引风机控制说明

引风机控制说明
引风机控制说明

改造后引风机控制说明

现根据引风机厂家提供控制逻辑图,及原有引风机逻辑整理出新引风机逻辑如下,仅供发电部参考,具体逻辑及定值请发电部核准,以方便热控实施逻辑。

需要注意的问题:密封风机入口风压未设计测点。

1 A引风机顺控启动

1.1 允许启动条件

1)A空预器运行;

2)A空预器入口烟气挡板开、出口二次风门开;

3)A引风机未运行。

1.2 顺控启动步序

原逻辑:

1)启动选择的A、B送风机油站,启动选择的冷却风机;

2)投冷却风机联锁开关

3)打通A引风机启动风道(若B引风机运行跳过此步);

反馈:二次风挡板开度大于30%;

B引风机静叶关闭且B引风机进/出口挡板关;

A、B送风机动叶开、出口挡板开;

4)关闭A引风机入口挡板,开出口挡板,关闭A引风机静叶;

5)启动A引风机;

6)A引风机动叶置初始位。

改为:

1)启动选择的A、B送风机油站,启动选择的密封风机;

2)投密封风机联锁开关;

3)启动选择的润滑油泵和EHA油泵;

4)打通A引风机启动风道(若B引风机运行跳过此步);

反馈:二次风挡板开度大于30%;

B引风机动叶关闭且B引风机进/出口挡板关;

A、B送风机动叶开、出口挡板开;

5)关闭A引风机入口挡板,开出口挡板,关闭A引风机动叶;

6)启动A引风机;

7)A引风机动叶置初始位。

2 A引风机顺控停止

2.1 允许停止条件

无条件。

2.2 顺控停止步序

1)关A引风机动叶;

2)停A引风机。

3 A引风机

3.1 允许启动条件

1)A引风机轴承温度正常(小于85℃);

2)A引风机电机轴承温度正常(小于75℃);

3)A引风机线圈温度正常(小于125℃);

4)A空预器出口二次风挡板、入口烟气挡板打开;

5)A空预器运行;

6)任一A引风机密封风机运行,且密封风压大于250Pa(密封风压无测点);(修改)

7)A引风机动叶关闭、入口挡板关闭且出口挡板打开;(修改)

8)A引风机无保护跳闸条件存在;

9)无A引风机电动机保护动作;

10)A引风机电动机就地/远方切换。

11)A引风机油站工作正常(新增)

?任一润滑油泵运行,且风机、电机轴承润滑油流量不低,延时10s;

?EHA油泵运行,且调节油压大于7kPa(模拟量);

?油箱温度小于50℃;

?EHA控制箱远方位。(待定)

作为第一台启动时,除了满足上面的条件外,还需满足下列条件:

12)二次风挡板开度>30%;

13) B引风机动叶关闭、入口挡板关闭且出口挡板关闭;

14)A送风机动叶打开且出口挡板打开,或 B送风机动叶打开且出口挡板打开。3.2 允许停止条件

1)无条件。

3.3 保护停止条件

1)A引风机风机轴承温度(三取二)大于100℃,延时2秒;

2)A引风机电机任一轴承温度大于80℃,延时5秒;

3)A引风机运行且入口挡板关延时15秒;

4)A引风机X向轴承振动高一值且高二值(且X\Y向振动模拟量有报警),延时15秒;

5)A引风机Y向轴承振动高一值且高二值(且X\Y向振动模拟量有报警),延时15秒;

6)FSSS跳引风机;

7)A空预器停止;

8)失速,且动叶角度小于40°(需换算为反馈对应值)延时120s。定值500Pa(新

增);

9)A引风机电机任一线圈温度大于130℃,延时5秒(新增);

10)风机油站液位低低,无延时(未设计此侧点,逻辑新增);

11)风机轴承润滑油流量低,且任一电机轴承温度大于75℃,无延时(新增);

12)电机轴承润滑油流量低,且任一处风机轴承温度(三取二)大于85℃,无延时(新

增);

13)密封风压小于250Pa,延时240MIN(新增)。

4 A引风机冷却风机(改为密封风机)

4.1 允许启动条件

1)A引风机A冷却风机(密封风机)电动机就地/远方切换;

2)A引风机A冷却风机密封风机电动机控制电源故障;

3)A引风机A冷却风机密封风机电动机无保护动作。

4.2 允许停止条件

1)A引风机停止1800秒或另一台冷却风机(密封风机)在运行。

4.3 联锁启动条件

1)联锁开关投入,另一台冷却风机(密封风机)的运行状态消失;

