简易方程的数学知识点

合集下载

四年级数学下册简易方程知识点

四年级数学下册简易方程知识点

四年级数学下册简易方程知识点四年级数学下册简易方程知识点一个单元,共有11个知识点。

信息窗一:三个知识点:1,等式的含义——用等号(=)来表示相等的式子,叫等式。

3+6=92,方程的意义——含有未知数的等式叫做方程。

x+3=93,等式与方程的关系——是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。

信息窗二:四个知识点:1,等式的性质1——方程两边同时加上或减去一个数,左右两边仍然相等。

2,方程的解——使方程左右两边相对的未知数的值,叫做方程的解。

例如:x=3是15-x=12的解。

3,解方程——求方程的解的过程叫做解方程。

(方程的解是一个数,解方程是一个过程。

)例如:3+x=18解:3+x-3=18-3x=15x=15是方程的解4,检验方程——把算出来的方程解代入原方程(等号左边),如果方程的左、右两边相等式子成立,说明是原方程的解,是正确的,如果不成立,那么就应该再算算,可能是计算方面出现错误。

信息窗三:三个知识点:1,等式的性质2:方程两边同时乘以或除以一个不为0的数,左右两边仍然相等。

(1,等式两边同时乘同一个数,等式仍然成立。

2,等式两边同时除以同一个数“0除外”等式仍然成立。

)2,解方程:解方程就是求出方程中所有未知数的值。

3,用方程解答应用题:(1)弄清题意,找出未知数,用x表示。

(2)分析,找出数量之间的相等关系,列方程。

例如:梨树比苹果树的3倍少15棵。

可以表示成“苹果树的棵树×3—15=梨树的棵数”.也可以表示成“梨树的棵数十15=苹果树的棵数×3”。

(3)解方程。

(4)检验方程,写出答案。

信息窗四:两个知识点:1,和倍应用题:题中告诉我们两个数的和以及这两个数的倍数关系,让我们求这两个数个是多少。

这种题称和倍问题。

和÷(倍数+1)=一倍数(即较小数)较小数×倍数=较大数例如:两人共有32本书,哥哥的书是妹妹的三倍,两人各有多少本书?解:设妹妹有x本,哥哥有3x本。

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

第五单元简易方程(思维导图知识梳理例题精讲易错专练)人教版数学五年级上册一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“·”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。

3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。

2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

注意:方程一定是等式,但等式不一定是方程。

知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。

注意:解方程的依据是等式的性质;解方程时等号要上下对齐。

4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。

(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳数学方程是数学中常见的一个概念,它是一个等式,其中包含一个或多个未知数。

在小学五年级的数学学习中,学生开始接触简易方程的概念和解题方法。

本文将对小学五年级数学简易方程的知识点进行归纳。

一、方程的基本概念方程是由等号连接的两个代数式组成,其中至少包含一个未知数。

例如,下面的方程是一个简单的数学方程:2x + 3 = 9在这个方程中,未知数是x,左边的2x + 3是一个代数式,右边的9也是一个代数式。

二、方程的解解方程,就是要找到使得方程成立的未知数的值。

对于简易方程来说,解通常是一个特定的数。

在解方程时,我们必须使用逆运算来保持等式的平衡。

例如,对于上面的方程2x + 3 = 9,我们可以先减去3再除以2来解方程,即:2x + 3 - 3 = 9 - 32x = 62x ÷ 2 = 6 ÷ 2x = 3所以x=3是这个方程的解。

