数学高中排列组合知识和典例

1.排列与排列数

(1)排列:

从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

(2)排列数:

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.

2.组合与组合数

(1)组合:

从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.

(2)组合数:

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.

排列数、组合数的公式及性质

顺序有关,组合问题与顺序无关.

一、排列问题

排列典型例题:

有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

(1)选5人排成一排;

(2)排成前后两排,前排3人,后排4人;

(3)全体排成一排,甲不站排头也不站排尾;

(4)全体排成一排,女生必须站在一起;

(5)全体排成一排,男生互不相邻.

解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).

(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).

(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).

法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).

(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).

(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).

1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()

A.324 B.648

C.328 D.360

2.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.

3.甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()

A.10种B.16种

C.20种D.24种

二、组合问题

组合典型例题:

某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?

(1)男运动员3名,女运动员2名;

(2)至少有1名女运动员.

解:(1)任选3名男运动员,方法数为C36,再选2名女运动员,方法数为C24,共有C36·C24=120(种)方法.

(2)法一:(直接法)至少1名女运动员包括以下几种情况:

1女4男,2女3男,3女2男,4女1男,

由分类加法计数原理可得总选法数为

C14C46+C24C36+C34C26+C44C16=246(种).

法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C510-C56=246(种).

1.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()

A.30种B.36种

C.60种D.72种

2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()

A.60种B.63种

C.65种D.66种

三、排列组合综合问题

(1)简单的排列与组合的综合问题;

(2)分组、分配问题.

1.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()

A.15 B.20

C.30 D.42

2.将5位同学分别保送到大学、交通大学、大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()

A .150种

B .180种

C .240种

D .540种

此题是高考出现频率最高的题型,我把他称为均分问题:对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.

(3)涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种? 解:可根据使用颜色的种数进行分类讨论

(1)使用4种颜色,则每个区域涂一种颜色即可:414N A =

(2)使用3种颜色,则有一对不相邻的区域涂同一种颜色,首先要选择不相邻的区域:用列举法可得:{},I IV 不相邻

所以涂色方案有:324N A =

(3)使用2种颜色,则无法找到符合条件的情况,所以讨论终止

总计434448S A A =+=种

常见题型

1.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有()

A .24种

B .12种

C .10种

D .9种

解析:选B 第一步,为甲校选1名女老师,有C 1

2=2(种)选法;第二步,为甲校选2名男教师,有C 2

4=6(种)选法;第三步,为乙校选1名女教师和2名男教师,有1种选法,故不同的安排方案共有2×6×1=12(种),选B.

2.从0,1,2,3,4中取出3个数字,组成没有重复数字的三位数的个数为()

A.24 B.36

C.48 D.60

解析:选C法一:百位数字只能从1,2,3,4中任取一个,有A14种方法.十位与个位可从剩下的4个数中取2个,有A24种方法,则三位数的个数有A14A24=4×4×3=48.故选C.

法二:从0,1,2,3,4中取出3个数字排在百位、十位与个位的方法总数有A35,其中0作为百位的三位数有A24,则三位数的个数有A35-A24=5×4×3-4×3=48.故选C.

3.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3为顶点的三角形个数为()

A.30 B.42

C.54 D.56

解析:选B 用间接法.先从这8个点中任取3个点,最多构成三角形C38个,再减去三点共线的情形即可.共有C38-C35-C34=42(个).

4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()

A.24 B.48

C.72 D.96

解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法,由分类加法计数原理可得共有A22A24+A22A12C12C13=48(种)摆放方法.

5.(2016·调研)将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有()

A.12种B.20种

C.40种D.60种

解析:选C(排序一定用除法)五个元素没有限制全排列数为A55,由于要求A,B,C的次

序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33

,可得这样的排列数有A 5

5

A 33

×

2=40(种).

6.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有________种不同的方法.(用数字作答).

解析:第一步,从9个位置中选出2个位置,分给相同的红球,有C 2

9种选法;第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C 3

7种选法;第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步乘法计数原理可得,排列方法共有C 2

9C 3

7=1 260(种).