2)联锁开关投入,另一台冷却风机(密封风机)运行15s后,A引风机任一轴承温度

高,密封风机入口风压小于250Pa。

5 A引风机油站#1润滑油泵(新增设备)

允许启(与):

1)油站邮箱液位不低;

2)油站油温大于15℃;

联锁启(或):

1)风机运行且油泵联锁已投入,油泵B跳闸;

2)风机运行且油泵联锁已投入,电机润滑油流量低;

3)风机运行且油泵联锁已投入,风机润滑油流量低;

4)风机运行且油泵联锁已投入,油站控制油压力低。

允许停(或):

1)风机已停,延时600s;

2)两油泵同时运行时,电机润滑油流量不低,且风机润滑油流量不低,且控制油

压正常。

联锁停(或)(厂家提供逻辑,建议取消联锁停逻辑,手动控制):

1)风机未运行延时1800s,且油箱油温小于40℃;

2)油箱油温小于10℃,延时600s。

6 A引风机油站EHA油泵(新增设备)

允许启(与):

1)油站邮箱液位不低;

2)油站油温大于15℃;

允许停(或):

1)风机已停,延时1800s(推荐逻辑,厂家未提供,防止误操作);

备注,建议增加以下逻辑:

EHA油泵未运行,或调节油压小于7kPa(待定)时,锁定动叶指令。

7 A引风机油站加热器

允许启:

1)油箱液位不低;(推荐逻辑,厂家未提供)

2)油箱油温不高,小于23℃。(推荐逻辑,厂家未提供)

联锁停:

1)联锁投入,且油站油温大于23℃。

联锁启(建议取消,手动控制):

1)联锁投入,且油站油温大于17℃。

8 A引风机电机加热器

单操

引风机油站说明书

1、概述及用途 XYZD类稀油润滑设备是指与重型机械行业JB/ZQ/T4147-1991 标准规定的XYZ系列(电加热)稀油站具有相同系统原理图和功能的一类稀油润滑设备的总称,不论其结构形式如何,它们都符合本使用说明书。 XYZD类稀油站润滑设备是循环供送稀油润滑介质的设备,该设备将介质供送到设备的润滑点(具有相对运动的摩擦副),对润滑点进行润滑和冷却后,再返回到该设备的油箱进行下一个循环。该设备主要用于冶金、矿山、建材、石化等成套机械设备中,同时,也适用于其它具有类似工况的机械设备。 2、技术参数 2.1基本条件 XYZD类稀油润滑设备,当使用齿轮泵时,工作介质粘度等级为N22~N220,当使用螺杆泵时,工作介质粘度等级为N22~N680,甚至更大;冷却水温度应不超过30℃,冷却水压力0.2~0.4MPa,冷却器冷却能力是当今油温度为50℃时,润滑油的温降不小于8℃(当油品粘度大于N460时,冷却器的冷却面积要比标准选的大)。 2.2技术参数 型号公称流量 L/min 公称压力 MPa 介质温 度℃ 油箱容积L 过滤精度mm XYZ-16 16 0.4 40±5 630 0.025 出油口DN mm 回油口DN mm 进水口DN mm 出水口DN mm 冷却面积 ㎡ 冷却水耗量 m3/h 电动机 型号/KW 20C×2 50 25 25 6 1.8 Ypol-4/1.5 电加热 V/KW 220/2×3

3、设备组成及工作原理 3.1设备组成 XYZD 类稀油润滑系统主要由油箱、电加热器、两台定量油泵装置、双筒过滤器、油冷却器、回油磁(栅)网过滤装置、功能性阀门(单向阀、安全阀、开关阀门)及管道、控制元件(压力控制器、差压控制器、温度控制器、液位控制器)、显示仪表(压力表、温度表、液位计)、电控柜等组成。 3.2工作原理 工作时,一台定量泵(另一台备用)从油箱吸入油液,吸入的油液由定量泵进行增压后,经单向阀、双筒过滤器(一侧工作,一侧备用),有冷却器功能性阀门和管道被送到设备的润滑点,油液对润滑点进行润滑和冷却后,沿着系统的回油总管进入油箱,油液在邮箱内经回油磁(栅)网过滤装置过滤后进行下一次循环。 3.3元件功能 3.3.1油箱 油箱主要功能是蓄油,还兼做散热和沉淀油液中的杂质 3.3.2加热器 加热器的功能是对油箱中的油液进行加热,当油箱中油液的温度低于下限设定值时,电加热器自动进行加热,当油箱中油液的温度达到正常设定值时,电加热器自动停止。 3.3.3两台油泵装置 稀油润滑设备具有两台油泵装置(互为备用),一台工作、一台备用,当系统压力低于下限设定值时,备用油泵自动投入工作,当达到正常设定值时,备用

