铁路信号继电器

铁路信号继电器

铁路信号基础——铁路信号继电器

铁路信号继电器授课人:刘利芳

铁路信号基础——铁路信号继电器

1

主要内容信号继电器概述铁路信号对继电器的要求继电器的基本原理继电器的继电特性铁路信号继电器的分类

铁路常用的安全型继电器安全型继电器概述无极继电器偏极继电器有极继电器

铁路信号继电器

铁路信号基础——铁路信号继电器

2

主要内容安全型继电器的特性电气特性时间特性机械特性与牵引特性

安全型继电器的应用继电器的符号描述继电器的基本电路继电电路分析法继电电路的安全措施

铁路信号继电器

铁路信号基础——铁路信号继电器

3

信号继电器概述

区间闭塞技术

铁路信号基础——铁路信号继电器

4

铁路信号对继电器的要求动作必须可靠、准确;使用寿命长;有足够的闭合和断开电路的能力;有稳定的电气特性和时间特性;在周围介质温度和湿度变化很大的情况下,均能保持很高的电气绝缘强度。

铁路信号继电器

铁路信号基础——铁路信号继电器

5

继电器的基本原理继电器是一种电磁开关,由电磁系统和接点系统两大主要部分组成。电磁系统由线圈、固定的铁芯和扼铁以及可动的衔铁构成;接点系统由动接点和静接点构成。线圈通电→产生磁通(衔铁、铁心)→产生吸引力→克服衔铁阻力→衔铁吸向铁心→衔铁带动动接点动作→前接点闭合、后接点断开电流减少→吸引力下降→衔铁依靠重力落下→ 动接点与前接点断开,后接点闭合。

铁路信号继电器

铁路信号基础——铁路信号继电器

6

继电器的基本原理

铁路信号继电器

铁路信号基础——铁路信号继电器

7

继电器的继电特性继电器是一种当控制参数变化时,能引起被控制参数突然变化的电器元件。具有继电特性。I_输入线圈

Iy Iy2 Iy接点输出

I_1

I_2

I_

铁路信号继电器

铁路信号基础——铁路信号继电器

8

铁路信号继电器的分类按动作原理分:电磁、感应继电器、热力继电器、固态继电器按动作电流分:直流(无极、偏极、有极)、交流继电器按输入物理量:电流、电压、功率、频率、非电量继电器按动作速度:正常、缓动继电器按接点结构:普通接点、加强接点继电器按工作可靠度:安全型、

非安全型(前者称为N,重力式继电器,后者称为C型弹力式继电器)

铁路信号继电器

铁路信号基础——铁路信号继电器

9

铁路常用的安全型继电器

区间闭塞技术

铁路信号基础——铁路信号继电器

10

安全型继电器概述A_系列安全型继电器是直流24V系列的重弹力式直流电磁继电器,其典型结构为无极继电器,其它各型号都是由其派生而成。因此,绝大部分零件都能通用。安全型继电器型号用汉字拼音字母和数字表示,字母表示继电器种类,数字表示线圈的电阻值(单位 n),例如:

铁路信号继电器

铁路信号基础——铁路信号继电器

11

安全型继电器概述

J W J _ C— H

125 0.44前圈电阻值 (两线圈阻值相同后圈电阻值时,取

二者之和) 缓放

插入信号加强接点无极继电器

铁路信号继电器

铁路信号基础——铁路信号继电器

12

安全型继电器概述代号 AB 含义安全型其他类型

代号 RS

含义安全型其他类型

安全

二元时间、灯丝、双门

CD DB H J P

插入

插入、传输、差动单门、动态

TW _ 无极信号有极整流

通用、弹力

单闭磁缓放缓放

信号、小型

Y Z

继电器、继电器、加强接点、加强接点、交流偏极

整流。转换

铁路信号继电器

铁路信号基础——铁路信号继电器

13

安全型继电器概述安全型继电器的特点:前接点代表危险侧信息

后接点代表安全侧信息接点符合:故障—安全原则:发生安全侧故障的可能性远远大于发生危险侧故障的可能性,处于禁止运行的状态的故障有利于性车的安全称为安全侧,处于允许运行状态的故障可能危及性车安全,称为危险侧故障。由于其在故障情况下,使前接点闭合的概率远远小于后接点闭合的概率。

铁路信号继电器

铁路信号基础——铁路信号继电器

14

无极继电器电磁系统:线圈、铁心、轭铁、衔铁接点系统:拉杆、动静接点组铁路信号继电器

铁路信号基础——铁路信号继电器

15

偏极继电器

特点:鉴别电流的极性,在方形极靴前装有L形永久磁铁。只有线圈中的电源极性1+、4-,继电器才励磁。一般使用在道岔表示电路及单复线半自动闭塞电路

中。

铁路信号继电器

铁路信号基础——铁路信号继电器

16

偏极继电器

极化磁通路径铁路信号继电器

铁路信号基础——铁路信号继电器

17

有极继电器具有定位和反位两种稳定状态。刃形的长条形永久磁钢代替了部分轭铁。由于有永久磁钢的存在,于是使得磁路系统中有了两条固定磁路由其保持在断电后继电器的状态。

铁路信号继电器

铁路信号基础——铁路信号继电器

18

有极继电器

反位打落状态磁路

铁路信号继电器

铁路信号基础——铁路信号继电器

19

有极继电器

定位吸起状态磁路

铁路信号继电器

铁路信号基础——铁路信号继电器

20

安全性继电器的特性

铁路信号继电器

铁路信号继电器说明书

JYJXC-220/220,有极加强接点继电器 1 用途 JYJXC-220/220型有极加强接点继电器(以下简称继电器)在信号电路中作道岔控制继电器。 2 适用环境 继电器的适用环境为: a) 环境温度:-40℃~+60℃; b) 相对湿度:不大于90%(温度+25℃); c) 气压:不低于70 kPa(相当于海拔高度3000m以下); d) 振动: 振频不大于15Hz,振幅不大于0.45mm; e) 工作位置:水平; f) 周围无引起爆炸危险的有害气体,并应有良好的防尘措施。 3 机械特性 接点组数:2DF、2DFJ; 鉴别销号码:15、54; 接点间隙:普通接点不小于 4.5 mm;加强接点不小于7 mm;