答案:1 260

7.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有________种.

解析:特殊位置优先考虑,既然甲、乙都不能参加生物竞赛,则从另外4个人中选择一个参加,有C 1

4种方案,然后从剩下的5个人中选择3个人参加剩下3科,有A 3

5种方案,故共有C 1

4A 3

5=4×60=240(种)方案.

答案:240

8.(2017·黄冈质检)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.

解析:不相邻问题插空法.2位男生不能连续出场的排法共有N 1=A 3

3×A 2

4=72(种),女生

甲排第一个且2位男生不连续出场的排法共有N 2=A 2

2×A 2

3=12(种),所以出场顺序的排法种

数为N =N 1-N 2=60.

答案:60

9.把座位编号为1,2,3,4,5的五电影票全部分给甲、乙、丙、丁四个人,每人至少一,至多两,且分得的两票必须是连号,那么不同的分法种数为________(用数字作答).

解析:先将票分为符合条件的4份,由题意,4人分5票,且每人至少一,至多两,则三人每人一,一人2,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C 3

4=4(种)情况,再对应到4个人,有A 4

4=24(种)情况,则共有4×24=96(种)情况.

答案:96

高中数学排列与组合知识点

高中数学排列与组合知识点 排列组合是高中数学教学内容的一个重要组成部分,但由 于排列组合极具抽象性,使之成为高中数学课本中教与学 的难点.加之高中学生的认知水平和思维能力在一定程度上受 到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。 高中数学排列与组合知识点汇编如下: 一、排列 1 定义 (1)从n个不同元素中取出m个元素,按照一定的顺 序排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn. 2 排列数的公式与性质 (1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1) 特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1 规定:0!=1 二、组合 1 定义 (1)从n个不同元素中取出 m个元素并成一组,叫做 从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。 2 比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。 排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 三、排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为 一个整体考虑) 插空法(解决相间问题) 间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原

高中数学排列组合3篇

高中数学排列组合 第一篇:排列组合的基础 排列组合是高中数学中非常重要的一部分,它是研究对象的排列组合方式的数学分支。在实际生活和工作中,常常需要用到排列组合的知识,因此,掌握排列组合的基本概念和问题的解法具有重要的意义。 一、排列 排列是对一组不同的对象进行有序安排的方式。设有n 个不同的对象,从中取出m个不同的对象进行排列。根据排列定义可知,首先有n种选择,选定第一个对象后再从剩下的 n-1个对象中选定第二个对象,接着从剩下的n-2个对象中选定第三个对象,以此类推,直到选定第m个对象,于是,选取m个对象的所有排列数为Pm^n,即Pm^n=n×(n-1)×(n- 2)×…×(n-m+1)。 如果从n个不同的对象中选取n个进行排列,那么所有的排列就是n个对象的全排列,其个数为n!,即n!=n×(n- 1)×(n-2)×…×3×2×1。 二、组合 组合是对一组不同的对象进行无序选择的方式。设有n 个不同的对象,从中取出m个对象进行组合。从 n 个对象中选取 m 个对象进行组合的所有方案数为:Cm^n。 可以用排列数来计算组合数,根据排列数的定义,设 A=n(n-1)(n-2)…(n-m+1),在这些对象中,每个由m个元素组成的排列,可以对应到一个由m个等同元素组成的无序组合,