计算机控制课程设计

计算机控制技术课程设计报告 学院自动化科学与工程 学生姓名 学生学号 指导教师 __ 提交日期 2013 年 7 月 8 日

目录 一、设计题目及要求 ................................................................... 错误!未定义书签。 二、整体设计与结构图 (3) 1、计算机控制系统结构图 (3) 2、硬件结构图 (4) 三、电路硬件设计 (5) 1、电桥电路 (5) 2、放大环节 (6) 3、滤波电路 (6) 4、A/D转换器 (7) 5、D/A 转换电路 (8) 四、参数计算及分析 (9) 1.参数确定 (9) 2.系统性能分析 (9) 五、控制方案及仿真 (9) θ的分析.....................................................................................................,9 1、0 = 1)控制方案分析 (11) 2)数字控制器D(z)的实现 (11) 3)系统仿真 (14) θ的分析 (18) 2、870 .0 = 1)控制方案分析与选择 (18) 2)数字控制器D(z)的实现 (19) 3)系统仿真 (23) 六、心得与体会 (27)

一.课程设计题目及要求 1、 针对一个具有纯滞后的一阶惯性环节 ()1 s Ke G s Ts τ-=+ 的温度控制系统和给定的系统性能指标: ? 工程要求相角裕度为30°~60°,幅值裕度>6dB ? 要求测量范围-50℃~200℃,测量精度0.5%,分辨率0.2℃ 2、 书面设计一个计算机控制系统的硬件布线连接图,并转化为系统结构图; 3、 选择一种控制算法并借助软件工程知识编写程序流程图; 4、 用MA TLAB 和SIMULINK 进行仿真分析和验证; 对象确定:K=10*log(C*C-sqrt(C)),rand(‘state ’,C),T=rang(1), 考虑θ=0或T/2两种情况。 C 为学号的后3位数,如C=325,K=115.7,T=0.9824,θ=0或0.4912 5、 进行可靠性和抗干扰性的分析。 二、整体设计与结构图 1、计算机控制系统结构图

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

计算机控制技术课程设计任务书

计算机控制技术课程设计任务书 题目1:通用数字PID调节器设计 1、主要技术数据和设计要求 主要技术数据:8路模拟量输入:适配1~5V输入,量程自由设定;8路输出控制信号:1~5V标准电压输出;输入模拟量转换精度:0.1%;RS232串行通讯通口。 控制模型:数字PID控制算法;PID参数范围:比例带Kp:1-999.9%,积分时间Ti:1-9999秒(Ti=9999时积分切除),微分时间Td::0-9999秒(Td=0时微分切除)。 调节控制器使用51内核的单片机,完成对8路模拟信号的切换、信号变换、A/D转换;单片机对数据处理后(含数字滤波、数值变换),送到显示和通讯部分,并经PID运算处理后通过D/A转换器输出。经信号变换和信号分配后输出8路控制信号。设计中应充分考虑干扰问题。 2、设计步骤 一、总体方案设计、控制系统的建模和数字控制器设计 二、硬件的设计和实现 1. 选择计算机机型(采用51内核的单片机); 2. 设计支持计算机工作的外围电路(EPROM、RAM、I/O端口等); 3. 设计键盘、显示接口电路; 4. 设计8路模拟量输入输出通道; 5. 设计RS232串行通讯通口; *6. 其它相关电路的设计或方案(电源、通信等)。 三、软件设计 1. 分配系统资源,编写系统初始化和主程序模块; 2. 编写数字PID调节器软件模块; 3. 编写数字滤波程序; *4. 编写A/D、D/A转换器处理程序模块; *5. 其它程序模块(显示与键盘等处理程序)。 四、编写课程设计报告,绘制完整的系统电路图。

计算机控制技术课程设计任务书 题目2:双闭环直流电动机数字调速系统设计 1、主要技术数据和设计要求 主要技术数据:直流电动机(对象)的主要技术参数如下:直流电动机Ped=3kW,Ued=220v ,ned=1500r/min,电枢回路总电阻R=2.50欧姆,电动机回路电磁时间常数TL=0.017s,机电时间常数TM=0.076s,电势常数Ce=0.1352V/r·min),晶闸管装置放大倍数Ks=30,整流电路滞后时间Ts=0.0017s。 主要技术指标:速度调节范围0-1500r/min,速度控制精度0.1%(额定转速时),电流过载倍数为1.5倍。 主要要求:直流电动机的控制电源采用PWM控制方式,在其输入电压为0-5伏时可以输出0-264伏电压,为电机提供最大25安培输出电流。速度检测采用光电编码器,且假定其输出的A、B两相脉冲经光电隔离辨向后获得每转1024个脉冲的角度分辨率和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流为50安培。采用双闭环(速度和电流环)控制方式。 2、设计步骤 一、总体方案设计、控制系统的建模和数字控制器设计 二、硬件的设计和实现 1. 选择计算机机型(采用51内核的单片机); 2. 设计支持计算机工作的外围电路(EPROM、RAM、I/O端口等); 3. 设计键盘、显示接口电路; 4. 设计输入输出通道(速度反馈、电流反馈电路、输出驱动电路等); *5.它相关电路的设计或方案(电源、通信等)。 三、软件设计 分配系统资源,编写系统初始化和主程序模块; 2. 编写数字调节器软件模块; 3. 编写A/D转换器处理程序模块; *4.编写输出控制程序模块; *5.其它程序模块(数字滤波、显示与键盘等处理程序)。 四、编写课程设计说明书,绘制完整的系统电路图。