托片间隙:普通接点不小于0.35 mm;加强接点0.1 mm~0.3 mm; 普通接点压力:定位接点不小于150 mN;反位接点不小于150 mN;加强接点压力:定位接点不小于400 mN;反位接点不小于400 mN;接点齐度误差:普通接点与普通接点间及普通接点与加强接点间不大于0.2 mm,加强接点与加强接点间不大于0.1 mm。 定位或反位保持力不小于2 N; 3 电气特性(+20℃时) 线圈电阻: 线圈单独使用,使用1、23、4; 额定值:; 充磁值:; 转极值:正向10V~16V、反向10V~16V; 接点电阻:普通接点不大于0.05Ω;加强接点不大于0.1Ω。 5 绝缘耐压 在试验的标准大气条件下,继电器的绝缘电阻应不小于100MΩ。 在气压不低于86kPa条件下(相当于海拔高度1000m以下),继电器的绝缘耐压应能承受交流正弦波50Hz、2000V有效值电压,历时1min 应无击穿闪络现象,重复试验时的电压应为原试验电压值的75%。 6 电寿命 继电器普通接点通以DC 24V 1A 阻性负载;加强接点通以DC 220V 7.5A 、0.05H感性负载,

信号基础继电器

绪 论 一、铁路信号设备的地位是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。铁路信号的基础设备:信号继电器、信号机、轨道电路、转辙机等。 1、信号继电器是铁路信号中所用各类继电器的统称。安全型继电器是信号继电器的主要定型产品,采用24V 直流系列的重弹力式直流电磁继电器,其基本结构是无极继电器。电磁原理使其吸合,依靠重力使其复原。利用其接点控制相应的电路。在无极继电器的基础上,派生出了加强接点继电器、整流式继电器、有极继电器、偏极继电器和单闭磁继电器等以满足电路的不同要求。采用插入式结构,便于更换。交流二元二位继电器是交流感应式继电器,因其具有可靠的频率和相位选择性,在25HZ 相敏轨道电路中用做轨道继电器。动态继电器是双机热备计算机联锁的接口部件。 2、信号机和信号表示器构成信号显示,用来指示列车运行和调车作业的命令。在列车提速的情况下,迫切需要将机车信号主体化,其显示方式也逐步实现数字化。 3、轨道电路用来监督列车对轨道的占用和传递行车信息。站内采用25HZ 反

映列车占用情况。移频轨道电路是移频自动闭塞的基础,通过它发送各种行车信息。分为有绝缘和无绝缘两种。无绝缘又为谐振、衰耗式,还要研发数字编码轨道电路,以满足列车运行超速防护的需要。轨道电路有调整状态、分路状态和断轨状态三种最基本的工作状态,其基本参数有道岔电阻、钢轨阻抗等。 4、转辙机用于完成道岔的转换和锁闭,是关系行车安全的最关键设备。内锁闭方式的ZD6系列,外锁闭方式的S700K。 二、铁路信号控制设备易遭雷击,造成设备的损坏或误动,严重影响运输生产,对信号设备必须采取必要的防雷措施。凡与外线连接的信号设备必须设防雷装置。同时还需要设置防雷地线、安全地线、屏蔽地线。 三、信号设备大体上可以分为车站联锁设备、区间闭塞设备、机车信号和列车运行控制设备、调度监督和调度集中、驼峰调车、道口信号设备等,信号现代化的方向是数字化、网络化、智能化和综合化。 第一章信号继电器 第一节信号继电器概述 一、继电器的基本原理 1、组成:由接点系统和电磁系统两大部分组成,电磁系统由线圈、固定的铁心、轭铁以及可动的衔铁。接点系统由动接点、静接点构成。

铁路继电器的工作原理

铁路继电器的工作原理 铁路继电器是一种用于控制信号系统的装置,它起到放大和传递信号的作用。在铁路信号系统中,继电器起着至关重要的作用,能够在信号传输中起到信号转换、信号放大和信号隔离等作用。下面将详细介绍铁路继电器的工作原理。 铁路继电器的工作原理可以分为以下几个方面: 1. 继电器构造 铁路继电器由线圈、铁芯、触点等部分组成。线圈是继电器的输入部分,用来接收信号;铁芯是继电器的输出部分,通过线圈的电流控制铁芯上触点的开关状态,实现信号输出。 2. 线圈驱动原理 继电器的线圈通过接收外部输入的电流或电压信号来驱动。当输入信号加到线圈上时,会产生磁场,使得铁芯受到吸引力或排斥力,从而控制触点的开闭状态。 3. 触点原理 铁路继电器的触点通常有两个状态,即闭合状态和断开状态。当线圈接收到激励信号并形成磁场时,磁场将使得触点闭合;反之,当线圈断开激励信号时,触点会恢复断开状态。 4. 继电器的放大和传递

继电器通过触点的开闭状态来放大和传递信号。当继电器的输入信号加到线圈上时,线圈的磁场将使得触点闭合或断开,从而改变输出信号的状态。由于继电器的线圈电流较小,而能够通过触点传导的电流可以达到较大值,因此继电器可以实现信号的放大和传递。 5. 信号转换 铁路继电器还可以实现信号的转换功能,即将一种类型的信号转换为另一种类型的信号。例如,输入信号可以是模拟信号,而通过继电器可以将其转换为数字信号。 6. 信号隔离 由于铁路继电器具备输入和输出互不干扰的特性,可以实现信号的隔离。在一些需要将输入信号与输出信号进行隔离的场合,可以通过继电器来实现信号的隔离,从而确保输入信号不会对输出信号产生干扰。 总结起来,铁路继电器通过线圈的电流控制铁芯上触点的开关状态,从而实现信号的放大、转换和传递等功能。继电器可以通过触点的状态改变来改变输出信号的状态,并且继电器具备输入和输出信号的隔离特性,可以保证不同信号之间互不干扰。铁路继电器在铁路信号系统中发挥着重要的作用,保证了铁路运输的安全和顺畅。

