实验二晶体管共射极单管放大器‘

实验二晶体管共射极单管放大器‘
实验二晶体管共射极单管放大器‘

实验二 晶体管共射极单管放大器

一、实验目的

1. 掌握放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;

2. 学会放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法;

3. 熟悉常用电子仪器及模拟电子技术实验箱的使用。

二、实验原理

图2-1为电阻分压工作点稳定单管放大器实验电路图。它的偏置电路采用1b R 和b R 组成的分压电路,并在发射极中接有电阻e R ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号i u 后,在放大器的输出端便可得到一个与i u 相位相反,幅值被放大了的输出信号o u ,从而实现了电压放大。

图2-1

在图2-1电路中,当流过偏置电阻1b R 和b R 的电流远大于晶体管的基极电流B I 时(一般5~10倍),则它的静态工作点可用下式估算:

b1

B b1b

B BE

E C

e

CE CC C C cc

e R U =V R R U U I =

I R U =V I (R +R )

?+-≈-

V i 2b1b be //A r =R //R //R //r c L be

c

R R r R β

=-≈o 电压放大倍数输入电阻输出电阻 r 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1. 放大器静态工作点的测量与调试 1) 静态工作点的测量

测量放大器的静态工作点,应在输入信号0i u =的情况下进行,即将放大器输入端与地端短接,在阻容耦合放大器中,不接入信号源即可,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用Re

E U E C I I =

≈算出C I (也可根据Rc

U Vcc C C

I -=

,由C U 确定C I ),同时也能算出

U =U -U BE B E

U

=U

-U

CE

C

E

。为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

2) 静态工作点的调试

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时o u 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即o u 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的i u ,检查输出电压o u 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。

图2—2

改变电路参数V CC 、R C 、R b 、R b1都会引起静态工作点的变化。但通常多采用调节偏电阻R b 的方法来改变静态工作点,如减小R b ,则可使静态工作点提高等。

最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确

(a) (b) (c)

切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

2. 放大器动态指标测试

放大器动态指标测试有电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

1) 电压放大倍数A V 的测量

调整放大器到合适的静态工作点,然后加入输入电压i u ,在输出电压o u 不失真的情况下,用交流毫伏表测出i u 和o u 的有效值U i 和U o ,则

U A =U o U i

2)输入电阻的测量

为了测量放大器的输入电阻,按图2-3电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下,用交流毫伏表测出U s 和U i ,则根据输入电阻的定义可得

i i

i S i

U

U r R U U R

U R

==

?-

图2-3

测量时应注意:由于电阻R 两端没有电路公共接地点,所以测量R 两端电压R U 时必须分别测出s U 和i U ,然后接R s i U U U =-求出R U 值。

3) 输出电阻的测量

按图2-3电路,在放大器正常工作条件下,测出输出端不接负载R L 的输出电压U o 和接入负载后的输出电压U L ,根据

L

L O o L

R U =

U r R +

即可求出o r :

O o L L U r 1R U ??

=-? ???

在测试中应注意,必须保持R L 接入前后输入信号的大小不变,且放大电路输出不失真。 4) 最大不失真输出电压U opp 的测试(最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R P (改变静态工作点),用示

波器观察o u ,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U o (有效值),则动态范围等于2

U o ,或用示波器直接读出U opp 来。

5) 放大器频率特性的测量

放大器的频率特性是指放大器的电压放大倍数A U 与输入信号频率f 之间的关系曲线。单管阻容耦合放大电路的幅频特性曲线如图2-4所示,A vm 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/倍,即所对应的频率分别称为下限频

率L f 和上限频率H f ,则通频带

H L BW f f =-

放大器的频率特性就是测量不同频率信号时的电压放大倍数A U 。为此,可采用前述测A V 的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号的幅度不变。

三、实验设备与器件

1. 模拟电子实验箱

2. 信号源

3. 示波器

4. 交流毫伏表

5. 数字万用表

6. 晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图2-5所示)以及若干电阻、电容

图2—5 图2—6

四、实验内容

实验电路如图2-1所示。用万用表判断实验箱上三极管的极性及好坏,点解电容的极性及好坏等,然后开始接线,接线完毕仔细检查,确定无误后将R P 调到最大再接通电源。

1. 测量静态工作点

信号源输出旋钮旋至零或不接入。接通+12V 电源,调节R P 使U E =(I C =,用数字电压表测量U B 、U E 、U C 及用万用电表测量R b 值。记入表2-1中。

