东卷改编)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是________.解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =π. 答案 π2.(2016·南通月考)已知函数f (x )=2sin (2x +φ)(|φ|<π)的部分图象如图所示,则f (0)=________.解析 由图可得sin ⎝ ⎛⎭⎪⎫2π3+φ=1,而|φ|<π,所以φ=-π6. 故f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-1.答案 -13.(2016·北京卷改编)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则t =________,s 的最小值为________.解析 点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上,则t =sin ⎝⎛⎭⎪⎫2×π4-π3=sin π6=12.又由题意得y =sin ⎣⎢⎡⎦⎥⎤2(x +s )-π3=sin 2x ,故s =π6+k π,k ∈Z ,所以s 的最小值为π6. 答案 12 π64.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象的解析式为_______.解析 由图象知A =1,34T =11π12-π6=3π4,T =π, ∴ω=2,由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2⇒φ=π6⇒f (x )=sin ⎝⎛⎭⎪⎫2x +π6,则图象向右平移π6个单位后得到的图象的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6.答案 y =sin ⎝⎛⎭⎪⎫2x -π65.(2015·苏北四市调研)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调递增区间为________.解析 因为函数f (x )的最大值为2,所以最小正周期T =2=2π2ω,解得ω=π2,所以f (x )=2sin ⎝⎛⎭⎪⎫πx -π4,当2k π-π2≤πx -π4≤2k π+π2,k ∈Z ,即2k -14≤x ≤2k +34,k ∈Z 时,函数f (x )单调递增,所以函数f (x )在x ∈[-1,1]上的单调递增区间是⎣⎢⎡⎦⎥⎤-14,34.答案 ⎣⎢⎡⎦⎥⎤-14,346.(2016·南京、盐城模拟)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫7π12=0,则ω取最小值时,φ的值为________.解析 由7π12-π3=π4≥14×2πω,解得ω≥2,故ω的最小值为2. 此时sin ⎝ ⎛⎭⎪⎫2×7π12+φ=0, 即sin ⎝ ⎛⎭⎪⎫π6+φ=0,又0<φ<π,所以φ=5π6. 答案5π67.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.解析 由2k π+π2≤ωx +π4≤2k π+32π,k ∈Z 且ω>0, 得1ω⎝ ⎛⎭⎪⎫2k π+π4≤x ≤1ω⎝ ⎛⎭⎪⎫2k π+54π,k ∈Z . 取k =0,得π4ω≤x ≤5π4ω,又f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减,∴π4ω≤π2,且π≤5π4ω,解之得12≤ω≤54. 答案 ⎣⎢⎡⎦⎥⎤12,548.(2016·泰州模拟)若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 解析 f (x )=sin ⎝⎛⎭⎪⎫2x +π4――→右平移φg (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=sin ⎝ ⎛⎭⎪⎫2x +π4-2φ,关于y 轴对称,即函数g (x )为偶函数,则π4-2φ=k π+π2(k ∈Z ),∴φ=-k2π-π8(k ∈Z ), 显然,k =-1时,φ有最小正值π2-π8=3π8. 答案 3π8 二、解答题9.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π4.(1)求函数y =f (x )的最小正周期及单调递增区间; (2)若f ⎝⎛⎭⎪⎫x 0-π8=-65,求f (x 0)的值.解 (1)T =2π2=π,由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 得-38π+k π≤x ≤π8+k π(k ∈Z ),所以单调递增区间为⎣⎢⎡⎦⎥⎤-38π+k π,18π+k π,k ∈Z . (2)f ⎝ ⎛⎭⎪⎫x 0-π8=-65,即sin 2x 0=-35,∴cos 2x 0=±45,∴f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π4=2(sin 2x 0+cos 2x 0)=25或-725.10.(2016·苏州调研)已知函数f (x )=4sin 3x cos x -2sin x cos x -12cos 4x . (1)求函数f (x )的最小正周期及单调递增区间; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.解 f (x )=2sin x cos x ()2sin 2x -1-12cos 4x =-sin 2x cos 2x -12cos 4x =-12sin 4x -12cos 4x =-22sin ⎝⎛⎭⎪⎫4x +π4.(1)函数f (x )的最小正周期T =2π4=π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为0≤x ≤π4,所以π4≤4x +π4≤5π4. 此时-22≤sin ⎝⎛⎭⎪⎫4x +π4≤1,所以-22≤-22sin ⎝ ⎛⎭⎪⎫4x +π4≤12,即-22≤f (x )≤12.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12,-22.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+33sin 2x -33cos 2x .(1)求f (x )的最小正周期及其图象的对称轴方程;(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域.解 (1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin ⎝ ⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ), 得对称轴方程为x =k π2+π6(k ∈Z ), (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+π6=-33cos 2x 的图象,即g (x )=-33cos 2x .当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos 2x ∈⎣⎢⎡⎦⎥⎤-12,1,所以-33cos 2x ∈⎣⎢⎡⎦⎥⎤-33,36,即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36.第2讲 三角恒等变换与解三角形高考定位 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题;(2)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.真 题 感 悟(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4. (1)求AB 的长; (2)cos ⎝⎛⎭⎪⎫A -π6的值.解 (1)由cos B =45,得sin B =1-cos 2B =35. 又∵C =π4,AC =6,由正弦定理, 得AC sin B =AB sin π4,即635=AB22⇒AB =5 2.(2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210, cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210, 则cos ⎝⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R (R 为△ABC 外接圆的半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A.热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷改编)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________.(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.(3)(2016·苏北四市模拟)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0,∴α+π6为锐角,∴sin ⎝⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝ ⎛⎭⎪⎫2α-π6=2425.(3)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)3 (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练1】 (1)已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4=________.(2)(2016·南京、盐城模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.(3)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________. 解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16.法二 cos ⎝⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.(2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23. 由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66.所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66.(3)∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 (1)16 (2)-66 (3)3 热点二 正、余弦定理的应用[微题型1] 三角形基本量的求解【例2-1】 (1)(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.(2)(2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos Bb =sin Cc .①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .(1)解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 2113(2)①证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin Cc 中,有 cos A k sin A +cos B k sin B =sin Ck sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B . 故tan B =sin Bcos B=4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. [微题型2] 求解三角形中的最值问题【例2-2】 (2016·苏、锡、常、镇调研)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B=c sin C =2sin π3=43,所以b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3. 法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立. 所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 求解三角形中的实际问题【例2-3】 (2016·无锡高三期末)在一个直角边长为10 m 的等腰直角三角形ABC 的草地上,铺设一个也是等腰直角三角形PQR 的花地,要求P ,Q ,R 三点分别在△ABC 的三条边上,且要使△PQR 的面积最小,现有两种设计方案: 方案一:直角顶点Q 在斜边AB 上,R ,P 分别在直角边AC ,BC 上; 方案二:直角顶点Q 在直角边BC 上,R ,P 分别在直角边AC ,斜边AB 上.请问应选用哪一种方案?并说明理由.方案一 方案二解 应选方案二,理由如下:方案一:过点Q 作QM ⊥AC 于点M ,作QN ⊥BC 于点N , 因为△PQR 为等腰直角三角形,且QP =QR , ∠MQR =∠NQP ,∠RMQ =∠PNQ =90°,所以△RMQ ≌△PNQ ,所以QM =QN ,所以Q 为AB 的中点,M ,N 分别为AC ,BC 的中点, 则QM =QN =5 m , 设∠RQM =α,则RQ =5cos α,α∈[0°,45°], 所以S △PQR =12×RQ 2=252cos 2α.所以当cos 2α=1,即α=0°时,S △PQR 取得最小值252 m 2.方案二:设CQ =x ,∠RQC =β,β∈[0°,90°), 在△RCQ 中,RQ =xcos β,在△BPQ 中,∠PQB =90°-β, 所以QP sin B =BQ sin ∠BPQ ,即x 22cos β=10-xsin (45°+β).化简得xcos β=10-x sin β+cos β,解得x =10cos βsin β+2cos β,所以S △PQR =12×RQ 2=50(sin β+2cos β)2,因为(sin β+2cos β)2≤5,所以S △PQR 的最小值为10 m 2.综上,应选用方案二.探究提高 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24, 故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B .又B ,C ∈(0,π), 所以C =π2±B .当B +C =π2时,A =π2; 当C -B =π2时,A =π4. 综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式;(2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S=12ab sin C来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、填空题1.