年龄问题经典例题

年龄问题经典例题
年龄问题经典例题

【年龄问题】年龄问题的特点是:(1)两人的年龄之差是永远不变的,简称为定差;

(2)两人的年龄同时都增加或减少同样的自然数量;

(3)两人年龄之间的倍数关系随着年龄的增长也在发生着变化。

在年龄问题中,我们可以抓住“差不变”这个特色,利用“和差”、“和倍”、“差倍”等知识来分析解答这类应用题。

例1 贝贝今年12岁,晶晶今年7岁,当两人的年龄和是51岁时,两人各多少岁?

例2 今年大头35岁,小头15岁,几年前大头的年龄是小头的3倍?

例3 3年前,母子年龄的和是49岁,现在母亲的年龄是儿子的4倍,母亲和儿子今年各多少岁?

例4 4年前,妈妈的年龄是女儿的3倍,4年后,母女年龄和是56岁,妈妈今年多少岁?

例5 小新和强子比岁数,小新说:“我像你现在这么大时,你才12岁。”强子说:“我像你现在这么大时,你有27岁。”请问小新和强子今年各有多少岁?

1.丽莎今年18岁,米妮今年25岁,当她们的年龄和是55岁时,两人各是多少岁?

2.小明今年2岁,妈妈26岁,那么,多少年后妈妈的年龄是小明的3倍?

3.3年前,哥哥的年龄是弟弟的2倍,3年后,哥弟俩的年龄和是30岁,哥哥今年多少岁?

4.妞妞对叔叔说:“叔叔,我到您现在这么大岁数时,您就34岁了。”叔叔说:“我像你这么大时,你只有1岁。”叔叔今年多少岁,妞妞今年多少岁?

5.米奇一家四口年龄之和是129岁,米奇7岁,妈妈30岁,米奇和爷爷的年龄之和比他父母年龄之和大5岁,爷爷和爸爸的年龄各是多少?

1.小怡今年3岁,爸爸今年28岁,当父女俩年龄和是53岁时,两人各多少岁?

2.今年团团和圆圆年龄和是33岁,三年后,团团比圆圆大3岁,那么团团和圆圆今年各是多少岁?

3.今年皮皮鲁27岁,鲁西西15岁,几年前皮皮鲁的年龄是鲁西西的3倍?

4.今年父女俩的年龄和是36岁,6年后父亲的年龄是女儿的3倍,今年父亲和女儿各是多少岁?

5.5年前,小明的年龄是小红的3倍,5年后,小明和小红年龄和是44岁,今年小明多少岁?

☆6.晶晶、迎迎、妮妮三人的今年的年龄和是134岁,其中晶晶比迎迎的3倍少9岁,妮妮比迎迎的2倍多5岁,求三人的年龄各是多少岁?

【周期问题】

在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪都是按顺序不断出现的;每周有七天,从星期一开始,到星期日结束,总是以七为一个循环不断重复出现的。我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。确定周期后,用总量除以周期,如果正好有个整数周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个。

例1 甜甜把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排

(1)她排列第111个是几分硬币?(2)这111个硬币中2分的有多少个?

(3)这111个硬币和起来是多少元钱?

1

2

例2 2008年6月1日是星期日,

(1)该月的23号是星期几? (2)2008年8月8日是星期几? (3)2009年6月1日是星期几?

例3 我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年。如果公元1年属鸡年,那么公元2000年属什么年?

例4 假设所有自然数排列起来,如下图所示,36应该排在哪个字母下面?88应该排在哪个字母下面? 1.有一列数1、4、2、8、5、7、1、4、2、8、5、7…… ①第58个数是多少? ②这58个数相加的和是多少? 2.如果今天是星期二,从今天算起,第100天是星期几?

3.我国农历用12种动物轮流代表年号,如果公元6年属虎年,那么公元

2100年属什么年? 4.下表中每竖行的上、中、下的汉字、字母、数字组成一组,例如第一组是(学、A 、O ),第五组是(习、A 、8) 问:写出第74组是什

么?

(2008年第六届希望杯初试题) 5.100个2相乘,积的未位数字是几?