三、方程的变形及性质在解方程的过程中,我们经常需要进行方程的变形。

方程的变形即改变方程的形式,使得方程更易于求解。

常见的方程变形方法包括:1. 合并同类项:将方程中相同的项合并,以简化方程。

2. 移项:将方程中的项按照规则从一边移到另一边,以便合理组织方程形式。

3. 消元:通过适当的运算,使得方程中的某些项相互抵消,以简化方程。

四、常见的简易方程类型1. 一元一次方程:一元一次方程是最简单的方程类型,形式为ax +b = c,其中a、b、c都是已知的实数,且a不等于0。

例如:2x + 3 = 7解这个方程的步骤是:2x + 3 - 3 = 7 - 32x = 42x ÷ 2 = 4 ÷ 2x = 2所以,这个方程的解是x=2。

2. 带括号的一元一次方程:在一元一次方程中,有时方程中带有括号,解这类方程的关键是先去括号再进行求解。

例如:3(x + 2) = 15首先展开括号:3x + 6 = 15然后解方程:3x + 6 - 6 = 15 - 63x = 93x ÷ 3 = 9 ÷ 3x = 3因此,这个方程的解是x=3。

小学五年级数学《解简易方程》教案二:全面复习方程相关知识点及概念

小学五年级数学《解简易方程》教案二:全面复习方程相关知识点及概念

【教案二:全面复习方程相关知识点及概念】一、教学目标1、全面复习小学五年级的方程相关知识点和概念,包括等式、未知数、方程、解方程等;2、掌握用平衡法解一元一次方程的方法;3、培养学生解决实际问题的能力,提高学生的解决问题的综合素养。

二、教学内容与重点1、教学内容1)等式和未知数2)方程和解方程3)一元一次方程的解题方法2、重点1)一元一次方程的解题方法2)解决实际问题的能力三、教学方法与手段1、教学方法1)讲解法:讲解各个知识点及解题方法;2)举例法:举实际例子说明解题方法;3)板书法:通过简洁明了的图示和语言,整理总结各个知识点及解题方法。

2、教学手段1)教学课件:利用多媒体技术展示教学内容,丰富教学形式;2)黑板:进行重点知识点板书,方便学生理解;3)习题和例题作业:让学生通过练习巩固掌握知识点。

四、教学过程设计1、引入环节通过提问让学生回忆一下等式、未知数、方程等基本概念,激发学习兴趣和思考热情,为后续学习打下基础。

2、知识点讲解与举例1)等式和未知数解释什么是等式和未知数,解释它们在解方程中的作用。

举例:5+3=x,问x等于多少?这里的等式是5+3=x,其中x就是未知数。

2)方程和解方程解释什么是方程和解方程,便于学生理解单变量方程的含义。

举例:2x+4=12,问x等于多少?这就是一个一元一次方程。

3)一元一次方程的解题方法重点讲解用平衡法解一元一次方程的方法,引导学生从简单例子入手,逐渐提高难度,让学生逐步掌握解题方法。

举例:2x+5=15,问x等于多少?解题思路:先把等号两边的常数项相减,得到:2x+5-5=15-52x=10再把等号两边的系数项相除,得到:2x/2=10/2x=53、例题讲解通过书面或口头训练,让学生理解解题步骤和方法,并掌握技巧。

4、课堂练习让学生自己在黑板上或纸上完成一些简单的练习,帮助学生加深理解,巩固知识点。

五、教学策略1、强调基本概念的重要性。

在教学中要强调等式、未知数、方程等基本概念的重要性,学生必须掌握它们才能逐步学会解方程。

数学五年级下册用方程解决问题 知识点

数学五年级下册用方程解决问题 知识点

数学五年级下册用方程解决问题知识点1、简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

2、方程:含有未知数的等式叫做方程。

(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同。

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。

方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

3、方程的解使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

4、方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

5、解方程:解方程,求方程的解的过程叫做解方程。

6、列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

7、列方程解答应用题的步骤(1)弄清题意,确定未知数并用x表示;(2)找出题中的数量之间的相等关系;(3)列方程,解方程;(4)检查或验算,写出答案。

8、列方程解应用题的方法(1)综合法先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

9、列方程解应用题的范围:小学范围内常用方程解的应用题:(1)一般应用题;(2)和倍、差倍问题;(3)几何形体的周长、面积、体积计算;(4)分数、百分数应用题;(5)比和比例应用题。