铁路信号继电器

铁路信号继电器 铁路信号基础——铁路信号继电器 铁路信号继电器授课人:刘利芳 铁路信号基础——铁路信号继电器 1 主要内容信号继电器概述铁路信号对继电器的要求继电器的基本原理继电器的继电特性铁路信号继电器的分类 铁路常用的安全型继电器安全型继电器概述无极继电器偏极继电器有极继电器 铁路信号继电器 铁路信号基础——铁路信号继电器 2 主要内容安全型继电器的特性电气特性时间特性机械特性与牵引特性 安全型继电器的应用继电器的符号描述继电器的基本电路继电电路分析法继电电路的安全措施 铁路信号继电器 铁路信号基础——铁路信号继电器 3 信号继电器概述 区间闭塞技术 铁路信号基础——铁路信号继电器 4 铁路信号对继电器的要求动作必须可靠、准确;使用寿命长;有足够的闭合和断开电路的能力;有稳定的电气特性和时间特性;在周围介质温度和湿度变化很大的情况下,均能保持很高的电气绝缘强度。 铁路信号继电器 铁路信号基础——铁路信号继电器

5 继电器的基本原理继电器是一种电磁开关,由电磁系统和接点系统两大主要部分组成。电磁系统由线圈、固定的铁芯和扼铁以及可动的衔铁构成;接点系统由动接点和静接点构成。线圈通电→产生磁通(衔铁、铁心)→产生吸引力→克服衔铁阻力→衔铁吸向铁心→衔铁带动动接点动作→前接点闭合、后接点断开电流减少→吸引力下降→衔铁依靠重力落下→ 动接点与前接点断开,后接点闭合。 铁路信号继电器 铁路信号基础——铁路信号继电器 6 继电器的基本原理 铁路信号继电器 铁路信号基础——铁路信号继电器 7 继电器的继电特性继电器是一种当控制参数变化时,能引起被控制参数突然变化的电器元件。具有继电特性。I_输入线圈 Iy Iy2 Iy接点输出 I_1 I_2 I_ 铁路信号继电器 铁路信号基础——铁路信号继电器 8 铁路信号继电器的分类按动作原理分:电磁、感应继电器、热力继电器、固态继电器按动作电流分:直流(无极、偏极、有极)、交流继电器按输入物理量:电流、电压、功率、频率、非电量继电器按动作速度:正常、缓动继电器按接点结构:普通接点、加强接点继电器按工作可靠度:安全型、

信号继电器

第五部分继电器、联锁、闭塞 第一章信号继电器 第一节概论 一、继电器在铁路信号设备中的作用 继电器是铁路信号设备的主要元件 之一,在铁路信号的自动控制和远程控 制系统中,用它可构成逻辑电路或作为 执行元件直接监督和控制列车的运行。 继电器工作的好坏,将直接影响信 号设备的安全运用和可靠动作。因此,对继电器提出严格的要求:继电器的动 作必须可靠和准确;使用寿命长;有足 够的吸合和断开的能力;有较高的电气 绝缘强度;有稳定的时间和电气参数。否则,它将危及行车安全。 二、继电器的分类 (1)按用途可分为:电力系统用的 保护继电器;自动控制系统用的控制 继电器;通信系统用的通信继电器; 铁路信号系统用的信号继电器。 (2)按输入量的物理性质可分为:

①直流继电器:反映电流的变化; ②电压继电器:反映电压的变化; ③功率继电器:反映功率的变化; ④非电量继电器:反映非电量的继电 器,有温度、压力、速度等继电器。 (3)按工作电流的种类可分为: ①直流继电器:直流供电动作; ②交流继电器:交流供电动作; ③交直流继电器:交流或直流供电动 作。 (4)按动作原理可分为: ①电磁继电器,其原理是通过继电器线圈中的电流在磁路的可动部分(衔铁)的气隙中产生电磁力,带动接点系统改变接点位臵。 ②感应继电器,这种继电器是一种利用一个交变磁场与另一交变磁场在可动翼片中感应的涡流相互作用,使翼片产生转距,带动接点动作。 ③热力继电器,是利用两种膨胀系数不同的双金属片加热后单向弯曲的物理特性,使接点动作。

(5)按动作时间可分为: ①快动作继电器:当通电或断电时接 点的闭合或断开较快,动作时间小于0.1s。 ②正常动作继电器:当通电或断电时 接点的闭合或断开既不快也不慢,动作时间 为0.1 s~0.3 s。 ③缓动作继电器:当通电或断电时接 点的闭合或断开较慢,又称缓吸或缓放,动 作时间0.3 s以上。 三、继电器的参数 1.额定值——继电器正常工作时,所接入的电源系统的电压或电流值。 2.工作值——继电器通电,使前接点全部闭合并且满足规定的接点压力,所需的电压(或电流)值 3.吸起值——继电器通电,使动接点与前接点刚接触时的电压(或电流)值。 4.释放值(又称落下值)——向继电器供给过负载电压或电流值后,再逐渐降低电压或电流值,至前接点刚刚断开时的电压或电流值 5.转极值——有极继电器通电,使动接点由定位转换到反位,或由反位转换到定位,并达到规