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

引风机检修作业指导书样本

XX电厂X型X号机组X级检修作业指引书 项目名称:引风机检修 所属专业:锅炉

批准:日期:审核:日期:编制:日期:

一、组织办法 1.施工总负责: 负责整个检修工作项目制定,检查工作项目实行状况,检查、考核工作中存在违章状况,指引检修中存在技术问题。 2.技术负责: 对工作过程中技术质量进行把关,并负责检修工艺工序制定和修改。 3.工作负责人: 办理工作票,对的和安全组织工作成员进行检修工作,对工作中安全、技术和质量负直接责任。 4.工作成员: 在工作负责人带领下,对的、安全、文明进行检修工作,不断提高检修质量。 5.配合人员: 熟悉此项工作质量规定,及工作中存在危险点,在工作负责人带领下作好配合工作。 二、技术办法 1、施工程序 1.1 办理工作票—揭盖检查风机叶片—液压缸调节装置检查—油管路消除漏点—油箱;滤网;电加热清理、更换润滑油—油泵检修—冷却水系统检查—油箱加油—打开风道人孔门—检查检修风门—风道检查补焊—封堵人孔门—回答所有设备—冷却风机

改造—检查风机地脚螺栓及连接螺栓—检查风机和电机同心度。 2、质量原则 2.1引风机液压油站清理;管道消除漏点;油泵检修质量原则。 引风机液压油站管路消除漏油必要认真解决,保证不复发。油泵检修重要为检查电机和对轮间弹性垫磨损状况,如磨损严重应更换弹性垫。送风机液压油站清理前必要将旧油放干净,用汽油冲洗后用面团粘净所有杂质;磁性滤网;电加热器应彻底清洗后方可安装。风机油箱清理完必要由关于人员验收合格后方可封堵。油站清理合格后应加注L—TSA46#汽轮机油,油位应加之油箱中位置; 2.2引风机叶片检查调节;风门检查检修质量原则; 引风机叶轮检查重要检查叶片有无磨损严重现象,叶片有无受冲击损伤现象,此外检查叶片磨损及锈蚀限度。叶片如有缺陷应上报电厂更换。检查叶片轴承游隙应符合原则规定,否则应及时更换。风道风门检修;应调节风门实际开度与标示相符;偏差不不不大于0.50-10。风门所有螺栓应所有紧固一次,并用电焊进行电焊防松。检查风道内、进气箱、扩压器内焊缝与否有漏焊和裂纹现象,如有应进行补焊打磨。风道;风机机壳封人孔门之前应经电厂人员验收合格。叶片间隙测量时,将叶片调到最打开度,测量叶片与机壳之间间距应为3.9+1.5mm。检查围带与否有风化现象,如有必要进行更换。

除尘引风机说明书

产品说明书除尘引风机南宁市明阳机械制造有限公司

目录 1 风机说明 1.1 风机概述 1.2 数据表及性能曲线 1.3 风机结构介绍 1.3.1 叶轮 1.3.2 主轴 1.3.3 轴承 1.3.4 挡板调节门 1.3.5 壳体 1.3.6进风口 1.3.7进、出口膨胀节 1.3.8 密封 2 风机的安装 3 风机调试与运行 3.1 风机调试前的准备工作 3.2 挡板调节门传动机构的调试3.3 风机的联动试车 3.4 立即停车事件 4风机维护 4.1 运行过程中的维护 4.2 临时停机期间的检修 4.3 计划停机期间的检修 4.4 风机部件的维护 4.4.1 叶轮与轴的维护 4.4.2 轴承的维护 4.4.3挡板调节门的维护 4.4.4膨胀节的维护 4.5 风机的主要故障及原因 4.5.1 风量不足 4.5.2 风压不足 4.5.3 电动机超载 4.5.4 机体振动 4.5.5 轴承温升过高 附录风机工作参数 1.风机性能参数表 2.风机性能曲线图