既有m!个排列与同一组合对应,因此有: Cm^n=1/m!×n(n-1)(n-2)…(n-m+1), Cm^n也常用记号表示为nCm,即nCm=1/m!×n(n-1)(n- 2)…(n-m+1)。 三、问题的应用 1.求解排列组合问题可以利用以上公式进行计算,但最重要的是要掌握排列组合的概念及其本质区别,了解问题的实际背景,并进行相应的数学模型构建。在实际生活和工作中,有很多涉及排列组合的问题,如:从一个班级里面选出一些人组成A、B、C三个小组,有多少种选法?从26个字母中取出4个字母,有多少种不同的排列方式?等等。 2. 解决排列组合问题,需要注意以下几点: (1) 首先要明确题目所求的是排列还是组合,按照相应的排列或组合公式计算. (2) 仔细分析题目中给出的条件,判断问题的特点,选择适当的方法解题. (3) 当题目较为复杂时,可以运用等价思想、唯一分解定理、组合意义等思想方法进行分析计算. (4) 在实际计算中,需要注意排除误算及误差积累,特别是数据较大时的计算技巧和方法. 通过学习排列组合的基础,我们不仅能够解决实际生活和工作中的问题,而且可以激发我们的思维,提高我们的逻辑思考能力和创新能力。 第二篇:排列组合中的常见问题 在排列组合中,有一些常见问题,如全排列问题、变位问题、选位问题、圆排列问题、不定方程问题等。这些问题都

高中数学排列组合

高中数学排列组合 一、基本概念 排列组合是数学中比较重要的一个分支,它是研究对象按照一定的规则,从有限个数中选出若干个数进行排列和组合的方法和样式。 1、排列 排列是由一些元素按照一定顺序排列而成的整体。排列是从n个不同元素中取出m个元素按一定顺序排列的方法数,用符号$A^m_n$表示。 例如:n个不同的元素依次排成m列,第一列有n种取法,第二列有(n-1)种取法,第三列有(n-2)种取法,依此类推,第m列有(n-m+1)种取法,则这n个元素排成m列有式子:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$ 2、组合 组合是由一些元素按照任意排列组成的新整体。组合是从n个不同元素中取出m个元素的不同组合数,用符号 $C^m_n$表示。 例如:从4个球员中选出3人组成篮球队,有如下四种选法: $$ ABC,ABD,ACD,BCD $$ 将三个球员组成的篮球队作为一个整体,不考虑其顺序,则这4种选法仅算一种,所以这四种球员的组合方式有:$$ C_4^3=4 $$ 二、排列

按顺序选择元素的方式叫做排列。排列的计算方法是: 从n个元素中取m个元素进行排列的方法有: $$ A_n^m=n(n-1)(n-2)...(n-m+1) $$ 特别地,当m=n时,有: $$ A_n^n=n! $$ 其中,n!表示n的阶乘,$n!=n(n-1)(n-2)...1$。 例1:从一组大小为6的数字中,任取4个数进行排列,求排列个数。 设全集为{1,2,3,4,5,6},任取其中4个元素进行排列。 $$ A_6^4=6\times 5\times 4\times 3=360 $$ 例2:一共有5位弟子,要从其中选出3位去参加武术比赛,求有多少种不同的组合方式。 设全集为{A,B,C,D,E},要从其中任选3个弟子参加武术比赛。 $$ C_5^3=10 $$ 三、组合 组合是指从一组元素中任选m个元素,并将其看作一个整体。组合的计算方法是: 从n个元素中取m个元素进行组合的方法有: $$ C_n^m=\frac{A_n^m}{A_m^m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} $$ 特别地,当m=n时,有: $$ C_n^n=\frac{n!}{n!}=1 $$ 如果m>n,则组合数为0。 例1:从一组大小为5的数字中,任取3个数进行组合,求组合个数。 设全集为{1,2,3,4,5},任选其中3个元素,相当于从5

高中数学:排列组合问题的类型及解答

高中数学:排列组合问题的类型及解答 排列组合问题题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。 说明:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法

例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。 说明:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。

说明:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例 4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有() A. 6种 B. 9种 C. 11种 D. 23种 解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法。故共有3×3×1=9种填法,而选B。 说明:把元素排在指定号码的位置上称为标号排位问题。求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。

高中数学排列组合知识点与典型例题总结二十一类21题型(生)汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中 有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同 的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 八.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 九.小集团问题先整体后局部策略 例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个? 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 定序问题可以用倍缩法,还可转化为占位插空模型处理 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究. 解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?