JSBXC-850型半导体时间继电器

JSBXC-850型半导体时间继电器 阻容盒的测试方法、步骤、标准及安全注意事项 第一部分:JSBXC-850型半导体时间继电器 信号继电器是铁路信号设备中的主要器件之一,它在运用中的可靠和安全是各种自动控制和远程控制信号设备正常使用的必要条件。 一、概述 继电器可分为三级: 1、一级继电器,绝对不允许发生前接点与动接点之间的熔接;衔铁落下与前接点的断开由衔铁及可动部分的重量来保证;当任意一组前接点闭合时所有后接点必须全部断开,反之亦然;衔铁处于落下位置时,应稳定地工作,后接点压力主要由重力作用产生;有较高的返还系数,轨道继电器不小于50%,一般继电器不小于30%。 2、二级继电器,衔铁依靠本身重量或接点片反作用力返还,返还系数不小于20%,当任意一组前接点闭合时所有后接点必须全部断开,反之亦然。 3、三级继电器(电码或电话型),衔铁的返还与后接点的压力均由动接点弹片的反作用力产生;前后接点均有熔接的可能。 目前,我们使用的安全型继电器全符合一级继电器的要求。 铁路信号继电器可按动作原理、工作电流的种类、动作速度分类: 按动作原理分为:电磁继电器,感应继电器,热力继电器。 按工作电流的种类分为:直流继电器、交流继电器、交直流继电器。 按动作速度分为:速动继电器、正常动作继电器,缓动继电器。 按接点的结构分为:普通接点继电器、加强接点继电器。 历史上曾使用在铁路信号设备中的继电器有座式、插入及安全型继电器。 二、JSBXC-850型继电器基本原理 JSBXC-850型继电器是一种电子缓吸时间继电器,通过不同的接线可以获得180S、30S、13S、3S等四种延时,以满足信号电路的需要。继电器由时间控制单元和JWXC370/480型无极继电器组

铁路信号继电器接点问题分析

铁路信号继电器接点问题分析 【摘要】继电器常用于接通和断开电路,是自动控制系统中常见的电器之一。铁路信号继电器主要通过控制电信号在导体中的传递来实现对设备的控制,进而 达到远程控制或自动控制的目的。电信号的接通和分段通常由继电器接点完成, 因此继电器接点的性能是影响铁路信号继电器的主要因素。基于此,本文针对铁 路信号继电器接点问题展开分析,以期提升铁路运输的安全性。 【关键词】信号继电器;接点;材料;研究 1.信号继电器接点使用现状 继电器前接点的材料选取应符合国际铁路联盟非熔接性地动合接点要求,一 般情况下都是非熔接性材料。初代的AX型继电器前接点材料采用的是银碳,后 续优化为银铬合金即银氧化铬,银氧化铬中的基本物质是银,银氧化铬接点材料 分解温度低,具有较高的导热性和导电性且接触电阻稳定,银氧化铬材料面对中 等程度的电流时,熔焊倾向和电侵蚀程度相对较小,普遍适用于接触应用领域。 因此,该材料在接通和断开电信号时具备良好且稳定的电性能,铁路继电器接点 材料选用银氧化铬触头比较合适。至今为止,银氧化铬材料在触头领域的应用 依然十分广泛[1]。 1.信号继电器接点使用中存在的问题及原因 目前铁路信号继电器接点使用的材料普遍为银氧化铬,铁路信号继电器的稳 定运行状态是铁路自动控制系统和远程控制系中信号设备正常运转的必要条件。 在实际使用过程中发现继电器接点会出现发黑、接点粘连、接点电阻大等问题。 2.1 继电器接点发黑 (1)继电器放置时间过长,作为继电器接点材料的银氧化铬中的银元素与 空气中的硫化燃气发生化学反应产生黑色的硫化银,因此接点处会出现发黑现象。

(2)由于接通或断开开关时电弧的放电现象,使空气中有机燃气生成了碳素、碳化银及接点的飞散粉末,出现发黑现象。 2.2 继电器接点接触电阻增大 继电器接点接触电阻主要有导体电阻、集中电阻、边界电阻构成,接点接触 电阻大小与电路的接通和断开密切相关。引起继电器接触点电阻值增大的因素与 集中电阻及边界电阻有关。集中电阻是由于电流集中在微小的接点接触部位置, 电流束被扭曲而产生的电阻;边界电阻则是接点表面产生化学反应形成新的物质 而产生电阻。继电器接点触头位置吸附的附着物也是影响铁路信号继电器接触不 良的原因之一。触头处的堆积物常见为氧化物、硫化物、尘土等导电性能差的无 机化合物,这些无机化合物积累到一定程度时,会影响继电器接触电阻使电阻偏 大或接触失效。接点触头接触部位的污染可以通过以下几种措施加以改善: (1)厂家在生产继电器的过程中,需增强对接点零件,的清洗力度,减少 零件表面的外界污染物数量。同时,厂家还应提高组装继电器操作间的整洁水平,可以将无尘化车间标准作为参考,或者直接设立这个无尘操作间,有效降低组装 继电器过程中环境中的灰尘或小颗粒异物附着在继电器内部的程度,避免污染物 对继电器接点产生污染。(2)加大对周边污染严重的铁路车站、维修站的检修 力度,减小检修周期,特别是南方和沿海区域。相关工作人员在发现接触电阻工 作不稳定的继电器时,应及时采取措施降低继电器潜在的风险,对继电器进行维 修或更换,避免接触电阻失效问题的出现。(3)针对未来继电器产品的研究, 相关人员可以尝试设计一款带有密封结构的继电器设备,从根本上解决周边环境 对接点触头接触部位的不良影响[2]。 2.3 继电器接点粘连 继电器接点粘连主要指在触点的分离过程或闭合过程中发生动熔焊现象,影 响材料熔焊的因素一方面与电弧有关,另一方面则与电流、环境介质、周围电磁 场等材料自身性质密切相关。动熔焊指继电器处于正常工作状态时两个接点突然 出现问题无法断开,接点出现短暂的反跳,在接点闭合过程中接点的跳跃行为形 成一系列放电,过程中产生的热量使接点材料焊接在一起,接点出现熔接现象。