1.风机说明 1.1 风机概述 风机主要由机壳部(包括进气箱部)、进风口部、传动部、叶轮部、轴承箱部、调节门部、电动执行器等部件组成。风机由电动机驱动,电机型号为YKK710-4W,株洲南车电机股份有限公司产品。液力耦合器型号为YOTFC920.AN,大连液力机械有限公司产品。挡板调节门由电动执行器驱动,型号为D(MC)250+MSG600.164FHA-R,EMG产品。 1.2 数据表及性能曲线 本风机是按用户提供的技术参数设计,技术参数参见附录。风机的性能曲线也见附录。用户可通过改变调节门的叶片开度来达到运行所需要的工况点。 1.3 风机结构介绍 1.3.1 叶轮 叶轮型式为单吸入式,叶片为平板形叶片,有10片叶片。轮盖的进口端为圆弧形。叶片流道型式为对数螺旋线,此种型线流动损失小。叶片与轮盖及轮盘的连接均采用焊接方式,叶片与前盘材料为HQ785。后盘材料为15MnV。 叶轮与主轴的连接采用法兰结构,而不是轮毂连接(参见图1),从而较大地减轻了叶轮的重量。叶轮与主轴共用12只高强度螺栓(35CrMoA)紧固,所有螺栓均用止动垫圈锁紧,同时主轴法兰轴肩部又能阻止螺栓本身的转动,故这种连接方式是非常安全可靠的,同时又能承受较大的扭矩。叶轮与主轴装配后做动平衡试验,以保证转子部的平稳运转。 1.3.2 主轴 主轴为整体锻造轴,两端用滑动轴承支承,一端经联轴器与液偶相连。主轴材质为35CrMoA-5,具有足够的刚度和强度。 1.3.3 轴承 风机轴承采用油脂自润滑,轴承型号为ZWBG22-160T/375、ZWBG22-160/375滑动轴承,润滑油脂采用。轴承箱采用压力回水冷却,冷却管为G1”,进水量为0.8~1m3/h。

计算机控制技术课程设计

计算机控制技术课程设计 业:自动化 班级:动201xxx 姓名:xxx 学号:2013xxxxxx 指导教师:xxx 兰州交通大学自动化与电气工程学院 2016 年 07 月 15 日

水箱液位控制系统设计 1设计目的 通过课程设计使学生掌握如何应用微型计算机结合自动控制理论中的各种控制算法构成一个完整的闭环控制系统的原理和方法;掌握工业控制中典型闭环控制系统的硬件部分的构成、工作原理及其设计方法;掌握控制系统中典型算法的程序设计方法;掌握测控对象参数检测方法、变送器的功能、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高解决实际工程问题的能力。 2 设计要求 设计双容水箱液位控制系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。设计串级控制系统以维持下水箱液位的恒定,双容水箱液位控制系统示意图如下图1所示。 图1 双容水箱液位控制系统示意图 3 设计方法 为保持水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 4设计方案及原理 系统功能介绍 整个过程控制系统由控制器,执行器,测量变送,被控对象组成,在本次控制系统中控制器为单片机,采用算法为PID控制规律,执行器为电磁阀,采样采用A/D芯片,测量变送器为A,被控对象为流量B。整个控制过程,当系统受到扰

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

计算机控制课程设计

目录

一、设计背景及意义 当今,红绿灯安装在个个道口上,已经成为疏导交通车辆最常见和最有效的手段。单片机具有性价比高、集成度高、可靠性好、抗干扰性强等特点,广泛运用于各种智能仪器中。基于新型规则的可编程交通控制系统,可以实现对车辆、行人的控制,使的交通便于管理。所以,采用单片机自动控制交通灯有现实的社会意义。 二、设计任务 1. 采用AT89C51芯片; 2. 使用发光二极管(红,黄,绿)代表各个路口的交通灯; 3. 用8段数码管对转换时间进行倒时; 4、带紧急按钮功能,当紧急按钮按下时,所有方向均亮起红灯; 5. 控制程序采用C语言编程。 三、控制系统设计原理 3.1 设计思路 利用单片机实现交通灯的控制,该任务分以下几个方面: a、实现红、绿、黄灯的循环控制。要实现此功能需要表示三种不同颜色的LED灯分别接在P1个管脚,用软件实现。 b、用数码管显示倒计时。可以利用动态显示或静态显示,串行并出或者并行并出实现。 c、紧急状况功能。这需要人工实现,编程时利用到中断才能带到目的,只要有按钮按下,那么四个方向全部显示红灯,禁止车辆通行。当情况解除(再次按下按钮),重新回到初始状态。