1、把○□△三种图形按一定的规则排列:○○△△△□□○○△△△□□……,问第200个图形是什么?前200个图形中△有多少个?

2、有一列数按“4327918643279186432……”排列,那么第54个数字是多少?

3、1991年1月3日是星期四。(1)该月的22号是星期几? (2)该年的3月28号是星期几?

4、假设所有自然数排列起来,如下图所示43,100应分别排在哪个字母下面?

5、三天打鱼,两天晒网,按照这样的方式,在100天内打鱼的天数是____.(第六届小学“希望杯”初试赛题)

6、2008个3连乘的积的个位数是几?

【综合训练】

一、计算篇,用简便方法计算下面各题

0.6 + 7.91 + 3.4 + 0.09 21.39 - ( 4.25 + 1.39) 13.6 - 2.68 - 7 - 32 1.1 + 1.2 + 1.3 +…+ 1.9 + 2.0

二、应用篇

1. 8个连续的偶数的和是216,则这六个连续偶数分别是多少? 三、图形

1.下图中,长方形ABCD 的长为8厘米,宽为6厘米,E.F 分别是所在边的中点,阴影部分的面积为多少平方厘米? 2.如下图是两个正方形组成的,已知大正方形边长为10分米,

3.下面的正方形由大家熟悉的七巧板拼成的,边长是10厘米,4.有一列数1,1,2,4,7,13,24,44,81,149,274……问第

A

B

C

D

1

2

3

4 5 6 7 8

9 ………… A

B

C

D

1 2 3 4

5 6 7 8 9

10

11 12

13 14 ……

3

5.如图,AB=CD,则阴影部分甲的面积与阴影部分乙的面积哪个大?

6.等腰梯形下底是上底的2倍,两个底角都是60度,将这个梯形分成大小,形状完全相同4块 7.下图中的三角形和六角形各边长都是1,用______

8.大小两个正方形部分重合,已知空白部分的面积是129.图中每个小正方形的面积是2平方厘米,10.求图中阴影部分的面积(单位:厘米)

11.图中阴影部分是边长512米?

13、如图下图,已知ABCD 为直角梯形,AD=6cm ,AB=4cm ,

A

B E C

2

小学数学典型应用题合集之年龄问题

小学数学典型应用题之年龄问题 一、含义 已知两个或多个人年龄关系,求各自年龄或年龄关系,这类应用题叫做和倍问题。 二、数量关系 (1)大数=(和+差)÷2小数=(和-差)÷2总和÷(几倍+1)=较小的数 (2)总和-较小的数=较大的数较小的数×几倍=较大的数两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数 三、解题思路和方法 年龄问题具有年龄同增同减,年龄差不变的特性。年龄问题都可以转化为和差、和倍、差倍问题。简单的题目直接利用公式,复杂的题目变通后利用公式 四、例题 例题(一):爸爸今年38岁,妈妈今年36岁,当爸爸42岁时,妈妈 _____ 岁。 解:(1)本题考查的年龄差不变(简单),不管过了多少年年龄差是不变的。 (2)爸爸比妈妈大2岁,根据不管过了多少年年龄差是不变的,当爸爸42岁时,妈妈是40岁。 例题(二):姐姐今年15岁,妹妹今年12岁,当她们的年龄和是39岁时,那时妹妹 _____ 岁。

解:方法1:(1)利用年龄同增同减的思路。 (2)姐妹俩今年的年龄之和是:15+12=27(岁),年龄之和到达39岁时需要的年限是:(39-27)÷2=6(年) (3)那是妹妹的年龄是12+6=18(岁) 方法2:(1)利用年龄差不变的思路。 (2)两姐妹的年龄差为15-12=3(岁),再根据小数=(和-差)÷2的公式,可以求出妹妹的年龄为(39-3)÷2=18(岁) 例题(三):爸爸今年50岁,哥哥今年14岁, _____ 年前,爸爸的年龄是哥哥的5倍。 解:(1)不管过了多少年,年龄差是不变的,当爸爸的年龄是哥哥的5倍时,年龄差仍是50-14=36(岁)。 (2)问什么时候爸爸的年龄是哥哥的5倍,实际上年龄差就是哥哥的5-1=4(倍) (3)根据两个数的差÷(几倍-1)=较小的数,可以求出哥哥当时的年龄是(50-14)÷4=9(岁) (4)再根据题意可求出14-9=5(年)前