已知α∈R,sin α+2cos α=102,则tan 2α=________.解析∵sin α+2cos α=10 2,∴sin2α+4sin α·cos α+4cos2α=52.用降幂公式化简得4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.答案-3 42.(2016·泰州调研)已知锐角△ABC的内角A、B、C的对边分别为a、b、c,23cos2A +cos 2A=0,a=7,c=6,则b=________.解析化简23cos2A+cos 2A=0,得23cos2A+2cos2A-1=0,又角A为锐角,解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5. 答案 53.(2016·全国Ⅲ卷改编)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =________.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 -10104.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得 ab =6,∴S △ABC =12ab sin C =12×6×32=332. 答案3325.(2012·江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝⎛⎭⎪⎫α+π6-1=2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250. 答案172506.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析 ∵cos A =-14,0<A <π,∴sin A =154, S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得, a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.(2010·江苏卷)在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,b a +ab =6cos C ,则tan C tan A +tan Ctan B =________.解析 b a +a b =6cos C ⇒6ab cos C =a 2+b 2,6ab ·a 2+b 2-c 22ab =a 2+b 2,a 2+b 2=3c 22.tan C tan A +tan C tan B =sin C cos C ·cos B sin A +sin B cos A sin A sin B=sin C cos C ·sin (A +B )sin A sin B =1cos C ·sin 2Csin A sin B , 由正弦定理得:上式=1cos C ·c 2ab =4.答案 48.(2014·江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C .由正弦定理可得a +2b =2c ,即c =a +2b2, cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24. 答案6-24二、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac . 由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以 C =3π4-A ,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A<3π4,∴π4<A+π4<π,故当A+π4=π2,即A=π4时,2cos A+cos C取得最大值为1.10.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.解(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去),因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc·32=34bc=53,得bc=20,又b=5,知c=4,由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=21.又由正弦定理得sin B sin C=ba sin A·ca sin A=bca2sin 2A=2021×34=57.11.(2013·江苏卷)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B 处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解(1)在△ABC中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得 AB =AC sin B ·sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213 =200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8, 故当t =3537(min)时,甲、乙两游客距离最短. (3)由正弦定理BC sin A =ACsin B , 得BC =AC sin B ·sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内. 第3讲 平面向量高考定位 平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求.主要考查:(1)平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,填空题难度中档; (2)平面向量的数量积,以填空题为主,难度低;(3)向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.真 题 感 悟1.(2015·江苏卷)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎨⎧2m +n =9,m -2n =-8, 解得⎩⎨⎧m =2,n =5,故m -n =2-5=-3.答案 -32.(2011·江苏卷)已知e 1,e 2是夹角为23π的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a·b =0,则k 的值为________.解析 因为e 1,e 2是夹角为23π的两个单位向量,所以e 1·e 2=||e 1||e 2cos 〈e 1,e 2〉=cos 2π3=-12,又a·b =0,所以(e 1-2e 2)·(k e 1+e 2)=0, 即k -12-2+(-2k )⎝ ⎛⎭⎪⎫-12=0,解得k =54. 答案 543.(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 如图,DE→=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)= -16AB →+23AC →,则λ1=-16,λ2=23,λ1+λ2=12. 答案 124.(2016·江苏卷)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA→·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4. 又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD→=12(AB →+AC →)=12a +12b , AF→=23AD →=13a +13b .AE→=13AD →=16a +16b , BF→=BA →+AF →=-a +13a +13b =-23a +13b , CF→=CA →+AF →=-b +13a +13b =13a -23b ,则BF→·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b = -29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE→=BA →+AE →=-a +16a +16b =-56a +16b . CE→=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.答案 78考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1). (2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP→=12(OA →+OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面向量的有关运算 [微题型1] 平面向量的线性运算【例1-1】 (1)(2016·南通调研)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE→·AF →=1,则λ的值为________.解析 (1) 依题意,设BO→=λBC →,其中1<λ<43,则有AO →=AB →+BO →=AB →+λBC →=AB→+λ(AC →-AB →)=(1-λ)AB →+λAC →.又AO →=xAB →+(1+x )AC →,且AB →、AC →不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF→=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE→·AF → =⎝ ⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝ ⎛⎭⎪⎫1+13λ×2×2×cos120°+4λ+43=1,解得λ=2.法二 建立如图所示平面直角坐标系.由题意知: A (0,1),C (0,-1),B (-3,0), D (3,0).由BC =3BE ,DC =λDF ,可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13, F ⎝ ⎛⎭⎪⎫3⎝⎛⎭⎪⎫1-1λ,-1λ, ∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1 =-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2.答案 (1)⎝ ⎛⎭⎪⎫-13,0 (2)2探究提高 用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式求解.[微题型2] 平面向量的坐标运算【例1-2】 (1)(2016·全国Ⅱ卷改编)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =________.(2)(2016·全国Ⅲ卷改编)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8. (2)|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,则∠ABC =30°. 答案 (1)8 (2)30°探究提高 若向量以坐标形式呈现时,则用向量的坐标形式运算;若向量不是以坐标形式呈现,则可建系将之转化为坐标形式,再用向量的坐标运算求解更简捷. [微题型3] 平面向量数量积的运算【例1-3】 (1)(2016·连云港调研)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________.(2)(2016·佛山二模)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF→的最小值为________.解析 (1)设a =(1,0),b =(0,1),c =(x ,y ),则x 2+y 2=1,a -c =(1-x ,-y ),b -c =(-x ,1-y ),则(a -c )·(b -c )=(1-x )(-x )+(-y )(1-y )=x 2+y 2-x -y =1-x -y ≤0, 即x +y ≥1.又a +b -c =(1-x ,1-y ),∴|a +b -c |=(1-x )2+(1-y )2=(x -1)2+(y -1)2.①法一 如图.c =(x ,y )对应点在AB ︵上,而①式的几何意义为P 点到AB ︵上点的距离,其最大值为1. 法二 |a +b -c |=(x -1)2+(y -1)2 =x 2+y 2-2x -2y +2=3+2(-x -y )=3-2(x +y ),∵x +y ≥1,∴|a +b -c |≤3-2=1,最大值为1.(2)法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB→+λBC →,AF →=AD →+19λDC →, ∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD→+λBC →·19λDC→=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,所以AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号, 故AE→·AF →的最小值为2918. 答案 (1)1 (2)2918探究提高 (1)①数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义,特别要注意向量坐标法的运用;②可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算;③在用|a |=a 2求向量的。
创新设计(浙江专用)2017届高考数学二轮复习 教师用书4 专题六-专题七