实际测量值

实测计算值 U B (V) U E (V) U C (V) R b (K Ω)

U BE (V) U CE (V) I C (mA)

2. 测量电压放大倍数

在放大器输入端A 加入频率为1KH Z 幅值为500mV 的正弦信号s u ,经过R 1、R 2衰减得到U i =5mV 的交流小信号,同时用示波器观察放大器输出电压o u 的波形,在波形不失真

的条件下用交流毫伏表测量下述三种情况下的U o 值,并用示波器同时观察o u 和i u 的相位关系,把结果记入表2-2中。

3. 观察静态工作点对电压放大倍数的影响

置R C =5K Ω,R L =∞,i u 适当(5mV ),调节R P ,用示波器监视输出的电压波形,在o

u 不失真的条件下,测量数组I C 和U o 值,记入表2-3中。

表2-3 R

测量I c 时,要先将信号源输出旋钮旋至零或信号源不接入(即使U i =0) 4. 测量最大不失真输出电压

置R C =5K Ω,R L =∞,按照实验原理(4)中所述方法,同时调节输入信号的幅度和电位器R P ,用示波器测量U opp ,记入表2-4中。

表2-4 R

5. 观察静态工作点对输出波形失真的影响

置R C =5K Ω,R L =∞,U i =5mV ,调节R P 至合适位置使输出电压o u 波形不失真,再增大和减小R P (如果R P 调节范围不够,可改变R b2的值),使波形出现失真,分别观察o u 两种失真波形变化,若波形失真观察不明显可增大U i 幅值(>50mV ),并重测,把测量结果计入表2-5中。每次测静态值时都要将信号源的输出旋钮旋至零。

*6. 测量输入电阻和输出电阻

置R C =5K Ω,R L =5K Ω,I C =mA 。输入1KH Z 正弦信号,在输出电压o u 不失真的情况下,用交流毫伏表测出U s ,U i 和U L 记入表2-6中。

保持U s 不变,断开R L ,测量输出电压U o ,记入表2-6中。

表2-6 I c = R c =5K Ω R L =5K Ω

测算输入电阻 测算输出电阻 实测 测算

估算 实测 测算 估算 U s (mV) U i (mV) r i (K Ω)

r i (K Ω)

U L (V) U o (V) r o (K Ω) r o (K Ω)

*7. 测量幅频特性曲线

取I c =,R C =5K Ω,R L =∞。保持输入信号i u 或s u 的幅度不变,改变信号源频率f ,逐点测出相应的输出电压U o ,记入表2-7中。为了频率f 取值合适,可先粗测一下,找出中频范围,然后再仔细读数。

表2-7

说明: 本实验内容较多,其中6、7可作为选作内容。

五、实验报告

1. 列表整理测量结果,并把实测的静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值相比较(取一组数据进行比较),分析产生误差原因;

2. 总结R c ,R L 及静态工作点对放大器电压放大倍数、输入电阻、输出电阻的影响;

3. 讨论静态工作点变化对放大器输出波形的影响;

4. 分析讨论在调试过程中出现的问题。

六、预习要求

1. 阅读教材中有关单管放大电路的内容并估算实验电路的性能指标。 假设: 3DG6的β=100,R b1=24K Ω,R b =72K Ω,R C =5K Ω,R L =5K Ω。 估算放大器的静态工作点,电压放大倍数A U ,输入电阻r i 和输出电阻r o 。

2. 能否用数字电压表直接测量晶体管的U BE ? 为什么实验中要采用测U B 、U E ,再间接算出U BE 的方法?

3. 怎样测量R b 阻值?

4. 当调节偏置电阻R b ,使放大器输出波形出现饱和或截止失真时,晶体管的管压降U CE 怎样变化?

5. 改变静态工作点对放大器的输入电阻r i 有否影响? 改变外接电阻R L 对输出电阻r o

有否影响?

6. 在测试A U ,r i 和r o 时怎样选择输入信号的大小和频率? 为什么信号频率一般选1KH Z ,而不选100KH Z 或更高?

7 测试中,如果将信号源,交流毫伏表、示波器中任一仪器的二个测试端子接线换位(即各仪器的接地端不再连在一起),将会出现什么问题?