列方程解应用题练习1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。

五年级数学的知识点总结

五年级数学的知识点总结

自我介绍例文参考自我介绍样本一:我是一个对理想有着执着追求的人,坚信是金子总会发光。

大学毕业后的工作,让我在文案筹划方面有了很大的进步,文笔流畅,熟悉传媒工作、广告学制作与设计等工作方面。

为人热情,活泼,大方,本人好学上进,诚信、敬业、责任心强,有强烈的团体精神,对工作认真积极,严谨负责。

本人性格内外结合,适应才能强,为人老实,有良好的人际交往才能,具备相关的专业知识和认真。

细心、耐心的工作态度及良好的职业道德修养。

相信团体精神的我对工作认真负责,总希望能把事情做得更好!性格开朗,对文字语言和数字敏感,对生活充满希望,对工作充满热情! 能在短期间内适应新环境,有强烈的品质意识;对工作认真负责,上进心强!懂电脑根本操作,纯熟小键盘操作!我的理念是:在年轻的季节我甘愿吃苦受累,只愿通过自己富有激情、积极主动的努力实现自身价值并在工作中做出最大的奉献:作为初学者,我具备出色的学习才能并且乐于学习、敢于创新,不断追求卓越;作为参与者,我具备老实可信的品格、富有团队合作精神;作为指导者,我具备做事干练、果断的风格,良好的沟通和人际协调才能。

受过系统的经济文化相关专业知识训练,有很强的忍受力、意志力和吃苦耐劳的品质,对工作认真负责,积极进取,个性乐观执着,敢于面对困难与挑战。

为了企业公司的利益而早想,为了在企业公司付出个人的思想文化才能程度,尽心尽力的忠诚于企业公司,企业公司这样才有利于我的开展目的,去脚踏实地奋斗实现我的梦想,追求一些生活物资财富等。

努力的为企业公司渐渐的壮观强大的开展起来,成功的阶段渐渐的有所进步,在社会上可以抬得起头,在社会上知名知名度和良好的方面。

在企业公司上奉献我的人生价值和风度才能程度,在社会上全方面的体会出来。

看过了我的个人简历自我介绍信息的企业公司指导人们,请合格同意批准我进入企业公司的工作方面,积极面对企业公司的工作,合适企业公司环境的范围,投入企业公司工作方面的用处和理解,渐渐的习惯起来这企业公司的这一工程职业道路的开展空间。

第9讲 解简易方程-五年级上册数学(人教版)

第9讲 解简易方程-五年级上册数学(人教版)

第9讲解简易方程五年级上册数学知识点汇总与错题专练(易错梳理+易错举例+易错题演练)【易错梳理】1、方程的意义。

含有未知数的等式叫方程。

2、等式的性质1。

等式两边加上或减去同一个数,左右两边仍然相等。

3、等式的性质2。

等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

4、方程的解。

使方程左右两边相等的未知数的值,叫作方程的解。

5、解方程。

求方程的解的过程叫作解方程。

6、检验方程的解是否正确。

将未知数的值代入原方程,看方程左边是否与方程右边相等,若相等,则是方程的解;若不相等,则不是。

7、用方程解决问题的方法。

将逆向思维变成顺向思维,把未知数用x表示,参与列式,即把未知数用x表示,根据数量关系把未知数代入等式,然后再列方程求解。

8、列方程解决问题的步骤。

步骤一:弄清题意,找出未知数,用x表示;步骤二:分析、找出数量之间的相等关系,列方程;步骤三:解方程;步骤四:检验,写答语。

9、方程解法和算术解法的区别。

(1)列方程解决问题时,未知数用字母表示,参加列式;算术解法中未知数不参与列式。

(2)列方程解决问题是根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成;算术解法是根据题目中已知数和未知数间的关系确定解答步骤,再列式计算。