2017届高考数学二轮复习 教师用书4 专题六-专题七第1讲 概率的基本问题高考定位 对于排列组合、二项式定理、古典概型、互斥事件及对立事件的概率的考查也会以选择或填空的形式命题,属于中档以下题目.真 题 感 悟1.(2016·全国Ⅱ卷)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9解析 从E 点到F 点的最短路径有6种,从F 点到G 点的最短路径有3种,所以从E 点到G 点的最短路径为6×3=18种,故选B. 答案 B2.(2016·全国Ⅰ卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23D.56解析 将4种颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫)、(红白)),((红紫)、(黄白)),((黄白)、(红紫))共6种种法,其中红色和紫色不在一个花坛的种数有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,选C. 答案 C3.(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若xy ≤3,则奖励玩具一个; ②若xy ≥8则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解 (1)用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N ,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16. 所以基本事件总数n =16. 记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1), 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件数共6个.即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得的水杯的概率大于获得饮料的概率.考 点 整 合1.计数原理 (1)排列与组合:A mn =n (n -1)(n -2)…(n -m +1)=n !(n -m )!,C mn =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.(2)二项式定理:①二项式定理:(a +b )n=C 0n a n b 0+C 1n an -1b +C 2n a n -2b 2+…+C r n a n -r b r +…+C n n a 0b n(r =0,1,2,…,n ).②二项展开式的通项T r +1=C r n a n -r b r,r =0,1,2,…,n ,其中C r n (r =0,1,…,n )叫做二项式系数.2.概率(1)概率的取值范围是[0,1],即0≤P (A )≤1,必然事件发生的概率为1,不可能事件发生的概率为0. (2)古典概型P (A )=事件A 中所含的基本事件数试验的基本事件总数.3.事件A ,B 互斥,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和, 即P (A +B )=P (A )+P (B ).4.在一次试验中,对立事件A 和A 不会同时发生,但一定有一个发生,因此有P (A )=1-P (A ).热点一 排列、组合与二项式定理 [微题型1] 排列、组合问题【例1-1】 (1)将甲、乙、丙、丁四名学生分到三个不同的班级,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班级,则不同的分法种数为( ) A.18 B.24 C.30D.36(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72 B.120 C.144D.168解析 (1)法一 如丙、丁分到同一个班级,则方法数就是三个元素的一个全排列,即A 33;若丙分到甲或乙所在的班级,则丁只能独自一个班级,方法数是2A 33;同理,若丁分到甲或乙所在的班级,则丙独自一个班级,方法数是2A 33.根据分类加法计数原理,得总的方法数是5A 33=30.法二 总的方法数是C 24A 33=36,甲、乙被分到同一个班级的方法数是A 33=6,故甲、乙不分到同一个班级的方法数是36-6=30.(2)先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法,故共有36+36+48=120(种)安排方法. 答案(1)C (2)B探究提高解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[微题型2] 考查二项式定理【例1-2】(1)(2015·全国Ⅰ卷)(x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.60(2)若(x2+1)(x-2)11=a0+a1(x-1)+a2(x-1)2+…+a13(x-1)13,则a1+a2+…+a13=________.解析(1)T k+1=C k5(x2+x)5-k y k,∴k=2.∴C25(x2+x)3y2的第r+1项为C25C r3x2(3-r)x r y2,∴2(3-r)+r=5,解得r=1,∴x5y2的系数为C25C13=30.(2)记f(x)=(x2+1)(x-2)11=a0+a1(x-1)+a2(x-1)2+…+a13(x-1)13,则f(1)=a0=(12+1)(1-2)11=-2.而f(2)=(22+1)(2-2)11=a0+a1+a2+…+a13,即a0+a1+a2+…+a13=0.所以a1+a2+…+a13=2.答案(1)C (2)2探究提高(1)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n与r确定,该项就随之确定;②对二项式(a-b)n展开式的通项公式要特别注意符号问题;③(x+y)n展开式中的每一项相当于从n个因式(x+y)中每个因式选择x或y组成的.(2)在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.要根据二项展开式的结构特征灵活赋值.【训练1】 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________.(2)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析 (1)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1), 所以8(a +1)=32,解得a =3.(2)不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10. 答案 (1)3 (2)10热点二 古典概型与互斥、对立事件的概率 [微题型1] 对于古典概型的考查【例2-1】 (1)(2016·深圳一调)4名同学参加3项不同的课外活动,若每名同学可自由选择参加其中的一项,则每项活动至少有一名同学参加的概率为( ) A.49 B.427 C.964D.364(2)从1,2,3,…,20这20个数中任取2个不同的数,则这两个数之和是3的倍数的概率为( ) A.119 B.338C.3295D.57190解析 (1)4名同学参加3项不同的活动共有34=81种,其中每项活动至少有一名同学参加的有:C 24A 33=36种.由古典概型知所求概率为P =3681=49.(2)1,2,3,…,20这20个数中被3整除的数有6个,被3整除余1的数有7个,被3整除余2的数有7个,从1,2,3,…,20这20个数中任取2个不同的数,共有C 220=190种情况,这两个数之和是3的倍数的情况有C 26+C 17C 17=64种,则所求概率为3295,故选C.答案 (1)A (2)C探究提高 解答有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识. [微题型2] 考查互斥事件与对立事件的概率【例2-2】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率. (注:将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110. X 的分布列为X 的数学期望为E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+ P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×3 10+310×320=980.该顾客结算前的等候时间不超过2.5分钟的概率为980.探究提高解此类题的关键是理解频率与概率间的关系,互斥事件是指不可能同时发生的事件,要考虑全面,防止遗漏.【训练2】如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(1)(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人. ∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:(3)A1212B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),∴乙应选择L 2.1.求解排列、组合问题常用的解题方法(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 2.通项T r +1=C r n an -r b r是指(a +b )n 的展开式中的第r +1项,而非第r 项,其中n ∈N *,r =0,1,…,n ,且r ≤n ,若n ,r 一旦确定,则展开式中的指定项也就确定,通常用来求二项展开式中任意指定的项或系数,如常数项或x n的系数. 3.古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.一、选择题 1.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( )A.23 008B.-23 008C.23 009D.-23 009解析 T r +1=C r2 006x 2 006-r(-2)r,显然当2 006-r 为奇数时,r 为奇数. ∴当x =2时,T r +1=-C r 2 006(2)2 006=-C r 2 006·21 003.∴S =-21 003(C 12 006+C 32 006+…+C 2 0052 006)=-21 003×12×22 006=-23 008.故选B.答案 B2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A.60种 B.63种 C.65种D.66种解析 对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此共有C 44+C 24C 25+C 45=66种. 答案 D3.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18 B.58 C.38D.78解析 由题意知,4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日也有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78. 答案 D4.将编号为1,2,3,4,5的五个数放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为( ) A.40种 B.30种 C.20种 D.10种解析 恰好有三个球的编号与盒子编号不相同,不同的投放方法的种数为2,则恰好有两个球的编号与盒子编号相同而其余三个球的编号与盒子的编号不相同的不同的投放方法的种数为2C 25=20,故选C. 答案 C5.若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A.3 B.6 C.9D.12解析 设x -2=t ,则x =t +2,原式化为(2+t )3=a 0+a 1t +a 2t 2+a 3t 3,∴a 2=C 23·2=6,故选B. 答案 B 二、填空题6.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析 分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种). 答案 607.有6个座位连成一排,三人就座,恰有两个空位相邻的概率是________.解析 有6个座位连成一排,三人就座,共有A 36种坐法,有三个空位,在三个人的4个空隙中选两个安排1个空位和两个相邻空位,则恰有两个空位相邻的坐法有A 33A 24,则所求概率是35.答案 358.已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x 3n的展开式中没有常数项,n ∈N *且2≤n ≤8,则n =________.解析 ⎝ ⎛⎭⎪⎫x +1x 3n的一般项为T r +1=C r n x n -4r,要使原式没有常数项,n -4r ≠0,-1,-2,又2≤n ≤8,在2~8的自然数中,只有n =5符合题意.故n =5. 答案 5 三、解答题9.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和. (1)求X 的分布列; (2)求X 的数学期望E (X ).解 (1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为(2)由(1)知E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.10.某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:(1)从这50名学生中任选两人,求两人答对题目个数之和为4或5的概率;(2)从这50名学生中任选两人,用X 表示这两名学生答对题目个数之差的绝对值,求随机变量X 的分布列及数学期望E (X ).解 (1)记“两人答对题目个数之和为4或5”为事件A ,则P (A )=C 220+C 110C 115+C 120C 115C 250=190+150+30025×49=128245,即两人答对题目个数之和为4或5的概率为128245.(2)依题意可知X 的可能取值分别为0,1,2,3. 则P (X =0)=C 25+C 210+C 220+C 215C 250=3501 225=27, P (X =1)=C 15C 110+C 110C 120+C 120C 115C 250=5501 225=2249, P (X =2)=C 15C 120+C 110C 115C 250=2501 225=1049, P (X =3)=C 15C 115C 250=751 225=349.从而X 的分布列为X 的数学期望E (X )=0×7+1×49+2×49+3×49=49.11.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)·P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)解法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为E(X)解法二:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49.所以X的分布列为E(X)第2讲随机变量及其分布列高考定位概率模型多考查独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考查是重点中的“热点”,多在解答题的前三题的位置呈现,常考查独立事件的概率,超几何分布和二项分布的期望等.真题感悟(2016·全国Ⅰ卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为(2)由(1)知P (3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,E (Y )=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040. 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.考 点 整 合1.条件概率在A 发生的条件下B 发生的概率P (B |A )=P (AB )P (A ).2.相互独立事件同时发生的概率P (AB )=P (A )P (B ).3.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 4.