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

武科大 单管交流放大电路实验__实验报告

实验一、管交流放大电路实验 1. 实验目的 1) 学习并掌握单管交流放大电路静态工作点的调试及测量方法; 2) 学习并掌握单管交流放大电路电压放大倍数的测量方法; 3) 掌握静态工作点、负载电阻的变化对电压放大倍数及输出波形的影响。 3. 实验原理 实验电路如图5.1.1所示,为共射极接法的单管交流放大电路。 图5.1.1 共射极单管交流放大电路图 1) 放大电路静态工作点的调试与测量 静态是当放大电路没有输入信号时的工作状态。静态工作点Q 包括B I 、C I 和CE U 三个参数。此时放大电路的静态工作点由偏置电路b1R 、P1R 、b2R 和e R 决定,改变电位器P1R 的阻值就可以调节B I 的大小,也就改变了静态工作点。为了使输出电压达到比较大的动态范围,要把静态工作点调整到直流负载线的中间位置。 2) 交流电压放大倍数的测量

放大电路的交流电压放大倍数即输出电压与输入电压有效值之比,电压放大倍数要在静态工作点合适、输出波形不失真条件下测得。 3) 电路参数对放大器性能的影响 (1) 静态工作点对输出电压波形的影响 静态工作点设置太低,输出波形产生截止失真;静态工作点设置太高,输出波形产生饱和失真。 (2) 输入信号对输出电压波形的影响 静态工作点设置合适,但输入信号如果过大,输出波形也要产生截止、饱和失真(大信号失真)。 (3) 负载电阻L R 对放大倍数的影响 当放大器空栽(负载电阻开路)时,电压放大倍数为 C u be R A r β=- 当放大器接入负载电阻时,电压放大倍数为 L u be R A r β' =-(其中L C L //R R R '=) 所以,L R 对放大倍数是有影响的,显然,L R 电阻值越小,电压放大倍数就越低。 (4) 发射极电容e C 对电压放大倍数的影响 e C 接入时,电压放大倍数的计算如(3)所述,把e C 去掉,电压放大倍数为 L u be e (1)R A r R ββ'=-++(其中L C L //R R R '=) 所以把e C 去掉后电压放大倍数要减小。 4. 实验内容与步骤 实验电路板如图5.1.2所示。 1) 熟悉模拟电子技术实验箱和单管交流放大电路板, 把实验板上的元件接成一个分压式偏置电路(5和6点相连,9和15点相连,10和12点相连)。 2) 将实验台上+12V 的恒压源接入模拟电子技术实验箱的+12V 输入端(注意恒压源的“⊥”孔与实验箱的“⊥”也要对应相连)。然后开通电源,正确接入时实验箱上方+12V 的红发光二极管会亮;否则说明电源线没有正确接入。 3) 调整并测量静态工作点 当i 0u =即无交流信号输入的情况下,将万用表的选择开关放在DC20V 位置,监测CE U 的值(注意极性)。调节电位器P1R ,使CE U 落在3.5~5 V 之间,固定一个值并记录至表5.1.1中。然后测量集电极电阻C R 两端的电压RC U ,计算出 C I 的值并记录。 4) 测量并计算单管交流放大电路电压放大倍数 (1) 调节输入信号i u :先将信号源的波形选择开关“~”键和频段选择开关“10kHz”键按下,旋转“频率粗调”和“频率细调”旋纽,使信号源发出频率为1kHz 的正弦信号。再将衰减选择的“40dB”键按下,并将信号源左下角的“输出”探头与交流毫伏表的检测探头相接,然后旋转信号源左上角的“幅值调节”旋钮,使输出