10、一个式子是否是方程的两个必备条件为①是等式;②含有未知数。

11、不是所有的等式都是方程,但所有的方程都是等式。

12、方程的解是一个数值,解方程是求解未知数的值的过程。

13、运用等式的性质1解方程时,方程左右两边应同时加上或减去相同的数,而不是加上或减去方程两边各自的数。

14、在用方程解决问题时,若题目中有两个未知量,且两个量之间存在倍数关系,设1倍量为x,另一个量用含有x 的式子表示。

15、在用方程解决实际问题时,方程的解不能带单位。

【易错举例】易错点1:解方程时,等式的性质运用错误。

解方程:x-25=15【错误答案】【错解分析】本题错在左边加16,右边加24,致使计算结果错误。

五年级下册数学方程知识点

五年级下册数学方程知识点

五年级下册数学方程知识点1.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

2.方程:含有未知数的等式叫做方程。

(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同。

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。

方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

3.方程的解使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

4.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

5.解方程:解方程,求方程的解的过程叫做解方程。

6.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

7.列方程解答应用题的步骤(1)弄清题意,确定未知数并用x表示;(2)找出题中的数量之间的相等关系;(3)列方程,解方程;(4)检查或验算,写出答案。

8.列方程解应用题的方法(1)综合法先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

9.列方程解应用题的范围:小学范围内常用方程解的应用题:(1)一般应用题;(2)和倍、差倍问题;(3)几何形体的周长、面积、体积计算;(4)分数、百分数应用题;(5)比和比例应用题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易方程的数学知识点
简易方程的数学知识点
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。

以下是店铺精心整理的简易方程的数学知识点,仅供参考,欢迎大家阅读。

简易方程的数学知识点1
1、在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a,a读作a的平方。

2a表示a+a
3、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。


5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是方程。

7、方程的检验过程:方程左边=……
8、方程的解是一个数;
解方程式一个计算过程。

=方程右边
所以,X=…是方程的解。

简易方程的数学知识点2
1.含有字母的式子里,字母中间的乘号可以记作,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2.aa可以写作aa或a,a读作a的平方。

2a表示a+a
3.方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4.解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

5.10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数因数一个因数=积另一个因数除法:商=被除数除数被除数=商除数除数=被除数商
6.所有的方程都是等式,但等式不一定都是等式。

简易方程的数学知识点3
1、方程的`意义
含有未知数的等式,叫做方程。

2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
例4用含有字母的式子表示下面的数量关系
(1)的7倍;(2)的5倍加上6;(3)5减的差除以3;
(4)200减5个;(5)比7个多2的数。

例9要修一段公路,平均每天修米,修了6天,还剩下米。

(1)用含有字母的式子表示这段公路有多少米;
(2)根据这个式子,分别求等于50,等于200时,公路长多少米
例11某个数与9的和的12倍等于156,求这个数是多少。

例12王晰买了2支钢笔和5支圆珠笔,共付17元。

一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱? 简易方程的数学知识点4
简易方程
用字母表示数
用字母表示数是代数的基本特点。

既简单明了,又能表达数量关系的一般规律。

用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成“·“或省略不写。

数与数相乘,乘号不能省略。

2、当1和任何字母相乘时,“1”省略不写。

3、数字和字母相乘时,将数字写在字母前面。

含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式
等式与方程
表示相等关系的式子叫等式。

含有未知数的等式叫方程。

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。

所以,方程一定是等式,但等式不一定是方程。

方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解。

求方程的解的过程叫解方程。

在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

解方程的方法
1、直接运用四则运算中各部分之间的关系去解。

如x-8=12
加数+加数=和一个加数=和-另一个加数
被减数-减数=差减数=被减数-差被减数=差+减数
被乘数×乘数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解。

如3x+20=41
先把3x看作一个数,然后再解。

3、按四则运算顺序先计算,使方程变形,然后再解。

如2.5×4-x=4.2,
要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

4、利用运算定律或性质,使方程变形,然后再解。

如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

【简易方程的数学知识点】。

相关文档
最新文档