轨道继电器的概念和作用

轨道继电器的概念和作用 轨道继电器又称列车防护继电器,是一种用于铁路轨道交通系统中的安全设备。它的主要作用是监控铁路轨道上的列车运行情况,当出现异常情况时,可以对列车进行控制和保护。 轨道继电器的概念主要包括以下几个方面: 1. 监控列车运行:轨道继电器通过安装在轨道上的传感器和检测设备,监控列车的运行状况。它可以检测列车的位置、速度、长度等信息,实时地反映列车的运行情况。 2. 控制列车信号:轨道继电器可以根据列车的运行情况,对列车的信号进行控制。例如,在列车运行过程中,如果出现危险情况,轨道继电器可以发出警示信号或停车信号,以保证列车的安全运行。 3. 保护列车安全:轨道继电器可以根据列车的运行情况,对列车进行保护。当列车出现异常情况时,轨道继电器可以立即采取措施,包括切断供电、改变信号、停车等,以保证列车和乘客的安全。 4. 提高铁路运行效率:轨道继电器可以实现列车的自动化运行和监控,提高列车的运行效率和安全性。它可以减少人为的操作失误,提高列车的运行稳定性和准时性。

轨道继电器的作用主要体现在以下几个方面: 1. 安全保护:轨道继电器可以对列车进行实时监控和保护,当列车出现异常情况时,可以及时采取措施,保证列车和乘客的安全。例如,在列车运行过程中,如果发现轨道上有障碍物或信号异常,轨道继电器可以立即发出警示信号,通知列车停车或慢行,避免发生危险情况。 2. 运行控制:轨道继电器可以对列车的信号和运行进行控制,包括列车的起动、停车、加速、减速等。它可以根据列车的运行情况,发出相应的信号,指示列车的运行方式和速度,保证列车在轨道上安全、平稳地运行。 3. 系统监控:轨道继电器可以实现对铁路轨道系统的整体监控和管理,包括列车的调度、运行情况、信号设备、轨道状况等。它可以收集和处理大量的列车数据和信号信息,实现对整个铁路系统的智能化管理和监控。 4. 自动化运行:轨道继电器可以实现列车的自动驾驶和运行,包括列车的自动停车、起动、加速、减速等。它可以减轻驾驶员的负担,提高列车的运行效率和安全性。 总之,轨道继电器是铁路轨道交通系统中的重要安全设备,它通过监控列车的运行情况、控制列车的信号和运行、保护列车的安全等方式,实现对整个铁路系统

铁路信号继电器图解讲解

铁路信号继电器图解讲解 1. 什么是铁路信号继电器? 铁路信号继电器是一种用于控制铁路信号系统的设备,它可以通过接收输入信号并在输出端产生相应的控制信号来实现列车的安全运行。信号继电器通常由电磁线圈、触点和辅助部件组成,其中电磁线圈通过接通或断开电流来控制触点的开合。 2. 铁路信号继电器的工作原理 铁路信号继电器的工作原理可以分为两个方面:输入端和输出端。 输入端 输入端主要由感应线圈和检测装置组成。感应线圈负责接收来自轨道上的列车传来的输入信号,当列车经过时,感应线圈会感应到列车的存在,并将这个信息传递给检测装置。检测装置根据感应线圈接收到的信息判断列车是否存在,并将结果传递给输出端。 输出端 输出端主要由触点和辅助部件组成。当从输入端接收到列车存在的信息后,输出端会根据这个信息产生相应的控制信号,并通过触点将这个控制信号传递给信号系统的其他部件,如信号灯、道岔等。辅助部件则负责辅助触点的工作,如提供电源、保护触点等。 3. 铁路信号继电器的类型 根据不同的功能和应用场景,铁路信号继电器可以分为多种类型。以下是几种常见的铁路信号继电器类型: 3.1. 列车接近继电器 列车接近继电器主要用于监测列车是否靠近某个特定位置,当列车靠近时,它会产生一个控制信号来通知其他部件进行相应的操作,比如关闭道口闸门、改变信号灯状态等。 3.2. 道岔控制继电器 道岔控制继电器用于控制铁路道岔的转向,在列车需要换轨时,它会产生一个控制信号来改变道岔的位置,使得列车能够顺利通过。

3.3. 闭塞区段继电器 闭塞区段继电器用于划分铁路线路上的区段,并监测每个区段是否被占用。当一个区段被占用时,它会产生一个控制信号来告知其他列车不要进入该区段,以确保列车的安全运行。 3.4. 信号灯控制继电器 信号灯控制继电器用于控制铁路线路上的信号灯,根据列车的位置和状态,它会产生相应的控制信号来改变信号灯的显示,以指示列车是否可以行驶。 4. 铁路信号继电器的图解示意图 下面是一个简化的铁路信号继电器图解示意图: 从图中可以看出,铁路信号继电器主要由输入端、输出端和辅助部件组成。输入端包括感应线圈和检测装置,输出端包括触点和辅助部件。 5. 铁路信号继电器的应用 铁路信号继电器广泛应用于铁路交通系统中,它起到了重要的作用。以下是几个常见的应用场景: 5.1. 轨道交通系统 在轨道交通系统中,铁路信号继电器被用于控制地铁、有轨电车等列车的运行。它可以监测列车的位置和状态,并根据这些信息来控制信号灯、道岔等设备,以确保列车的安全运行。 5.2. 高铁系统 在高铁系统中,铁路信号继电器被用于控制高速列车的运行。由于高速列车的速度较快,对信号控制的精确性要求较高,因此铁路信号继电器在高铁系统中扮演着重要角色。 5.3. 货运系统 在货运系统中,铁路信号继电器被用于控制货物列车的运行。它可以监测货物列车的位置和状态,并根据这些信息来控制道岔、信号灯等设备,以保证货物能够按时安全地到达目的地。 总结 铁路信号继电器是一种用于控制铁路信号系统的设备,它通过接收输入信号并产生相应的控制信号来实现列车的安全运行。它主要由输入端、输出端和辅助部件组成,根据不同的功能和应用场景可以分为多种类型。铁路信号继电器广泛应用于轨道交