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 5.离散型随机变量的分布列(1)设离散型随机变量ξ可能取的值为x 1,x 2,…,x i ,…,ξ取每一个值x i 的概率为P (ξ=x i )=p i ,则称下表为离散型随机变量ξ(2)离散型随机变量ξ的分布列具有两个性质:①p i ≥0; ②p 1+p 2+…+p i +…=1(i =1,2,3,…).(3)E (ξ)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量ξ的数学期望或均值.D (ξ)=(x 1-E (ξ))2·p 1+(x 2-E (ξ))2·p 2+…+(x i -E (ξ))2·p i +…+(x n -E (ξ))2·p n叫做随机变量ξ的方差. (4)性质①E (a ξ+b )=aE (ξ)+b ,D (a ξ+b )=a 2D (ξ); ②X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ); ③X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).热点一 相互独立事件、独立重复试验概率模型 [微题型1] 相互独立事件的概率【例1-1】 某单位有三辆汽车参加某种事故保险,该单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,该单位可获9 000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (1)获赔的概率;(2)获赔金额ξ(单位:元)的分布列.解 设A k 表示第k 辆车在一年内发生此种事故,k =1,2,3,由题意知A 1,A 2,A 3相互独立,且P (A 1)=19,P (A 2)=110,P (A 3)=111.∴P (A 1)=89,P (A 2)=910,P (A 3)=1011.(1)该单位一年内获赔的概率为1-P (A 1A 2A 3) =1-P (A 1)P (A 2)P (A 3) =1-89×910×1011=311.(2)ξ的所有可能值为0,9 000,18 000,27 000.P (ξ=0)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=89×910×1011=811, P (ξ=9 000)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =19×910×1011+89×110×1011+89×910×111 =242990=1145, P (ξ=18 000)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =19×110×1011+19×910×111+89×110×111=27990=3110, P (ξ=27 000)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=19×110×111=1990.综上知,ξ的分布列为探究提高 斥事件概率的和,或者相互独立事件概率的积的公式列出关系式;含“至多”“至少”类词语的事件可转化为对立事件的概率求解;并注意正难则反思想的应用(即题目较难的也可从对立事件的角度考虑).[微题型2] 独立重复试验的概率【例1-2】 (2016·北京丰台区二模)张先生家住H 小区,他工作在C 科技园区,从家到公司上班的路上有L 1,L 2两条路线(如图所示),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯的次数X 的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解 (1)设“走L 1路线最多遇到1次红灯“为事件A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12. 所以走L 1路线,最多遇到1次红灯的概率为12.(2)依题意,X 的可能取值为0,1,2.P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110,P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920.故随机变量X 的分布列为E (X )=110×0+920×1+920×2=20.(3)设选择L 1路线遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择L 2路线上班最好.探究提高 在解题时注意辨别独立重复试验的基本特征:(1)在每次试验中,试验结果只有发生与不发生两种情况;(2)在每次试验中,事件发生的概率相同.【训练1】 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. 所以甲在4局以内(含4局)赢得比赛的概率为5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×81+5×81=81.热点二 离散型随机变量的分布列[微题型1] 利用相互独立事件、互斥事件的概率求分布列【例2-1】 乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D ,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和X 的分布列与数学期望.解 (1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B j 为事件“小明对落点在B 上的来球回球的得分为j 分”(j =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3)=P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15=310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得P (X =0)=P (A 0B 0)=16×15=130,P (X =1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (X =2)=P (A 1B 1)=13×35=15,P (X =3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (X =4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (X =6)=P (A 3B 3)=12×15=110.可得随机变量X 的分布列为:所以数学期望E (X )=0×30+1×6+2×5+3×15+4×30+6×10=30.探究提高 解答这类问题使用简洁、准确的数学语言描述解答过程是解答得分的根本保证.引进字母表示事件可使得事件的描述简单而准确,或者用表格描述,使得问题描述有条理,不会有遗漏,也不会重复;分析清楚随机变量取值对应的事件是求解分布列的关键. [微题型2] 二项分布【例2-2】 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解 法一 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45,因此E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.法二 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件,因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.探究提高 对于实际问题中的随机变量X ,如果能够断定它服从二项分布B (n ,p ),则其概率、期望与方差可直接利用公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ),E (X )=np ,D (X )=np (1-p )求得,因此,熟记二项分布的相关公式,可以避免繁琐的运算过程,提高运算速度和准确度.[微题型3] 超几何分布【例2-3】 (2016·合肥二模)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×14+2×7+3×7+4×14=2.探究提高 抽取的4人中,运动员可能为种子选手或一般运动员,并且只能是这两种情况之一,符合超几何概型的特征,故可利用超几何分布求概率.【训练2】 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台? 解 (1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤x ≤120)=3550=0.7, p 3=P (X >120)=550=0.1.。
创新设计(浙江专用)2017届高考数学二轮复习 小题综合限时练(四)

2017届高考数学二轮复习 小题综合限时练(四)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C.答案 C2.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺 解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B.答案 B3.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D. 答案 D4.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33 B.8+632 C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D.答案 D5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A. 答案 A6.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2 B. 3 C.2 3 D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ →=OQ →-OP →=-2a +b ,∴|PQ →|2=4a2-4a ·b +b 2=12,∴|PQ →|=2 3.故选C. 答案 C7.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192B.11C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b2a=3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9]. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3).答案 (-6,3)10.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则{a n }前9项的和S 9=________,cos(a 3+a 7)的值为________.解析 由{a n }为等差数列得a 1+a 5+a 9=3a 5=8π,解得a 5=8π3,所以{a n }前9项的和S 9=9(a 1+a 9)2=9a 5=9×8π3=24π.cos(a 3+a 7)=cos 2a 5=cos 16π3=cos 4π3=-12.答案 24π -1211.函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________. 解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5. 答案 π512.设函数f (x )=⎩⎪⎨⎪⎧|log 3(x +1)|,-1<x ≤0,tan ⎝ ⎛⎭⎪⎫π2x ,0<x <1,则f ⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫33-1=________,若f (a )<f ⎝ ⎛⎭⎪⎫12,则实数a 的取值范围是________.解析 由题意可得f ⎝⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.当-1<a ≤0时,f (a )=|log 3(a +1)|<1,-1<log 3(a +1)<1,解得-23<a <2,所以-23<a ≤0;当0<a <1时,f (a )=tan ⎝ ⎛⎭⎪⎫π2a <1,0<π2a <π4,0<a <12,综上可得实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,12.答案 1 ⎝ ⎛⎭⎪⎫-23,1213.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率k =________,r =________.解析 两圆的方程相减可得点P 的横坐标为1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,同理可得△CBP 为等边三角形,所以∠OPC =60°.又|OP |=|OC |,所以△OCP 为等边三角形,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案3 214.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________.解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx +k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,12 15.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n-13.答案 (-2)n-13。
《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题四+立体几何+第2讲