实验1单管放大

模拟电子实验—01 单管交流放大电路 一.实验目的 1.掌握单管放大器静态工作点的调整及电压放大倍数的测量方法。 2.研究静态工作点和负载电阻对电压放大倍数的影响,进一步理解静态工作点对放大器工作的意义。 3.观察放大器输出波形的非线性失真。 4.熟悉低频信号发生器、示波器及晶体管毫伏表的使用方法。 二.电路原理简述 单管放大器是放大器中最基本的一类,本实验采用固定偏置式放大电路, 如图2-1所示。其中R B1=100KΩ,R C1 =2KΩ,R L1 =100Ω,R W1 =1MΩ,R W3 =2.2k Ω,C1=C2=10μF/15V,T1为9013(β=160-200)。 图1-1 为保证放大器正常工作,即不失真地放大信号,首先必须适当取代静态工作点。工作点太高将使输出信号产生饱和失真;太低则产生截止失真,因而工作点的选取,直接影响在不失真前提下的输出电压的大小,也就影响电压放大倍数 (A v =V /V i )的大小。当晶体管和电源电压V cc =12V选定之后,电压放大倍数还与 集电极总负载电阻R L ’(R L ’=R c //R L )有关,改变R c 或R L ,则电压放大倍数将改变。 在晶体管、电源电压V cc 及电路其他参数(如R c 等)确定之后,静态工作点 主要取决于I B 的选择。因此,调整工作点主要是调节偏置电阻的数值(本实验 通过调节R w1 电位器来实现),进而可以观察工作点对输出电压波形的影响。

三.实验设备 名称数量型号 1.直流稳压电源 1台 HY1711-3S 0~30V可调2.低频信号发生器1台 SG1646A 3.示波器 1台 4.晶体管毫伏表 1只 5.万用电表 1只 6.电阻 3只 100Ω*1 2kΩ*1 100 kΩ*1 7. 电位器 2只 2.2 kΩ*1 1MΩ*1 8.电容 2只 10μF/15V*2 9. 三极管 1只 9013*1 10.短接桥和连接导线若干 P8-1和50148 11.实验用9孔插件方板 297mm×300mm 四. 实验内容与步骤 1.调整静态工作点 实验电路见9孔插件方板上的“单管交流放大电路”单元,如下图2-2所示。 方板上的直流稳压电源的输入电压为+12V,用导线将电源输出分别接入方板 上的“单管交流放大电路”的+12V和地端,将图2-2中J 1、J 2 用一短线相连, J 3、J 4 相连(即Rc 1 =5kΩ),J 5 、J 6 相连,并将R W3 放在最大位置(即负载电阻 R L =R L1 +R W3 =2.7kΩ左右),检查无误后接通电源。 图1-2 使用万用表测量晶体管电压V CE ,同时调节电位器R W1 ,使V CE =5V左右,从而 使静态工作点位于负载线的中点。 为了校验放大器的工作点是否合适,把信号发生器输出的f=1kHz的信号加到放大器的输入端,从零逐渐增加信号υ i 的幅值,用示波器观察放大器的输出 电压υ 的波形。若放大器工作点调整合适,则放大器的截止失真和饱和失真应 该同时出现,若不是同时出现,只要稍微改变R W1 的阻值便可得到合适的工作点。

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

单管放大电路实验报告

单管放大电路 一、实验目的 1. 掌握放大电路直流工作点的调整与测量方法; 2.掌握放大电路主要性能指标的测量方法; 3.了解直流工作点对放大电路动态特性的影响; 4.掌握射极负反馈电阻对放大电路特性的影响; 5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻R W是为调节晶体管静态工作点而设置的。 三、实验原理 1.静态工作点的估算

将基极偏置电路CC V ,1B R 和2B R 用戴维南定理等效成电压源。 开路电压CC B B B BB V R R R V 2 12 += ,内阻 21//B B B R R R = 则 ) )(1(21E E B BEQ BB BQ R R R V V I +++-= β, BQ CQ I I β= CQ E E C CC CEQ I R R R V V )(21++-≈ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻R B1(调节电位器R W )来调节静态工作点的。R W 调大,工作点降低(I CQ 减小),R W 调小,工作点升高(I CQ 增加)。 一般为方便起见,通过间接方法测量CQ I ,先测E V ,)/(21E E E EQ CQ R R V I I +=≈。 2.放大电路的电压增益与输入、输出电阻 be L C u r R R ) //(β-= A be B B i r R R R ////21= C O R R ≈ 式中晶体管的输入电阻r be =r bb′+(β+1)V T /I EQ ≈ r bb′+(β+1)×26/I CQ (室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率f H 、f L 和频带宽度BW =f H -f L 。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。

共射极单管放大电路(一)