铁路信号继电器触点接触电阻变化的影响因素分析

铁路信号继电器触点接触电阻变化的影 响因素分析 摘要:安全型继电器属于铁路信号系统中的关键组成部分,安全型继电器的基本作用功能在于准确传输处理铁路通信数据,确保铁路通信的网络系统电路能够保持良好的运行使用状况。铁路信号的安全型继电器如果突然表现为运行故障现象,那么铁路网络系统的正常供电以及数据通信过程都会遭受不良影响,干扰到铁路列车的平稳安全运行。 关键词:铁路信号;动态检测技术;应用;研究 影响铁路信号继电器触点接触电阻变化的因素很多,各个因素之间又相互关联,相互影响.对接触电阻的概念进行详细阐述,重点分析影响铁路信号继电器触点接触电阻变化的因素以及各因素之间的关系. 一、安全型继电器的特点 作为保护类的铁路系统继电器而言,安全型继电器的基本特征就是切实维护铁路通信的网络传输安全。铁路通信网络包含了较多不同型号的电路,铁路网络体系中的某条供电运行线路或者通信线路如果突然表现为线路使用故障,那么安全型继电器对于当前产生故障的铁路线路部位能够立即进行断开处理,据此实现了保护铁路信号系统运行安全的目标。因此从根本上来讲,铁路安全型继电器具有保障铁路供电系统正常运行使用、降低铁路通信过程安全风险、维护铁路列车运行安全以及节约铁路通信成本等重要实践作用。 二、接点接触电阻的组成 在铁路继电器的实际运行过程中,其主要的失效原因是因为继电器触点之间的解除电阻增大从而引起继电器接点接触电阻超标或者接点的接触失效造成的,通过霍尔姆的点接触理论我们知道,在肉眼可见的范围内,虽然一些金属的表面

被磨的非常光滑,但是实际上其表面的是非常粗糙的,因此,在实际的金属表面接触的过程中,并不是整个接触点表面都进行了完全的解除,因为金属表面的粗糙程度不同,导致金属表面接触的时候往往只是一些相对比较突出的部分进行了真正的接触,也就是说在电路中,接点接触过程中只有有限的一些真正发生了接触的金属表面才形成了电流的通路[1]。因此,在电流通过实际接触面积非常小的接触面时,电流线就会相应的出现收缩的情况,因此实际的解除电阻就会相应的增加,由于电流线收缩而引起的附加电阻被称为收缩电阻,通常用Rs表示,金属的接触表面在长期的空气暴露过程中会在表面附着灰尘、纤维织物,一些介质中微小的杂质单元也会在金属的表面附着,从而在金属表面形成一层导电性比较差的薄膜,这些导电性比较差的薄膜也会在金属表面形成附加膜电阻,通常膜电阻会用Rm来表示。 三、影响继电器接触电阻的因素 1.触点材质 为了避免冷焊接,使用硬度相对较高的接触材料,如铑。但是,为了获得较低的接触强度并有效地提高接触性能,所要求的材料硬度不应过高,以有效地防止冷焊接。因此,有必要根据实际需要选择最好的材料。此外,各点的材料必须不仅拥有稳定的化学性质,抗污染,具有良好的耐蚀性和氧化特性,还要具有良好的导电性和电阻率低。 2.触点接触压力 接触面积增大,阻力减小。若在接触点的压力达到某一值的情况下,接触强度的降低就不那么明显,最终导致接触点的机械磨损更大。因此,接触压力必须保持在科学合理的范围内。接触压力的增加需要电磁吸力的增加,这增加了继电器的外部尺寸,降低了继电器的灵敏度。与此同时,它会导致触点的严重反弹,增加触点的磨损,缩短继电器的使用寿命。因此,接触压力越高,效果越差。必须综合分析并决出合理的安全范围。 3.触点形状和接触形式