一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为()A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是()A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面ABD,又AB⊂平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC,又AB⊂平面ABC,所以平面ABC⊥平面ADC,故选D.答案 D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线P A垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①P A ∥平面MOB ;②MO ∥平面P AC ;③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).解析 ①错误,P A ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面P AC .答案 ②④7.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF=G ,现在沿AE 、EF 、F A 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -AEF 中必有________(填序号).①AP ⊥△PEF 所在平面;②AG ⊥△PEF 所在平面;③EP ⊥△AEF 所在平面;④PG ⊥△AEF 所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴ ⎭⎬⎫AP ⊥PE AP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF .答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________.解析 如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案 25π4三、解答题9.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面P AC ,AC ⊂平面P AC ,∴CD ⊥平面P AC .(2)证明 ∵AB ∥CD ,CD ⊥平面P AC ,∴AB ⊥平面P AC ,AB ⊂平面P AB ,∴平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点, ∴EF 为△P AB 的中位线,∴EF ∥P A .又P A ⊄平面CEF ,EF ⊂平面CEF ,∴P A ∥平面CEF .10.(2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .11.(2016·南昌5月模拟)如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,∵AE ⊂平面ABE ,∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN ,∴平面MGN ∥平面ADE .又MN⊂平面MGN,∴MN∥平面ADE.∴N点为线段CE上靠近C点的一个三等分点.。
创新设计(浙江专用)2017届高考数学二轮复习 专题二 三角函数与平面向量 第3讲 平面向量练习
专题二 三角函数与平面向量 第3讲 平面向量练习一、选择题1.设a ,b 是两个非零向量.( ) A.若|a +b |=|a |-|b |,则a ⊥b B.若a ⊥b ,则|a +b |=|a |-|b |C.若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD.若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |解析 对于A ,可得cos 〈a ,b 〉=-1,因此a ⊥b 不成立;对于B ,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于C ,可得cos 〈a ,b 〉=-1,因此成立,而D 显然不一定成立. 答案 C2.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322B.3152C.-322D.-3152解析 AB →=(2,1),CD →=(5,5),|CD →|=52,故AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=32 2. 答案 A3.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,πp 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中的真命题是( ) A.p 1,p 4 B.p 1,p 3 C.p 2,p 3D.p 2,p 4解析 |a |=|b |=1,且θ∈[0,π],若|a +b |>1,则(a +b )2>1,∴a 2+2a ·b +b 2>1,即a·b >-12,∴cos θ=a ·b |a |·|b |=a ·b >-12,∴θ∈⎣⎢⎡⎭⎪⎫0,2π3;若|a -b |>1,同理求得a ·b <12,∴cos θ=a ·b <12,∴θ∈⎝ ⎛⎦⎥⎤π3,π,故p 1,p 4正确,应选A. 答案 A4.若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量b 与a +b 的夹角为( ) A.π6 B.5π6 C.π3D.2π3解析 法一 由已知,得|a +b |=|a -b |,将等式两边分别平方, 整理可得a ·b =0.①由已知,得|a +b |=2|a |,将等式两边分别平方, 可得a 2+b 2+2a ·b =4a 2.② 将①代入②,得b 2=3a 2, 即|b |=3|a |.而b ·(a +b )=a ·b +b 2=b 2,故cos 〈b ,a +b 〉=b ·(a +b )|b |·|a +b |=b 23|a |·2|a |=3a23|a |·2|a |=32.又〈b ,a +b 〉∈[0,π],所以〈b ,a +b 〉=π6.故选A.法二 如图,作OA →=a ,OB →=b , 以OA ,OB 为邻边作平行四边形OACB , 则OC →=a +b ,BA →=a -b . 由|a +b |=|a -b |=2|a |, 可得|OC →|=|BA →|=2|OA →|, 所以平行四边形OACB 是矩形,BC →=OA →=a .从而|OC →|=2|BC →|.由Rt △BOC 中,|OB →|23||,BC = 故cos ∠BOC =|OB →||OC →|=32,所以∠BOC =π6.从而〈b ,a +b 〉=∠BOC =π6,故选A. 答案 A5.(2014·浙江卷)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a|,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |2解析 由三角形法则知min{|a +b |,|a -b|}与min{|a|,|b|}的大小不确定,由平行四边形法则知,max{|a +b |,|a -b|}所对角大于或等于90°,由余弦定理知max{|a +b|2,|a -b|2}≥|a|2+|b |2,故选D. 答案 D 二、填空题6.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________(写出所有正确结论的编号).①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →. 解析 ∵AB →2=4|a |2=4,∴|a |=1,故①正确;∵BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,∴|BC →|=|b |=2,故②错误; ∵b =AC →-AB →,∴a·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误;∵BC →=b ,故④正确;∵(AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0, ∴(4a +b )⊥BC →,故⑤正确.答案 ①④⑤7.如图,在△ABC 中,C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →=________.解析 法一 如图,建立平面直角坐标系. 由题意知:A (3,0),B (0,3),设M (x ,y ),由BM →=2MA →,得⎩⎪⎨⎪⎧x =2(3-x ),y -3=-2y ,解得⎩⎪⎨⎪⎧x =2,y =1,即M 点坐标为(2,1),所以CM →·CB →=(2,1)·(0,3)=3.法二 CM →·CB →=(CB →+BM →)·CB →=CB →2+CB →·⎝ ⎛⎭⎪⎫23BA →=CB →2+23CB →·(CA →-CB →)=13CB →2=3. 答案 38.已知e 1,e 2是平面单位向量,且e 1·e 2=12,若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析 不妨设b =x e 1+y e 2,则b ·e 1=x +y 2=1,b ·e 2=x 2+y =1,因此可得x =y =23,所以|b |=23|e 1+e 2|=233.答案 233三、解答题9.已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,且x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-32,求λ的值.解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x2=cos 2x ,|a +b |=⎝ ⎛⎭⎪⎫cos 3x 2+cos x 22+⎝ ⎛⎭⎪⎫sin 3x 2-sin x 22=2+2cos 2x =2cos 2x ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ≥0,所以|a +b |=2cos x .(2)由(1),可得f (x )=a ·b -2λ|a +b |=cos 2x -4λcos x , 即f (x )=2(cos x -λ)2-1-2λ2.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以0≤cos x ≤1. ①当λ<0时,当且仅当cos x =0时,f (x )取得最小值-1,这与已知矛盾; ②当0≤λ≤1时,当且仅当cos x =λ时,f (x )取得最小值-1-2λ2,由已知得 -1-2λ2=-32,解得λ=12;③当λ>1时,当且仅当cos x =1时,f (x )取得最小值1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1相矛盾.综上所述λ=12.10.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n = (cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.解 (1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)法一 由余弦定理,得a 2=b 2+c 2-2bc cos A , 而a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0,因为c >0,所以c =3, 故△ABC 的面积为S =12bc sin A =332.法二 由正弦定理,得7sinπ3=2sin B , 从而sin B =217,又由a >b ,知A >B , 所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为S =12ab sin C =332.。
创新设计(全国通用)2017届高考数学二轮复习 教师用书 专题四至专题八 文
第1讲 空间几何体中的计算高考定位 1.以三视图为载体,考查空间几何体面积、体积的计算;2.考查空间几何体的侧面展开图及简单的组合体问题.真 题 感 悟1.(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π解析 由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π,故选A. 答案 A2.(2016·全国Ⅱ卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π解析 由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. 答案 C3.(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+18 5C.90D.81解析 由题意知,几何体为平行六面体,边长分别为3,3,35,几何体的表面积S =3×6×2+3×3×2+3×35×2=54+18 5. 答案 B4.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由三视图知该四棱柱为直四棱柱,底面积S =(1+2)×12=32,高h =1,所以四棱柱体积V =S ·h =32×1=32.答案 32考 点 整 合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,高平齐,宽相等.3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.热点一 以三视图为载体的几何体的表面积与体积的计算[微题型1] 以三视图为载体求几何体的表面积【例1-1】 (1)(2015·安徽卷)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm ,下面长方体是底面边长为4 cm ,高为2 cm ,其直观图如右图:其表面积S =6×22+2×42+4×2×4-2×22=80(cm 2).体积V =2×2×2+4×4×2=40(cm 3). 答案 (1)C (2)80 40探究提高 (1)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理. [微题型2] 以三视图为载体求几何体的体积【例1-2】 (1)(2016·郑州模拟)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.(4+π)33B.(4+π)32C.(4+π)36D.(4+π) 3(2)(2016·衡水大联考)如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为( ) A.203 B.8 C.223D.163解析 (1)由该几何体的三视图,可知该几何体是由底面半径为1、高为3、母线长为2的半圆锥,和底面为等腰三角形(底边长为2、高为2)、高为3的三棱锥拼成的一个组合体.所以此组合体的体积为13×12×π×12×3+13×12×2×2×3=(4+π)36.(2)由图知此几何体为边长为2的正方体裁去一个三棱锥. 所以此几何体的体积为2×2×2-13×12×1×2×2=223.故选C.答案 (1)C (2)C探究提高 解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积. [微题型3] 与球有关的体积问题【例1-3】 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( ) A.26B.36C.23D.22解析 (1)如图,要使三棱锥O -ABC 即C -OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O -ABC 最大为13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π,选C.(2)法一 (排除法)V <13×S △ABC ×2=36,排除B 、C 、D ,选A.法二 (直接法):在Rt△ASC 中,AC =1,∠SAC =90°,SC =2,所以SA =4-1= 3.同理,SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因为△SAC ≌△SBC ,所以BD ⊥SC ,AD=BD ,故SC ⊥平面ABD ,且△ABD 为等腰三角形.