电路分析实验报告 共射极单管放大电路(一) 一 、实验摘要 通过单管放大电路,认识三极管放大电路的性能参数。静态参数有:三极管的静态工作点Ib、Ic和Vce;了解三极管放大电路的线性放大,饱和失真、截止失真;动态参数有:电压放大倍数Av、最大不失真输出电压Uomax。 2、 实验环境 模拟电路试验箱 函数信号发生器 示波器 万用表 3、 实验原理 ui直接加在三极管V的基极和发射极之间,引起基极电流iB作相应的变化 。 通过三极管VT的电流放大作用,VT的集电极电流iC也将变化 。 iC的变化引起V的集电极和发射极之间的电压uCE变化。 uCE中的交流分量uce经过电容C2畅通地传送给负载RL,成为输出交流电压uo,,实现了电压放大作用。 4、 实验步骤 在模电试验箱对应模块上连 接电路 调节信号发生器调节频率、峰峰值,观察波形 调节电位器调节电位器,观察波形 分别在饱和失真、截止失计算得出放大倍数,Ib、Ic和Vce,最

真、不失真时观察波形,记 大不失真输出电压 录数据 5、 实验数据 截止失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 8.380.000890.0008-0.000098.89 饱和失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 2.610.00220.0023-0.000111.23 不失真

Vce/V Ic/A Ie/A Ib/A放大倍数Av 4.820.00170.001780.0000812.63 最大不失真输出电压Uomax=500mVPP 上下半波均失真,形成矩形波 相移:140.5° 6、 实验总结 在本次实验中了解到了三极管的放大特性。通过单管放大电路,认识了三极管放大电路的性能参数。

单管分压式稳定共射极放大电路设计方案报告

单管分压式稳定共射极放大电路设计 设计题目:输入信号v i=5mv,f=10kHz,输出信号v o=500mv,工作电压Vcc=6v,输入电阻R i>1k,输出电阻Ro<2k用分压式稳 定单管共射极放大路进行设计。R L=10k。 一、设计思考题。 ①如何正确选择放大电路的静态工作点,在调试中应注意什 么? ②负载电阻RL变化对放大电路静态工作点Q有无影响?对放 大倍数AU有无影响? ③放大电路中,那些元件是决定电路的静态工作点的? ④试分析输入电阻Ri的测量原理(两种方法分别做简述)。 二、设计目的 a)掌握单管放大电路的静态工作点和电压放大倍数的测量方 法。 b)三极管在不同工作电压下的共基放大系数的测定。 c)了解电路中元件的参数改变对静态工作点及电压放大倍数的 影响。 d)掌握放大电路的输入和输出电阻的测量方法。 三、所需仪器设备 a)示波器 b)低频模拟电路实验箱 c)低频信号发生器

d) 数字式万用表 e) PROTUES 仿真 四、 设计原理 a) 设计原理图如图1所示分压式稳定共射极放大电路 图1 分压式稳定共射极放大电路 b) 对电路原理图进行静态分析与反馈分析说明分压式对电路稳定性的作用。 静态分析:当外加输入信号为零时,在直流电源CC V 的作用下,三极管的基极回路和集电极回路均存在着直流电流和直流电压,这些直流电流和直流电压在三极管的输入、输出特性上各自对应一个点,称为静态工作点。静态工作点的基极电流、基极与发射极之间的电压分别用符号BQ I 和BEQ U 表示,集电极电流、集电极与发射极之间的电压则用和表示。 为了保证的基本稳定,要求流过分压电阻的电流I I ,为此要求电阻21,R R 小些,但若21,R R 太小,则电阻上消耗的功率将增

【实验一】单管共射放大电路的原理

实验一单管共射放大电路的原理 一、实验目的: 1.掌握放大电路静态工作点的调 试方法及其对放大电路性能的影 响; 2.学习测量放大电路Q 点,Au、 Ri、Ro的方法,了解共射极电路 特性; 3.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.在MultiSIM的环境下按照本次实验的内容和步骤搭建各电路,测量表格当中要求的数据。 2.总结放大电路静态和动态测量方法。 四、实验内容及步骤 1.装接电路与简单测量 图 1.l 基本放大电路 (1)实验开始时,应先用万用表判断实验箱上三极管的好坏。(2)按图 1.1 所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将R P的阻值调到最大位置。 2.静态测量与调整 (1)接线完毕仔细检查,确定无误后接通电源。改变R P大小,记录I C分别为2mA、3mA、4mA、5mA 时三极管MRF9011L的β值。 注意:I b和I c 的测量和计算方法:

测I b和I c一般可用间接测量法,即通过测U C和U B,R C和R B计算出I B 和I C。此法虽不直观,但操作较简单,建议初学者采用。 表 1.l 基本放大电路静态工作点的测量 3.动态研究 (1)按图1.2所示电路接线,调R B使U CEQ为9V。 (2)将信号发生器的输出信号调到f=1KHz,例如V P-P为500mV,接至放大电路的A点,经过R 1、R 2衰减(100倍),U i点得到5mV 的小信号,观察U i和U O端波形,并比较相位,填表1.2。 (3)信号源频率不变,逐渐加大信号源幅度,观察U O不失真时的最大值,并记录下来。

单管放大器的设计与仿真及误差分析

课程设计报告 题目:单管放大器的设计与仿真 学生姓名: 学生学号: 系别: 专业:电子信息工程 届别: 指导教师: 电气信息工程学院制 2013年3月

淮南师范学院电气信息工程学院2014届电子信息工程专业课程设计报告 目录 引言……………………………………………………………1任务与要求…………………………………………………2系统方案制定………………………………………………3系统方案设计与实现………………………………………4系统仿真和调试……………………………………………5数据分析……………………………………………………6总结…………………………………………………………7参考文献……………………………………………………8附录………………………………………………………… 第1 页

单管放大器的设计与仿真 学生: 指导教师: 电气信息工程学院电子信息工程专业 引言:放大现象存在于各种场合中,例如,利用放大镜放大微小的物体,这是光学中的放大;利用杠杆原理用小力移动重物,这是力学中的放大;利用变压器将低电压变换为高电压,这是电学中的放大。而作为电子电路中的放大晶体管放大器是放大电路的基础【1】,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容涉及方面广泛。本文已常见的作为集成运放电路的中间级的共射放大电路为讨论对象,一方面,对具体包括模拟电路的一般设计步骤、单管共射放大电路设计方案的拟定、静态工作点的设置与电路元件参数的选取、放大电路性能指标的测量、稳定静态工作点的措施等做阐述。本文采用的是分压式电流负反馈偏置电路设计成的共发射极放大器,对分压式电流负反馈偏置电路能稳定静态工作点的原理作了说明,并将对晶体管放大器静态工作点的设置与调整方法、放大电路的性能指标与测试方法、放大器的调试技术做阐述。介绍模拟电子电路的一般设计方法和思路,以及Multsim 和Matlab软件的一些基本操作和仿真功能。

实验一晶体管共射极单管放大器

实验一电磁型电流继电器和电压继电器实 验 【实验名称】 电磁型电流继电器和电压继电器实验 【实验目的】 1.熟悉DL型电流继电器和DY型电压继电器的的实际结构,工作 原理、基本特性; 2.学习动作电流、动作电压参数的整定方法。 【预习要点】 1.复习电磁型电流、电压继电器相关知识。 2.电流继电器的返回系数为什么恒小于1? 【实验仪器设备】 【实验原理】 DL-20C系列电流继电器和DY-20C系列电压继电器为电磁式继电器。由电磁系统、整定装置、接触点系统组成。当线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。改变线圈的串并联接法,可获得不同的额定值。

图1-1 DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值。继电器用于反映发电机,变压器及输电线短路和过负荷的继电保护装置中。 DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。继电器用于反映发电机、变压器及输电线路的电压升高(过压保护)或电压降低(低电压起动)的继电保护装置中。 【实验内容】 1.电流继电器的动作电流和返回电流测试 a.选择EPL-04组件的DL-21C过流继电器(额定电流为6A),确定动作值并进行整定。本实验整定值为2.7A及5.4A两种工作状态。 b .根据整定值要求对继电器线圈确定接线方式; 注意: (1)过流继电器线圈可采用串联或并联接法,如图1-2所示。其中串联接法电流动作值可由转动刻度盘上的指针所对应的电流值读出,并联接法电流动作值则为串联接法的2倍。 (2)串并联接线时需注意线圈的极性,应按照要求接线,否则得不到预期的动作电流值。

单管放大电路实验报告范本

单管放大电路实验报告 一、实验目的 1.掌握单管放大电路静态工作点的调试; 2.熟悉常用仪器的使用方法; 3.掌握放大电路的主要指标和测试方法。 二、实验仪器及器件 设备条件:万用表,示波器,函数发生器,直流稳压电源 实验器材: 三、实验原理 基本放大电路有共射极、共基极、共集电极三种构成方式,本次实验采用共射极放大电路,如图1.1所示。三极管是一个电流控制电流源器件(即I C=βI B),通过合理设置静态工作点,实现对交流电压信号的放大。放大电路的主要参数有电压放大倍数Au、输入电阻Ri、输出电阻Ro。