铁路信号继电器接点问题研究

铁路信号继电器接点问题研究 摘要:继电器是一种在日常生活中得到广泛运用的设备,大多通过切断以及连接线路,来实现对目标设备发布命令以及反映设备的使用情况,从而组成能够自动调控和远程遥控的电路系统,多应用于自动控制系统。在多种继电器中,铁路信号继电器通过将电流在多个导体中进行传递,在两两之间的连接位置形成电接触。这种传递依靠于继电器接点,这种接点直接关系着联通与切断这种电信号的传递,接点性能的强弱严重影响着传递过程是否足够可靠和精确等关键问题。 关键词:铁路;信号继电器;接点问题;研究 铁路信号继电器在铁路信号传递过程中具有重要作用,是铁路信号设施中重要的设备,在铁路实际建设中得到了广泛运用。继电器在实际使用中具有可靠、安全、准确的特点,充分保障了铁路在远程遥控和自动控制等方面的需求。随着时代和科技的发展,我国铁道交通事业得到了全面发展,随之而来的是对新型继电器的需求。过去的继电器在如今列车运行速度飞快提升的时代已经难以满足实际需求,继电器在使用环境、使用年限、使用性能、使用安全等方面都需要得到进一步的发展。而继电器的接点是继电器发挥去作用时的重点,接点的性能能够决定继电器性能的强弱,从而影响其使用的是否可靠与安全。从继电器投入使用至今的长时间研究可以看出,接点在电阻以及接点连接性等方面有着诸多问题,因此,为了获得更高性能的继电器从而促进铁路运输和铁路信号传送的发展,必须对继电器接点进行相关探讨和研究。 1.国内信号继电器接点使用中现存的问题及原因分析 当前国内的发展实情就是,我国在研发生产继电器方面还存在很大不足,能够生产铁路信号继电器的公司以西安铁路信号有限公司以及沈阳铁路信号有限公司为主。在对材料有严格要求的接点上通常使用银氧化铬材料,在实际使用的过程中,常常出现接点黑化、接点粘连以及接点接触电阻过大的问题,影响实际使用效率,降低了铁路信号传输的安全性以及可靠性。 1.1继电器接点发黑 ①继电器接点往往采用银氧化铬材料,银在使用过程中容易与空气中存在的硫发生反应,生成黑色的硫化银,从而使接点在继电器的长期使用过程中出现变黑的情况。②在电源开关接通时会产生电流,电流迸射的电火花可以点燃大气中的有机燃质从而生成黑色的碳颗粒或者其他黑色物质,同时电流能吸引空气中的灰尘颗粒。 1.2继电器接点粘连 继电器的接点在正常使用情况下,两个接点能够发生正常的断开,但是如果继电器接点发生熔焊现象时,就会导致继电器接点粘连。接点的不断开会造成接点在承载电流时出现短暂间隔,接点想继续闭合时会发生一系列的跳跃现象,从而导致相应的跳跃式放电,进而导致了接点发生熔焊和粘连。 在通常情况下银氧化铬材料不会发生粘连现象,当银氧化铬材料的接点在负载电源具有平滑电容的条件下会控制电容负载,从而容易发生粘连。当所连接的负载属于阻性负载,在所使用的额定电流是在技术标准要求下的电流值时是不会造成粘连现象的,而银氧化铬材料的接点发生粘连和使用电流的极性相关联,不同连接情况下可能发生的结果也有所不同。如果银接点连接的是正极,银氧化铬接点连接的是负极,这种情况下就容易发生接点粘连。当接点闭合时,那一瞬间接点通过的电流安培值非常大,产生极大的能量,在一定条件下接点就会形成电

铁路信号继电器接点问题探析

铁路信号继电器接点问题探析 摘要:在自动控制系统运行过程中继电器是一种比较常见的电器元件,继电器 主要的作用就是接通和断开电路,同时还能发布来自控制系统的控制命令,并将 设备的具体运行状态进行反馈,在此基础上实现电路的远程控制以及自动控制。 而铁路信号继电器主要是将铁路的电信号从一个导体向另一个导体进行传输,这 样在两个不同的导体之间就会产生电接触,而整个电信号的传导过程是在继电器 的作用下完成的,而导体之间的接点就是用来完成电信号传导的接通和分断的, 因此继电器的接点性能的好坏直接对铁路电信号传导的稳定、精确有重要的影响。 关键词:铁路;信号继电器;接点 引言 在铁路运行过程中涉及到的所有的信号设备中继电器是非常重要的一种信号 器材之一,继电器在铁路中有非常广泛的应用。继电器在运行过程中具有可靠、 安全等一些特性,这些特征也保证了铁路的远程控制以及自动控制相关的信号传 输设备能够实现正常的运行。随着我国经济的不断发展,铁路运输事业的发展非 常迅速,而铁路列车的速度也有了较大的提升,这就要求铁路继电器必须要具备 对环境较强的适应性,同时其性能也要达到铁路运行的要求,而继电器的安全性 能也是铁路实现顺利运行的必要条件之一。在继电器运行的过程中,接点是一个 非常重要的部件,接点性能的优劣能够直接对铁路信号系统安全、稳定运行造成 严重的影响。通过对继电器在铁路多年的运行情况来看,继电器的接点电阻以及 接点粘连等几个方面是故障出现频率比较高的地方,为了不断提升铁路信号系统 运行的可靠性、安全性,同时也能满足铁路快速发展的实际需求,针对铁路继电 器的接点进行深入的研究时非常有必要的。 1 国产铁路信号继电器接点的应用现状 针对铁路继电器的接点在UIC标准中有这样的要求“非熔接性的动合接点,采 用适当的接点材料”。根据要求继电器的前接点材料应该采用非熔接性材料。在上世纪的流失年代,我国自行研发出了一种AX型继电器,在进行AX型继电器设计 的时候,研发人员将其前接点的材料设计为银碳(石墨含量为20%)-银。在上 世纪的七十年代又将继电器的前接点材料更改为银-银氧化镉(Cd的含量为20%)。银氧化镉是采用金属陶制法制成的银铬合金,这种合金的组成成分中银 的含量占到了85%-88%,银在其中起到了导电的作用,氧化镉在合金中占到了12%-15%,氧化镉的主要起到的作用是导热。以银氧化镉为主要材料的前接点不 仅导热、导电性能表现良好,而且其接触电阻相对较低,且电阻值比较稳定,在 电路中导通中等电流的情况下,其熔焊倾向以及电侵蚀非常小。银氧化镉前接点 之所有有这样的性能,是因为氧化镉相较于其他的金属氧化物其分解温度较低, 如果在高温的电弧作用下,氧化镉会自行分解成铬蒸汽和氧蒸汽,而在高温的环 境下,铬蒸汽的体积变化非常发,甚至能膨胀一万倍以上,膨胀的铬蒸汽能过能 够吸收电弧并将电离作用消除,因此其在实际的使用过程中具有非常好的抗融性。银氧化铬材料作为铁路继电器的接点材料在进行电路的接通和断开时具有良好的 导电性能,因此其在很多接触应用领域中银氧化铬材料都得到了非常广泛的应用,而在电路中电流为5-50A范围内的电路中应用更多[1]。到目前为止,在接触领域 的触头材料使用中银氧化镉的应用仍然非常普遍。 2 国产信号继电器接点应用过程中存在的问题及原因分析 在铁路信号继电器的生产制造领域,主要有西安铁路信号有限责任公司以及