3.2 总体设计图 图1 3.2.1 交通灯循环控制 使用AT89C51单片机完成对十字路口交通灯的控制,十字路口的工作过程分为东西方向和南北方向两个干道的红绿黄灯工作状态(红灯亮表示禁止通行,绿灯亮表示允许通行,黄灯亮表示提醒红绿灯之间状态的切换)的控制,每个工作状态的时间设为40s,采用循环的控制方式,具体控制过程如下(如图2):1、系统工作开始后,首先进入初始设定阶段,东西方向亮红灯,南北方向亮绿灯; 2、进入状态1的倒计时阶段,东西方向的红灯开始40s倒计时,南北方向绿灯开始35s倒计时; 3、进入状态1过渡阶段,东西方向红灯开始最后5s倒计时,南北方向黄灯亮并开始5s倒计时; 4、过渡阶段1完成后,东西方向亮绿灯,南北方向亮红灯; 5、进入状态2的倒计时阶段,南北方向的红灯开始40s倒计时,东西方向绿灯开始35s倒计时; 6、进入状态2过渡阶段,南北方向红灯开始最后5s倒计时,东西方向黄灯亮并开始5s倒计时; 7、过渡阶段2完成后,进入状态1,开始循环。 图2

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

y 锅炉引风机

Y9-38系列锅炉引风机 产 品 说 明 书 上海循特流体机械有限公司 中国·上海

一、用途 Y9-38型锅炉引风机适用于燃用各种煤质并配有消烟除 尘装置的0.5~35t/h的工业蒸汽锅炉的引风之用。凡进气条 件相近,性能又相适应者均可选用,介质最高温度不得超过 250℃。 在引风机前必须加装效率不低于85%得除尘装置,以降低进入风机的烟气含尘量,不但减少了烟气对环境污染,而且降低可烟尘对风机的磨损,有利提高风机的使用寿命。 二、形式 1)该风机制成单吸入,机号有No.4、No.4.5、No.5、No.5.6 、No.6.3、No.7.1、No.8、No. 9、No.10、No.11.2、No.12.5、No.14、No.16共13种。 2)该通风机制成顺时针旋转或逆时针旋转两种形式。从传动部正视风机,如叶轮按顺时针方向旋转,称为顺时针旋转风机。以顺时针表示;叶轮逆时针旋转,称为逆时针转风机,以逆时针表示。 3)风机的出口位置,以机壳的出口角度表示。顺时针旋转风机、逆时针旋转风机均可制成0°、45°、90°、135°、180°、225°共6种角度。 三、结构特点 风机主要由叶轮、进风口、机壳、传动组调节门等部件组成 1)叶轮材料为Q345(16Mn),长短相间前向弯曲叶片。.经过动、静平衡校正,因此运转平稳。 2)机壳用钢板焊接成蜗形壳整体。在蜗板上开有清灰门。便于清除叶片和机壳内的积灰,保证叶轮的平衡性和气动性能。 3)进风口制成收剑式流线型整体结构。用螺栓与前盖板组固定。 4)传动部分由主轴、水冷轴承箱、联轴器等组成。 主轴由优质钢制成,采用滚动轴承,轴承箱有整体是和部分式两种形式。No.4~No。6.3采用

通风机使用说明书(打印版)资料

目录 一用途 (1) 二结构形式 (1) 三主要零部件及装配关系 (3) 四风机的安装调试和操作 (4) 五风机的维护与保养 (9) 六风机运转中主要故障及消除 (11) 七图1-1风机的传动方式 (12) 八图1-2风机的各种角度 (13) 九图1-3轴流风机结构各零部件名称及装配关系 (14) 十图2-1整体轴承箱传动组各零部件名称及装配关系 (15) 十一图2-2分体轴承箱传动组各零部件名称及装配关系 (16) 十二图2-3 F式传动组各零部件名称及装配关系 (17) 十三图3-1风机安装基础示意图 (18) 十四图3-2风机总图叶轮与进风口装配示意图 (19) 十五图3-3侧盖及甩油环的安装位置图 (20)