四、实验内容 4.1静态工作点的设置 1.什么是静态工作点 静态工作点是指在电路输入信号为零时,电路中各去路电流和各节点的电压值。通常直流负载线与交流负载线的交点Q所对应的参数IBQ、ICQ、VCEQ是主要观测对象,如图1.1所示,在电路高度过程中,电路参数确定以后,对工作点起决定作用的是IB,测量比较方便的是VCE,通过调节RW1改变电流IB,通过测量VCE判断工作点是否合适。 2.静态工作点的设置原则 在有负载的情况下,输入信号的变化使工作点沿交流负载线变化,从图1.2中VCE的变化规律可以看出:在不考虑三极管的饱和压降时,VCE向减小方向的变化幅度为VCEQ,向增大方向的变化幅度为ICQ×RL’,要获得最大的不失真输出幅度则: 在电压输出幅度满足不失真的要求的条件下,减小I CQ可以适当提高输入电阻,电压放大倍数随之减小,反之,增大I CQ可以适当增大电压放大倍数,输入电阻随之减小。 3.静态工作点的测量 用万用表可以测量直流电压,用示波器同样可以测量直流电压。万用表,有效倍数多,测量精

单管共射极放大电路实验报告

单管共射极放大电路实验报告

实验一、单管共射极放大电路实验 1. 实验目的 (1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。 (2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。 (3) 掌握放大电路的输入和输出电阻的测量方法。 2. 实验仪器 ① 示波器 ② 低频模拟 电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图) 实验原理图如图1所示——共射极放大电路。 Rs 4.7K

4.实验步骤 (1)按图1连接共射极放大电路。 (2)测量静态工作点。 ②仔细检查已连接好的电路,确认无误后 接通直流电源。 ③调节RP1使RP1+RB11=30k ④按表1测量各静态电压值,并将结果记 入表1中。 (1)测量电压放大倍数 ①将低频信号发生器和万用表接入放大器的 输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入

信号幅度为20mv左右的正弦波,从示波器 上观察放大电路的输出电压UO的波形,分 别测Ui和UO的值,求出放大电路电压放 大倍数AU。 图2 实验电路与所用仪器连接图 ②保持输入信号大小不变,改变RL,观察负 载电阻的改变对电压放大倍数的影响,并将 测量结果记入表2中。 (4)观察工作点变化对输出波形的影响 ①实验电路为共射极放大电路

②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。改变RP1使RP1+RB11分别为25KΩ和100KΩ,将所测量的结果记入表3中。 (注意:观察记录波形时需加上输入电压,而测量静态工作点时需撤去输入电压。)

共射级单管放大器工作原理

1共射级单管放大器工作原理 管子工作前题是BE结加正向电压BC结加反向电压,然后1.发射区向基区扩散电子,2.电子在基区边界扩散与复合,空穴由外电源补充,维持电流。3.电子被集电极收集。改变基极电流就可以改变集电极电流:IC=BIB 2.在两个放大管与VEE之间接的有一个恒流源. 一、微恒流源原理电路 电路如图1所示,当IR一定时,IC2可确定为: 图1 可见,利用两管基一射电压差VBE可以控制IO。由于VBE的数值小,用阻值不大的Re2即可得微小的工作电流--微电流源。

二、恒流源电路的主要应用-有源负载 前面曾提到,增大Rc可以提高共射放大电路的电压增益。但是,Rc不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,Rc越大,导致输出幅度越小。那么,能否找到一种元件代替RC,其动态电阻大,使得电压增益增大,但静态电阻较小。因而不致于减小输出幅度呢?自然地,我们可以考虑晶体管恒流源。由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载,如图2所示。 在本图中恒流源由20K电阻和Q7与Q8组成.其他同基本放大电路. Q7短接基极和集电极的接法在集成电路制作中常用. 由于晶体管电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载. 而且集成电路中做二极管就是用三极管一个极.短接另一个极. 3三级运放放大电路工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