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

五年级行程问题经典例题

行程问题(一) 专题简析: 行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米 分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。 32×2÷(56-48)=8(小时) (56+48)×8=832(千米) 答:东、西两地相距832千米。 练习一 》 1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米

例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米 分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。 [ (40×3-25×2-7)÷3=21(千米) 答:慢车每小时行21千米。 练习二 1,兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米 2,汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地 & 例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米 分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。 因此,东西两村的距离是15×(5-1)=60(千米)

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

七年级行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流, 回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设 甲车共 行使了 xh ,则乙车行使了h x )(60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100,

解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2.

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

五年级行程问题典型练习题

行程问题(一) 【知识分析】 相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。 【例题解读】 例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米, 两地相距多少千米? 【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。 (1)两车经过几小时相遇?8×2÷(90-85)=3.2小时 (2)两地相距多少千米?(90+85)×3.2=560(千米) 例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地 相距多少千米? 【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离 1.5×2×8÷(10-8)×=120千米 【经典题型练习】

1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车 每小时都比原来多行10千米,则2小时就相遇,求两地的距离? 2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8 分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?

【知识分析】 两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题 【例题解读】 例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米? 【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米 从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离 95×3—55=230千米 【经典题型练习】 1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相 遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离 2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站 80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

年龄问题经典例题

年龄问题经典例题 今年妈妈和女儿的年龄和是66岁,妈妈的年龄比女儿的3倍小10岁,那么多少年前妈妈的年龄为女儿的5倍? 【解析】根据题意可知这是一个和倍问题,可以求出母女今年的年龄。 女儿今年的年龄是:(66+10)÷(3+1)=76÷4=19(岁) 妈妈今年的年龄是:19×3-10=47(岁) 无论到哪一年母女的年龄差都是不变的,即47-19=28(岁) 当妈妈的年龄是女儿的5倍时,女儿的年龄为:(47-19)÷(5-1)=7(岁) 19-7=12(年)即12年前妈妈的年龄为女儿的5倍。 训练 (1)爸爸和儿子今年的年龄和是37岁,爸爸的年龄比儿子的6倍多2岁,那么多少年后,爸爸的年龄是儿子的4倍? (2)小明和小兰今年的年龄和是18岁,小明的年龄比小兰的3倍少2岁,那么多少年前,小明的

年龄是小兰的9倍? 例题 4年前妈妈的年龄是小华的4倍,小华今年11岁,妈妈今年多少岁? 【解析】小华今年11岁,四年前小华的年龄应该是11-4=7(岁),那么妈妈4年前的年龄是7×4=28(岁),再经过四年妈妈的年龄应该再加4岁,即28+4=32(岁)。 训练 (1)5年前小兰的年龄是小明的3倍,小明今年10岁,小兰今年多少岁? (2)4年前哥哥的年龄是弟弟的2倍,弟弟今年14岁,哥哥今年多少岁? 例题 小明今年3岁,父亲今年27岁,几年后父亲的年龄正好是小明的4倍? 【解析】父亲与小明的年龄差是27-3=24(岁),这是一个不变的量,当父亲的年龄是小明的4倍,小明的年龄是24÷(4-1)=8(岁),8-3=5(年)。训练

(1)欢欢今年18岁,迎迎今年2岁,几年后欢欢的年龄正好是迎迎的5倍? (2)哥哥今年16岁,弟弟今年12岁,几年前哥哥的年龄刚好是弟弟的3倍? 例题 父亲今年35岁,儿子今年13岁,几年后父亲和儿子的年龄和是62岁? 【解析】父亲和儿子的年龄差是不变的量,即35-13=22(岁),当父亲与儿子年龄和为62岁时,儿子的年龄是(62-22)÷2=20(岁),20-13=7(年)。 变式训练◇8 (1)母亲今年30岁,女儿今年5岁,几年后母亲和女儿年龄和是55岁? (2)天天比明明小6岁,当他们年龄和是40岁时,明明多少岁?

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(