因为∠ASC =30°,故AD =12SA =32,则△ABD的面积为12×1×AD 2-⎝ ⎛⎭⎪⎫122=24,则三棱锥S -ABC 的体积为13×24×2=26.答案 (1)C (2)A探究提高 涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【训练1】 (1)(2016·成都诊断)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2(2)(2016·西安模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72解析 (1)该几何体由一个圆柱和一个半圆锥组成,其体积为V =π×12×2+12×13π×12×1=2π+π6=136π.(2)还原为如图所示的直观图,S 表=S △ABC +S △DEF +S 矩形ACFD +S 梯形ABED +S 梯形CBEF =12×3×4+12×3×5+5×3+12×(2+5)×4+12×(2+5)×5=60.答案 (1)B (2)B 热点二 多面体的体积计算 [微题型1] 多面体体积的间接计算【例2-1】 (1)如图所示,ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是AC ,PC 的中点,PA =2,AB =1,则三棱锥C -PED 的体积为________. (2)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD 则几何体EFC 1-DBC 的体积为( ) A.66 B.68 C.70D.72解析 (1)∵PA ⊥平面ABCD , ∴PA 是三棱锥P -CED 的高,PA =2. ∵ABCD 是正方形,E 是AC 的中点, ∴△CED 是等腰直角三角形.AB =1,故CE =ED =22, S △CED =12CE ·ED =12×22×22=14.故V C -PED =V P -CED =13·S △CED ·PA =13×14×2=16.(2)如图,连接DF ,DC1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-BDC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66. 故所求几何体EFC 1-DBC 的体积为66. 答案 (1)16(2)A探究提高 (1)求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法求解.[微题型2] 多面体体积的直接计算【例2-2】 (2016·武汉模拟)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积. (1)证明 连接AC 1交A 1C 于点F , 则F 为AC 1中点.又D 是AB 中点,连接DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2, 即DE ⊥A 1D .所以VC -A 1DE =13×12×6×3×2=1.探究提高 有关多面体的体积计算首先要熟悉几何体的特征,其次运用好公式,作好辅助线等.【训练2】 (2016·豫南九校联考)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =23,BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.(1)证明 因BC =CD ,即△BCD 为等腰三角形,又∠ACB =∠ACD ,故BD ⊥AC .因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD ⊥平面PAC .(2)解 三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin2π3= 3. 由PA ⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)注意几何体的表面积与侧面积的区别,侧面积只是表面积的一部分,不包括底面积,而表面积包括底面积和侧面积.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a . 3.锥体体积公式为V =13Sh ,在求解锥体体积中,不能漏掉13.一、选择题1.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16D.15解析 如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V A -A 1B 1D 1V B 1C 1D 1-ABCD=V A -A 1B 1D 1V A 1B 1C 1D 1-ABCD -V A -A 1B 1D 1=13×12×12×113-13×12×12×1=15.选D.答案 D2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( ) A.90 cm 2B.129 cm2C.132 cm 2D.138 cm 2解析 该几何体如图所示,长方体的长、宽、高分别为6 cm ,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm ,4 cm ,5 cm ,所以表面积S =(2×4×6+2×3×4+3×6+3×3)+⎝ ⎛⎭⎪⎫3×4+3×5+2×12×3×4=138(cm 2),故选D. 答案 D3.(2016·皖南八校联考)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2πD.23+2π 解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A4.(2015·全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( ) A.1 B.2 C.4D.8解析 由题意知,设几何体由一个半圆柱和一个半球拼接而成, ∴2r ·2r +2πr 2+12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,∴r=2. 答案 B5.三棱锥S -ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA =AB =BC =1,则球O 的表面积为( ) A.32π B.32π C.3πD.12π解析 如图,因为AB ⊥BC ,所以AC 是△ABC 所在截面圆的直径, 又因为SA ⊥平面ABC ,所以△SAC 所在的截面圆是球的大圆, 所以SC 是球的一条直径. 由题设SA =AB =BC =1,由勾股定理可求得:AC =2,SC =3, 所以球的半径R =32, 所以球的表面积为4π×⎝ ⎛⎭⎪⎫322=3π.答案 C 二、填空题6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π(m 3).答案8π37.(2016·四川卷)已知某三棱锥的三视图如图所示,则该三棱锥的体积是________.解析 由三视图可大致画出三棱锥的直观图如图,由正、俯视图可知,△ABC 为等腰三角形,且AC =23,AC 边上的高为1,∴S △ABC =12×23×1= 3.由侧视图可知:三棱锥的高h =1,∴V S -ABC =13S △ABC h =33.答案338.(2016·成都诊断)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱, ∵V P -A 1MN =V A 1-PMN , 又∵AA 1∥平面PMN , ∴V A 1-PMN =V A -PMN ,∴V A -PMN =13×12×1×12×12=124,故V P -A 1MN =124.答案124三、解答题9.(2015·全国Ⅱ卷)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解 (1)交线围成的正方形EHGF .如图:(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97(79也正确).10.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以AC ⊥BE .因为BE ∩BD =B ,故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,BG ⊂平面ABCD 知BE ⊥BG ,故△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E -ACD 的体积V E -ACD =13×12AC ·GD ·BE =624x 3=63.故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E -ACD 的侧面积为3+2 5.11.(2016·岳阳4月模拟)如图,三棱柱ABC -A1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1.(1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC -A 1B 1C 1体积最大,并求此最大值.(1)证明 由AA 1⊥BC 知BB 1⊥BC , 又BB 1⊥A 1B ,且BC ∩A 1B =B ,故BB 1⊥平面BCA 1,又A 1C ⊂平面BCA 1, 即BB 1⊥A 1C ,又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)解 法一 设AA 1=x ,在Rt△A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2. 同理,A 1C =A 1C 21-CC 21=3- x 2.在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C=-x 2(4-x 2)(3-x 2), sin ∠BA 1C =12-7x2(4-x 2)(3-x 2), 所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x22.从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22,因x 12-7x 2=12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377.法二 如图,过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,AA 1∩A 1D =A 1,故BC ⊥平面AA 1D ,BC ⊥AD ,又∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,所以AD =2217.设AA 1=x ,在Rt△AA 1D 中,A 1D =AD 2-AA 21=127-x 2, S △A 1BC =12A 1D ·BC =12-7x 22.从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因x 12-7x 2=12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377. 第2讲 空间中的平行与垂直的证明问题高考定位 1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题;2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.真 题 感 悟(2016·全国Ⅰ卷)如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明:G 是AB 的中点;(2)作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体P -DEF 的体积. (1)证明 因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD . 因为D 在平面PAB 内的正投影为E ,所以AB ⊥DE .且PD ∩DE =D , 所以AB ⊥平面PED ,又PG ⊂平面PED ,故AB ⊥PG . 又由已知可得,PA =PB ,从而G 是AB 的中点.(2)解 在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB ⊥PA ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥PA ,EF ⊥PC ,PA ∩PC =P ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中, 可得EF =PF =2.所以四面体P -DEF 的体积V =13×12×2×2×2=43.考 点 整 合1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.热点一 空间平行、垂直关系的证明【例1】 (2016·山东卷)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB =BC ,AE =EC .求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 证明 (1)因为EF ∥DB ,所以EF 与DB 确定平面BDEF ,连接DE .因为AE =EC ,D 为AC 的中点, 所以DE ⊥AC .同理可得BD ⊥AC .又BD ∩DE =D ,所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF ,所以AC ⊥FB . (2)设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的中点, 所以GI ∥EF .又EF ∥DB , 所以GI ∥DB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC ,因为GH ⊂平面GHI ,所以GH ∥平面ABC .探究提高 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练1】 如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点. 求证:(1)CE ∥平面PAD ; (2)平面EFG ⊥平面EMN .证明 (1)法一 如图1,取PA 的中点H ,连接EH ,DH . 又因为E 为PB 的中点,所以EH ∥AB ,且EH =12AB .图1又AB ∥CD ,CD =12AB ,所以EH ∥CD ,且EH =CD .所以四边形DCEH 是平行四边形.所以CE ∥DH . 又DH ⊂平面PAD ,CE ⊄平面PAD ,因此,CE ∥平面PAD .法二 如图2,连接CF .因为F 为AB 的中点,所以AF =12AB .图2又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD . 又CF ⊄平面PAD ,AD ⊂平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又EF ⊄平面PAD ,PA ⊂平面PAD , 所以EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又AB ⊥PA ,所以AB ⊥EF .