铁路信号继电器工作原理及特性分析

铁路信号继电器工作原理及特性分析 摘要: 继电器作为轨道交通信号控制技术中的重要部件,其动作的可靠性直接影响信号系统的安全性、可靠性。本文论述了无极、有极、偏极三种继电器的结构和工作原理,并对它们的性能进行分析比较,对于控制整个电路的通断、控制室外信号设备的动作、保证行车安全具有十分重要的意义。 关键词: 继电器; 原理; 特性; 安全 1 引言 继电器作为轨道交通信号领域中信号基础设备之一,相当于一种电磁开关,当输入量达到规定的要求时,继电器能使被控制的输出电路导通或断开。继电器能以较小的电信号控制室外信号机的开放、转辙机的转换,是实现自动控制和远程控制的重要设备。 2 继电器的组成、分类 它是由电磁系统和接点系统两大系统组成。其中,电磁系统是感受系统,用来感知和接受输入量的变化,由线圈、铁芯、轭铁和可动的衔铁等组成。接点系统是继电器的执行机构,可实现对其他设备的控制,由动接点和静接点组成。继电器的分类方式有很多。其中,按动作电流,可分为直流继电器和交流继电器。直流继电器是由直流电源供电,给继电器通以直流电,继电器能够励磁吸起。直流电由于有极性,又可分为无极、有极和偏极继电器。本文主要从几种直流继电器的结构出发,对继电器的原理及特性进行分析。 3 无极继电器的结构、工作原理、特性 3. 1 无极继电器的结构

在我国轨道交通信号中,应用较多的是 AX 系列继电器,它是直流 24 伏的 重力式直流电磁继电器,其基本结构属于直流无极继电器,其他各型号都是由其 派生而成。安全型直流无极继电器由直流电磁系统和接点系统两部分组成。直流 电磁系统由线圈、铁芯、轭铁等组成。接点系统包括拉杆和接点组,接点组又分 为静止的前接点、后接点和固定在拉杆上的动接点。 3. 2 无极继电器的工作原理 图 1 是继电器的原理图。当线圈中通入规定的电流后,根据电磁原理,线 圈中能产生磁性,当衔铁受到的吸引力足以克服衔铁阻力时,衔铁被吸向铁芯, 此时衔铁通过拉杆带动动接点动作,使前接点闭合,后接点断开,此时继电器处 于励磁吸起状态。当线圈中的电流逐渐减小时,吸引力也减小,当衔铁受到的吸 引力不足以克服衔铁阻力时,衔铁由于重力的作用被释放,此时衔铁拉杆带动动 接点动作,使前接点断开,后接点闭合,此时继电器处于失磁落下状态。 图 1 无极继电器的工作原理 3. 3 无极继电器的特性 无极继电器的动作与线圈通入的电流方向无关,不能辨别输入物理量的特征,1 + 4-、1 - 4 + 继电器都会吸起,断电就会落下。 4 有极继电器的结构、工作原理、特性 4. 1 有极继电器的结构

铁路信号继电器简介讲解

信号继电器 铁路信号技术中广泛采用继电器,称为信号继电器(在铁路信号系统中,可简称继电器),是铁路信号技术中的重要部件。它无论作为继电式信号系统的核心部件,还是作为电子式或计算机式信号系统的接口部件,都发挥着重要的作用。继电器动作的可靠性直接影响到信号系统的可靠性和安全性。 一、信号继电器概述 信号继电器是用于铁路信号中的各类继电器的统称,是各类信号控制系统不可缺少的重要器件。 (一)、铁路信号对继电器的要求 信号继电器作为铁路信号系统中的主要(或重要)器件,它在运用中的安全、可靠就是保证各种信号设备正常使用的必要条件。为此,铁路信号对继电器提出了极其严格的要求,具体如下: (l)动作必须可靠、准确; (2)使用寿命长; (3)有足够的闭合和断开电路的能力; (4)有稳定的电气特性和时间特性; (5)在周围介质温度和湿度变化很大的情况下,均能保持很高的电气绝缘强度。 具体要求见《信号维修规则技术标准》11继电器11 . 1通则。 按照工作的可靠程度,信号继电器可分为三级: 一级继电器:绝对不允许发生前接点与动接点之间的熔接;衔铁落下与前接点的断开由衔铁及可动部分的重量来保证;当任意一组前接点闭合时,所有后接点必须全部断开,反之亦然;衔铁处于落下位置时,应该稳定的工作,后接点压力主要由重力作用产生;有较高的返还系数:轨道继电器不小于50%,一般继电器不小于30%。 二级继电器:衔铁依靠本身重量或接点弹片反作用力返还;返还系数不小于20%;当任意一组前接点闭合时,所有后接点必须全部断开,反之亦然。 三级继电器(电码型和电话型):衔铁返还与后接点的压力均由动接点弹片的反作用力产生;前后接点均有熔接的可能。 在信号设备的执行电路中,如果继电器由于工作不正常而不能断开前接点时,将严重威胁行车的安全,故设计时均采用一级继电器,又由于一级继电器的高度可靠性。因此,在电路中就不再考虑用电路的方法来检查继电器衔铁的落下状态。因此,在检修一级继电器时,要求特别注意其可靠性,并严格保证其技术条件。电码型继电器使用在选择电路中,不道接控制对象,但也绝不允许降低对这类继电器可靠性的要求,因为它们工作的好坏道接影响信号设备的正常动作,对保证列车的安全运行具有同样的重要意义。 (二)、继电器的基本原理 继电器是一种电磁开关。继电器类型很多,性能各不相同,结构形式各种各样,但都由电磁系统和接点系统两大主要部分组成。其中电磁系统由线圈、固定的铁芯和扼铁以及可动的衔铁构成,接点系统由动接点和静接点构成。当线圈中通入一定数值的电流后,由于电磁作用或感应方法产生电磁吸引力,吸引衔铁,由衔铁带动接点系统,改变其状态,从而反映输入电流的状况。 最简单的电磁继电器如图1一1所示。它就是一个带接点的电磁铁,其动作原理也与电磁铁

相关主题
相关文档
最新文档