一、用途 通风机广泛应用在工厂、矿山、电站(厂)、石油、化工、冶金、轻纺、建材等各个行业。作为现场的通风换气、排烟除尘、物料输送、锅炉送、引风等。输送的介质主要为空气、烟气等,介质中所含的尘土或硬质颗粒不大于150毫克/立方米。送风机所输送介质的温度一般要求不超过80℃,引风机一般要求不超过250℃,通常在引风机入口加装除尘效率较高的除尘装置,减少进入风机介质的含尘量,延长风机的使用寿命。 二、结构形式 通风机的结构形式一般分为二大类:一类分为离心式,一类分为轴流式。离心式为轴向进风,径向出风。轴流式为轴向进风,轴向出风。从电动机一侧正视通风机,其叶轮顺时针旋转称为右旋风机,以“右”或者以“顺”表示。叶轮逆时针旋转称为左旋风机,以“左”或者以“逆”表示。离心风机的传动方式有A、B、C、D、E、F六种,根据使用现场安装方式和性能要求而选用(见图1-1)。 1、离心风机 (1)、离心风机不但有“左”“右”之分,还有机壳的出口角度之分,判定角度时应站在电机側正视风机,其出口中心线与水平线的夹角。一般机壳出风口有0°、45°、90°、135°、180°、225°、270°等七种角度。其他角度可重新设计。一般在总图上绘制的标准角度为右0°(为用户专供的图纸除外)。所以在基础施工时,必须根据订货的旋向及角度(总图上标有各种角度示意图)进行施工。(见图1-2)

计算机控制技术课程设计报告

《计算机控制技术》课程设计单闭环直流电机调速系统

1 设计目的 计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,通过这次课程设计进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养独立自主、综合分析与创新性应用的能力。 2 设计任务 设计题目 单闭环直流电机调速系统 实现一个单闭环直流电机调压调速控制,用键盘实现对直流电机的起/停、正/反转控制,速度调节要求既可用键盘数字量设定也可用电位器连续调节,需要有速度显示电路。扩展要求能够利用串口通信方式在PC上设置和显示速度曲线并且进行数据保存和查看。

设计要求 2.2.1 基本设计要求 (1)根据系统控制要求设计控制整体方案;包括微处理芯片选用,系统构成框图,确定参数测范围等; (2)选用参数检测元件及变送器;系统硬件电路设计,包括输入接口电路、逻辑电路、操作键盘、输出电路、显示电路; (3)建立数学模型,确定控制算法; (4)设计功率驱动电路; (5)制作电路板,搭建系统,调试。 2.2.2 扩展设计要求 (1)在已能正常运行的微计算机控制系统的基础上,通过串口与PC连接; (2)编写人机界面控制和显示程序;编写微机通信程序;实现人机实时交互。 3方案比较 方案一:采用继电器对电动机的开或关进行控制。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

锅炉引风机维护检修规程

山东华鲁恒升化工集团设备维护检修规程 锅炉引风机

目录 一、总则……………………………………………………… 二、设备完好标准…………………………………………… 三、设备的维护……………………………………………… 四、检修周期和检修内容…………………………………… 五、检修方法及质量标准…………………………………… 六、试车与验收……………………………………………… 七、维护检修安全注意事项…………………………………

一、总则 1.1本规程适用于吹风气锅炉、流化床锅炉通用离心式风机的检修。 1.2设备结构简述:锅炉通用离心式风机包括送风机和引风机。送风机(一次风机、二次风机)输送的介质为空气,最高温度不得超过80℃,引风机输送的介质为烟气,最高温度不得超过250℃。在引风机前必须加装除尘装置,以尽可能减少烟尘对风机的磨损。一次风机、二次风机、引风机均制成单吸入式,从电机端正视,叶轮顺时针旋转称为顺旋(右旋)风机,叶轮逆时针旋转称为逆旋(左旋)风机。风机的出风口位置,以机壳的出风口角度表示。风机的传动方式为D式,电机与风机连接均采用弹性联轴器直联传动。风机主要由叶轮、机壳、进风口、调节门及传动部分组成。(1)叶轮:一次风机、二次风机均属弯曲叶型,叶片焊接于锥弧形的轮盖与平板形轮盘中间,引风机叶轮均属后倾单板叶片(个别为机翼型),焊接于锥弧形的轮盖与平板形轮盘中间,并在叶片易磨损部位增加耐磨护板及堆焊耐磨层。叶轮均经过静、动平衡校验,运转平稳。(2)机壳:机壳是由优质钢板焊接而成的蜗形体。风机的机壳做成两种结构形式:整体机壳不能上下拆开;上下体机壳以轴中心线上下可拆开。对引风机、蜗形板作了适当加厚以防磨。(3)进风口:收敛、流线型的进风口制成整体结构,用螺栓固定在风机入口侧。(4)调节门:用于调节风机流量的装置,轴向安装在进风口前面。调节范围由60°~90°(全闭~全开)。调节门的搬把位置,从进风口方向看在右侧,对顺旋风机搬把由下往上推是由全闭到全开方向,对逆旋风机,搬把由上往下拉是由全闭到全开方向。(5)传动部分:由主轴、轴承箱、联轴器等组成。主轴由优质钢制成;鼓风机一般采用整体的筒式轴承箱;引风机小机号采用整体的筒式轴承箱,大机号采用二个独立的枕式轴承箱;轴承箱上装有指针式温度计和油位指示器;润滑油一般采用30号机械油,加入油量按油位标志要求。引风机备有水冷装置,需加装输水管,耗水量因环境温度不同而异,一般按0.5-1m3/h考虑。 1.3主要技术参数:见表一 表一锅炉风机主要技术参数