同理可证AB ⊥FG . 又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥DC ,又AB ∥DC ,所以MN ∥AB , 所以MN ⊥平面EFG .又MN ⊂平面EMN , 所以平面EFG ⊥平面EMN .热点二 利用平行、垂直关系判断点的存在性【例2】 (2016·四川卷)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB .CM ⊄平面PAB . 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .从而PA ⊥BD .连接BM , 因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .探究提高 探求点的位置常常是线段的中点、三等分点等,关键是通过垂直、平行关系寻找线线平行.【训练2】 如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由PA ⊥平面ABC ,可知PA 是三棱锥P -ABC 的高,又PA =1.所以三棱锥P -ABC 的体积V =13·S △ABC ·PA =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面PAC 内,过点N 作MN ∥PA 交PC 于点M ,连接BM .由PA ⊥平面ABC 知PA ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN , 又BM ⊂平面MBN ,所以AC ⊥BM .在Rt△BAN 中,AN =AB ·cos∠BAC =12,从而NC =AC -AN =32,由MN ∥PA ,得PM MC =AN NC =13.热点三 平面图形翻折中的平行、垂直关系【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.探究提高 (1)解决折叠问题的关键是搞清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥,从而把问题转化到我们熟悉的几何体中解决.【训练3】 (2016·江西八校联考)如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .(1)证明 在等边△ABC 中,AD =AE , ∴AD DB =AE EC在折叠后的三棱锥A -BCF 中也成立. ∴DE ∥BC ,又DE ⊄平面BCF ,BC ⊂平面BCF , ∴DE ∥平面BCF .(2)证明 在等边△ABC 中,F 是BC 的中点, ∴AF ⊥CF .∵在三棱锥A -BCF 中,BC =22,BF =CF =12, ∴BC 2=BF 2+CF 2, ∴CF ⊥BF . 又BF ∩AF =F , ∴CF ⊥平面ABF .(3)解 由(1)、(2)可知GE ⊥平面DFG ,即GE 为三棱锥E -DFG 的高.V F -DEG =V E -DFG =13×12×DG ×FG ×GE=13×12×13×⎝ ⎛⎭⎪⎫13×32×13=3324.1.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.2.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.3.在应用直线和平面平行的性质定理时,要防止出现“一条直线平行于一个平面就平行于这个平面内的所有直线”的错误.4.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为( )A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是( )A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD 折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,CD ⊂平面BCD , 所以CD ⊥平面ABD ,又AB ⊂平面ABD ,则CD ⊥AB , 又AD ⊥AB ,AD ∩CD =D ,所以AB ⊥平面ADC ,又AB ⊂平面ABC , 所以平面ABC ⊥平面ADC ,故选D. 答案 D 二、填空题6.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①PA ∥平面MOB ; ②MO ∥平面PAC ; ③OC ⊥平面PAC ; ④平面PAC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).解析 ①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC . 答案 ②④7.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF =G ,现在沿AE 、EF 、FA 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -AEF 中必有________(填序号). ①AP ⊥△PEF 所在平面; ②AG ⊥△PEF 所在平面; ③EP ⊥△AEF 所在平面; ④PG ⊥△AEF 所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴⎭⎪⎬⎪⎫AP ⊥PEAP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF . 答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________.解析 如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案25π4三、解答题9.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面PAC ; (2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由. (1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD , ∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC , ∴CD ⊥平面PAC .(2)证明 ∵AB ∥CD ,CD ⊥平面PAC , ∴AB ⊥平面PAC ,AB ⊂平面PAB , ∴平面PAB ⊥平面PAC .(3)解 棱PB 上存在点F ,使得PA ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点, ∴EF 为△PAB 的中位线,∴EF∥PA.又PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.10.(2015·山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,。
《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(三)
(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5 B.-3 C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知直线y =3x 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个不同的交点,则双曲线C 的离心率的取值范围是( ) A.(1,3) B.(1,2) C.(3,+∞)D.(2,+∞)解析 直线y =3x 与C 有两个不同的公共点⇒ba >3⇒e >2.故选D.答案 D3.设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+ f (-4)=1,则a 等于( ) A.-1 B.1 C.2D.4解析 设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2. 答案 C4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =13,则△ABC 面积的最大值为( ) A.2B. 2C.12D. 3解析 由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2-23bc ≥2bc -23bc =43bc , 所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×223= 2.故选B. 答案 B5.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.43π+833B.43π3+8 3C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V =13Sh =2π+43×23=43π+833.答案 A6.设函数f (x )=e x +1,g (x )=ln(x -1).若点P 、Q 分别是f (x )和g (x )图象上的点,则|PQ |的最小值为( ) A.22 B. 2 C.322D.2 2解析 f (x )=e x +1与g (x )=ln(x -1)的图象关于直线y =x 对称,平移直线y =x使其分别与这两个函数的图象相切.由f ′(x )=e x =1得,x =0.切点坐标为(0,2),其到直线y =x 的距离为2,故|PQ |的最小值为2 2.故选D. 答案 D7.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若F A →=(2-1)AB →,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2D. 5解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =ba x ②,联立①②,解得交点B ⎝ ⎛⎭⎪⎫ac c -a ,bc c -a , 由F A →=(2-1)AB→,得c =(2-1)ac c -a ,c =2a ,e = 2. 答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( ) A.[-2,2] B.[-2,2]∪[4,+∞) C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍). 由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.已知x ⎝ ⎛⎭⎪⎫x +a x 5展开式中的常数项为20,其中a >0,则a =________.解析T r +1=C r 5x ·x5-r ·⎝ ⎛⎭⎪⎫a x r =a r C r 5x 6-32r . 由⎩⎪⎨⎪⎧6-32r =0,a r C r 5=20,得⎩⎨⎧r =4,a 4=4,因为a >0,所以a = 2.答案 210.已知双曲线x 25-y 24=1的左、右焦点分别为F 1,F 2,P 是双曲线右支上一点,则|PF 1|-|PF 2|=________;离心率e =________. 解析 依题意,|PF 1|-|PF 2|=2a =25,离心率e =ca =1+b 2a 2=355.答案 25 35511.已知函数f (x )=⎩⎨⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 依题意,f (2)=f (1)=2,f [f (2)]=f (2)=2;因为f (x )=f (x -1),所以函数f (x )具有周期性,故函数f (x )的值域为(-1,2]. 答案 2 (-1,2]12.将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin ⎝ ⎛⎭⎪⎫2x -π6,则φ=________⎝ ⎛⎭⎪⎫0<φ<π2,再将函数y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________. 解析 依题意,sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=sin ⎝ ⎛⎭⎪⎫2x -π6,故φ=π12.将y =sin ⎝⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍后得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象.答案 π12 y =sin ⎝⎛⎭⎪⎫x -π613.已知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,f (1)=2,f (2)=6,则f (n )=________,数列{a n }满足a n +1=f (a n ),a 1=1,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11+a n 的前n 项和为S n ,则S 2015+1a2016=________.解析 由题意可得f (1)1=2,f (2)2=3,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,则公差为1,所以f (n )n =2+(n -1)=n +1,f (n )=n (n +1)=n 2+n ;a n +1=f (a n )=a n (a n +1),则1a n +1=1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n-1a n +1,S 2015=1a 1+1+1a 2+1+…+1a 2015+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2015-1a 2016=1a 1-1a 2016,所以S 2015+1a 2016=1a 1=1. 答案 n 2+n 114.设a 、b 是单位向量,其夹角为θ.若|t a +b |的最小值为12,其中t ∈R ,则θ=________.解析 因为t ∈R ,所以|t a +b |2=t 2+2t cos θ+1=(t +cos θ)2+1-cos 2θ≥1-cos 2θ=14.得cos θ=±32⇒θ=π6或5π6. 答案 π6或5π615.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,xa nn =xa n +1n +1=xa n +2n +2,则x n =________. 解析 设xa nn =xa n +1n +1=xa n +2n +2=k ,则a n =log x n k ⇒1a n =log k x n ,同理1a n +1=log k x n +1,1a n +2=log k x n +2,因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n .答案3n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 函数图象与性质及函数与方程 高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.