单管共射放大电路实验报告

华南师范大学实验报告 学生姓名 尹霞辉 学号 20103202007 专 业 光信 年级、班级 2010光信 课程名称 模拟电子实验 实验项目单管共射放大电路 实验类型 验证 设计 综合 实验时间2012年3 月 28日 实验指导老师 刘宏展 实验评分 1. 实验目的 (1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。 (2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。 (3) 掌握放大电路的输入和输出电阻的测量方法。 2. 实验电路及仪器设备 (1) 实验电路——共射极放大电路如图 1所示。 (2) 实验仪器设备 ① 示波器 ② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验内容及步骤 (1) 按图1连接共射极放大电路。 (2) 测量静态工作点。 ① 仔细检查已连接好的电路,确 认无误后接通直流电源。 ② 调节RP1使RP1+RB11=30k ③ 按表1测量各静态电压值,并将结果记入表1中。 (3) 测量电压放大倍数 ① 将低频信号发生器和万用表接入放大器的输入端U i ,放大电路输出端接入 示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生 器的频率为1KH Z ,输入信号峰-峰值为20mv 左右的正弦波,从示波器上观察放大电路的输出电压U O 的波形,测出U O 的值,求出放大电路电压放大倍数A U 。 RP1100K RB114.7K C1 4.7μF Rs 4.7K RB1210K RC12K RE 510Ω RE151Ω BG1 C247C3 47 μF μF D Ui I Us Uo +12V 图1 共射极放大电路

实验一单级交流放大电路实验报告1

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 2.放大电路静态和动态测量方法。 四、实验容及步骤 1装接电路与简单测量

(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA、 1mA、1.5mA时三极管V的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。 此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V,计算并填表1.1。 表1.1 实测实测计算

注意:图1.1中I b为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz,幅值为500mV,接至放大电路的 A点,经过R 1、R 2 衰减(100倍),V i 点得到5mV的小信号,观察V i 和V O 端波形, 并比较相位。 (3)信号源频率不变,逐渐加大信号源幅度,观察V O 不失真时的最大值,并填表1.2。 表1.2 RL=∞

晶体管共射极单管放大器

晶体管共射极单管放大器 一、实验项目名称:晶体管共射极单管放大器 二、实验目的:1)学会共射放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。 2)掌握放大电路电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 三、实验设备:1)单级晶体管放大电路板 2)TDS1002型数字存储示波器 3)F20A型数字合成函数信号发生器/计数器 4)AS2294D型交流毫伏表 5)VC9807型数字万用表 6)电子技术实验台 四、实验原理:图3.2.1为分压式偏置共射放大电路图,它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反、幅值被放大了的输出信号u o,从而实现了电压放大。 图3.2.1 分压式偏置共射放大电路 (1)静态工作点的估算与调整

将基极偏置电路V cc 、R B1及R B2用戴维南定理等效成电压源,得到直流通路如3.2.2所示。 图3.2.2 放大电路直流通路 其开路电压V B 和内阻R B 分别为 CC B B B B V R R R V 2 12 += 21//B B B R R R = 则静态工作点分别为 ()E B BEQ B BQ R R V V I β++-= 1 BQ CQ I I β= ()E C CC CEQ R R V V +-≈ 在实际工作中,一般通过改变上偏置电阻R B1(调节电位器R P )来调节静态工作点的。R P 调大,工作点降低(I CQ 减小);R P 调小,工作点升高(I CQ 增加)。 (2)共射放大电路动态指标估算 电压放大倍数 be L C V r R R A //β -= 输入电阻 be B B i r R R R ////21= 输出电阻 C R R ≈0 (3)放大器静态工作点的测量与调试 1)静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 29 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B19011L静态工作点 在I CQ=1mA和2mA时,测量V CEQ的值,并记录R B1的值。 R B1可选用Multisim中的“Virtual Linear Potentiometer”元件。 b. 动态特性仿真 在I CQ=1mA和2mA时,测量电压放大倍数和幅频特性。 其中输入正弦电压信号V i的幅度为5mV,频率为1kHz。 六、仿真心得: 1)在仿真进行过程中,应保持R W的值不变; 2)R W的量程要为100 kΩ; 3)新接入万用表后,对电流和电压是有影响的,也就是会产生误差; 4)看清楚要对谁测量,提前做好测量准备,以免测量时出现遗漏或差错; (一)预习报告 1、预习计算 晶体管的主要参数为:B=260,VBE=,rbb’=10欧,fT=300MHz,Cb’c=1pF,计算实验地那路

相关文档
最新文档