SAF引风机安装说明书(A)

动叶可调轴流引风机产品安装和使用说明书 (A本) 工程号:(2013-078) 编制: 朱婷婷 校对: 季瑛 审核: 王冲强 上海鼓风机厂有限公司 二○一三年四月

序号内容 1风机技术参数 1.1一般资料 1.2机械参数 1.3风机起动力矩 1.4风机特性曲线 2转子图和总图汇总的拧紧力矩 3联轴器的参数 4图样清单 5通过说明书B本“风机现场维护”补充内容6风机找正允许误差 7隔声包覆层结构示意图

1 风机技术参数 1.1 一般资料 风机型号SAF31.5-17-2 工程号 2013-078 合同号 建造年份 2013年 名称国投哈密发电有限公司一期2x660MW工程 安装地点国投哈密发电有限公司一期2x660MW工程工地 工况 风量 Q 风机总压升P介质密度 效率 转速 轴功率 电机功率 m3/s Pa Kg/m3 % r/min KW KW T.B 683.00 9496 0.7300 86.60990 7252 7700 BMCR 598.00 8055 0.7660 87.419905361 1.2 机械参数 机壳直径φ3162 轮毂直径φ1678 叶轮级数 2 叶型14DA14 叶片数28 叶片材料15MnV 叶片和叶柄的连接高强度螺栓 液压缸径和行程φ415/H100MET 叶片调节范围-35o ~+15o 本工程使用415/100液压缸,现场可根据实际情况调整油压,但不得超过最大允许油压3MPa 风机机壳内径和叶片外径间的间隙:应符合JB/T4362-1999标准,其值为 4.7mm~6.3mm(叶片在最小安装角位置) (叶片在关闭位置)

计算机控制系统课程设计

《计算机控制》课程设计报告 题目: 超前滞后矫正控制器设计 姓名: 学号: 10级自动化 2013年12月2日

《计算机控制》课程设计任务书 指导教师签字:系(教研室)主任签字: 2013年11 月25 日

1.控制系统分析和设计 1.1实验要求 设单位反馈系统的开环传递函数为) 101.0)(11.0(100 )(++= s s s s G ,采用模拟设 计法设计数字控制器,使校正后的系统满足:速度误差系数不小于100,相角裕度不小于40度,截止角频率不小于20。 1.2系统分析 (1)使系统满足速度误差系数的要求: ()() s 0 s 0100 lim ()lim 100 0.1s 10.011V K s G s s →→=?==++ (2)用MATLAB 画出100 ()(0.11)(0.011) G s s s s = ++的Bode 图为: -150-100-50050 100M a g n i t u d e (d B )10 -1 10 10 1 10 2 10 3 10 4 P h a s e (d e g ) Bode Diagram Gm = 0.828 dB (at 31.6 rad/s) , P m = 1.58 deg (at 30.1 rad/s) Frequency (rad/s) 由图可以得到未校正系统的性能参数为: 相角裕度0 1.58γ=?, 幅值裕度00.828g K dB dB =, 剪切频率为:030.1/c rad s ω=, 截止频率为031.6/g rad s ω=

(3)未校正系统的阶跃响应曲线 024******** 0.20.40.60.811.2 1.41.61.8 2Step Response Time (seconds) A m p l i t u d e 可以看出系统产生衰减震荡。 (4)性能分析及方法选择 系统的幅值裕度和相角裕度都很小,很容易不稳定。在剪切频率处对数幅值特性以-40dB/dec 穿过0dB 线。如果只加入一个超前校正网络来校正其相角,超前量不足以满足相位裕度的要求,可以先缴入滞后,使中频段衰减,再用超前校正发挥作用,则有可能满足要求。故使用超前滞后校正。 1.3模拟控制器设计 (1)确定剪切频率c ω c ω过大会增加超前校正的负担,过小会使带宽过窄,影响响应的快速性。 首先求出幅值裕度为零时对应的频率,约为30/g ra d s ω=,令 30/c g rad s ωω==。 (2)确定滞后校正的参数 2211 3/10 c ra d s T ωω= ==, 20.33T s =,并且取得10β=

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

相关文档
最新文档