真 题 感 悟 1.(2016·山东卷)已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1
时,f(-x)=-f(x);当x>12时,fx+12=fx-12,则f(6)=( ) A.-2 B.-1 C.0 D.2
解析 当x>12时,fx+12=fx-12,即f(x)=f(x+1),∴f(6)=f(1).当x<0时,f(x)=x3-1且-1≤x≤1,f(-x)=-f(x),∴f(6)=f(1)=-f(-1)=2,故选D. 答案 D
2.(2015·全国Ⅱ卷)设函数f(x)=1+log2(2-x),x<1,2x-1,x≥1,则f(-2)+f(log212)=( ) A.3 B.6 C.9 D.12 解析 因为-2<1,log212>log28=3>1,所以f(-2)=1+log2[2-(-2)]=1+
log24=3,f(log212)=2log212-1=2log212×2-1=12×12=6,故f(-2)+f(log212)=3+6=9,故选C. 答案 C 3.(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为( ) 解析 f(2)=8-e2>8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;在x>0时,f(x)=2x2-ex,f′(x)=4x-ex,当x∈0,14时,f′(x)<14×4-e0=0,因此f(x)
在0,14上单调递减,排除C,故选D. 答案 D 4.(2016·山东卷)已知函数f(x)=|x|,x≤m,x2-2mx+4m,x>m,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________. 解析 如图,当x≤m时,f(x)=|x|;当x>m时,f(x)=x2-2mx+4m在(m,+∞)为增函数,若存在实数b,使方程f(x)=b有三个不同的根,则m2-2m·m+4m<|m|.∵m>0,∴m2-3m>0,解得m>3. 答案 (3,+∞) 考 点 整 合 1.函数的性质 (1)单调性 ①用来比较大小,求函数最值,解不等式和证明方程根的唯一性. ②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法. (2)奇偶性:①若f(x)是偶函数,那么f(x)=f(-x);②若f(x)是奇函数,0在其定义域内,则f(0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性; (3)周期性:常见结论有①若y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;②若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;③若y=f(x)是奇函数,其图象又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;④若f(x+a)=
-f(x)或f(x+a)=1f(x),则y=f(x)是周期为2|a|的周期函数. 2.函数的图象 (1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、值域、零点时,要注意用好其与图象的关系,结合图象研究. 3.求函数值域有以下几种常用方法: (1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等. 4.函数的零点问题 (1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解
热点一 函数性质的应用 【例1】 (1)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( ) A.a<b<c B.a<c<b C.c<a<b D.c<b<a
(2)(2016·全国Ⅱ卷)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y
=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则i=1m (xi+yi)=( ) A.0 B.m C.2m D.4m 解析 (1)由f(x)=2|x-m|-1是偶函数可知m=0, 所以f(x)=2|x|-1. 所以a=f(log0.53)=2|log0.53|-1=2log23-1=2, b=f(log25)=2|log25|-1=2log25-1=4, c=f(0)=2|0|-1=0,所以c
(2)法一 由题设得12(f(x)+f(-x))=1, 点(x,f(x))与点(-x,f(-x))关于点(0,1)对称, 则y=f(x)的图象关于点(0,1)对称.
又y=x+1x=1+1x,x≠0的图象也关于点(0,1)对称. 则交点(x1,y1),(x2,y2),…,(xm,ym)成对出现,且每一对关于点(0,1)对称. 则111()mmmiiiiiiixyxy=0+m2×2=m,故选B.
法二 特殊函数法,根据f(-x)=2-f(x)可设函数f(x)=x+1,由y=x+1x,解得两个点的坐标为x1=-1,y1=0,x2=1,y2=2,此时m=2,所以i=1m (xi+yi)=2=m,故选B. 答案 (1)C (2)B 探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式
的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴). 【训练1】 (1)(2015·全国Ⅰ卷)若函数f(x)=xln(x+a+x2)为偶函数,则a=________. (2)(2016·四川卷)已知函数f(x)是定义在R上的周期为2的奇函数,当0
f(x)=4x,则f-52+f(1)=________. 解析 (1)f(x)为偶函数,则ln(x+a+x2)为奇函数, 所以ln(x+a+x2)+ln(-x+a+x2)=0, 即ln(a+x2-x2)=0,∴a=1. (2)f(x)是周期为2的函数, 所以f(x)=f(x+2); 而f(x)是奇函数,所以f(x)=-f(-x), 所以f(1)=f(-1),f(1)=-f(-1),即f(1)=0,
又f-52=f-12=-f12,f12=412=2,
故f-52=-2,从而f-52+f(1)=-2. 答案 (1)1 (2)-2 热点二 函数图象的问题 [微题型1] 函数图象的变换与识别 【例2-1】 (1)(2016·浙江诊断)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( ) A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值
(2)函数f(x)=1x-xsin x的大致图象为( ) 解析 (1)由题意得,利用平移变换的知识画出函数|f(x)|,g(x)的图象如图,而h(x)=|f(x)|,|f(x)|≥g(x),-g(x),|f(x)|<g(x), 故h(x)有最小值-1,无最大值. (2)由y1=1x-x为奇函数,y2=sin x为奇函数,可得函数
f(x)=1x-xsin x为偶函数,因此排除C、D.又当x=π2时,y1<0,y2>0,fπ2<0,因此选B. 答案 (1)C (2)B 探究提高 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y=f(x)与y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|及y=af(x)+b的相互关系. (2)识图:从图象与x轴的交点及值域、单调性、变化趋势、对称性、特殊值等方面找准解析式与图象的对应关系. [微题型2] 函数图象的应用
【例2-2】 (1)已知函数f(x)=-x2+2x,x≤0,ln(x+1),x>0.若|f(x)|≥ax,则实数a的取值范围是( ) A.(-∞,0] B.(-∞,1) C.[-2,1] D.[-2,0] (2)(2015·全国Ⅰ卷)设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则实数a的取值范围是( ) A.-32e,1 B.-32e,34 C.32e,34 D.32e,1