高中数学排列组合13种方法精讲

高中数学排列组合13种方法精讲 排列组合 1、分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N =m +n 种不同的方法。 2、分步乘法计数原理: 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法. 那么完成这件事共有N =m ×n 种不同的方法。 3、排列及排列数: (1)排列:从n 个不同元素中取出m 个(m ≤n )个元素,按照一定的顺序排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列。 (2)排列数:从n 个不同元素中取出m 个(m ≤n )个元素的所有排列的个数,叫做从 n 个不同元素中取出m 个元素的排列数,用m n A 表示。(3)排列数公式:()()11+--=m n n n A m n . (4)全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列, ()()n n n n A n n =-?-?=12321! ()! ! m n n A m n -= ,规定0!=1 4、组合及组合数:

(1)组合:从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素 中取出m 个元素的一个组合。 (2)组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合个数,叫做从n 个 不同元素取出m 个元素的组合数,用m n C 表示。 (3)计算公式:()()()()! !!1111m n m n m m m n n n A A C m m m n m n -=-+--==. 由于0!=1,所以10 =n C . 5、组合数的性质: (1)m n n m n C C -= (2)1 1-++=m n m n m n C C C (3)n n n n n n C C C C 2210=++++ (4)m A m n =!m n C

高中数学排列与组合的知识点总结

高中数学排列与组合的知识点总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号pn,m表示. pn,m=nn-1n-2……n-m+1=n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m.

高中数学排列组合总结及例题解析

高中数学排列组合总结及例题解析 内容总结: 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()() C A A n n n m m n m n m n m n m m m ==--+=-11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③ ;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若12 m m 1212m =m m +m n n n C C ==则或 四、二项式定理. 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项; ② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项. n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+. ⑶二项式系数的性质. ①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12 +n 项,它的二项式系数2n n C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第 12 1 ++n 项,它们的二项式系数21 21+-=n n n n C C 最大.

高中数学排列组合知识点

1 排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有 2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有13C

然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同 的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排 列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 乙甲丁丙 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有5 5A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含

高中排列组合经典例题

运用两个基本原理 例1.n个人参加某项资格考试,能否通过,有多少种可能的结果? 例2.同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。 其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。 例1.用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。 A.24个 B.30个 C.40个 D.60个 30。 例2.(1995年上海) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种. 72 例3.(2000年全国)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有()种. A33· A72=252 例4.从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 例5.8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 特殊优先,一般在后对于问题中的特殊元素、特殊位置要优先安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 练习1(89年全国)由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个(用数字作答)。 36 三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。 四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法. 例7.有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种.(结果用数值表示)

数学高中排列组合知识和典例

1.排列与排列数 (1)排列: 从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数: 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n. 2.组合与组合数 (1)组合: 从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合. (2)组合数: 从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n. 排列数、组合数的公式及性质 顺序有关,组合问题与顺序无关. 一、排列问题

排列典型例题: 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻. 解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种). (2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种). (3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种). 法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种). (4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种). (5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种). 1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为() A.324 B.648 C.328 D.360 2.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________. 3.甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有() A.10种B.16种 C.20种D.24种

高中数学排列组合题型归纳总结

高中数学排列组合题型归纳总结 LT

数有多少个? 解:共有222 222A A A 种排法 1524 3 练习题: 1、计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254 254A A A 2、 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种 十.元素相同问题隔板策略 例10.、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 一 班二班三班四班五班六班七班 练习题:1、10个相同的球装5个盒中,每盒至少一有多少装法? 2、100x y z w +++=求这个方程组的自然数解的组数 3103 C 十一.正难则反总体淘汰策略 例11.、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种? 解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5 个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有12 55C C , 和为偶数的取法共有123555C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +- 练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种? 十二.平均分组问题除法策略 例12.、 6本不同的书平均分成3堆,每堆2本共有多少分法? 2223 6423 /C C C A 。 将n 个相同的元素分成m 份(n ,m 为正整数), 每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11 m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰. 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

高中数学排列组合典型例题精讲

高中数学排列组合典型例题精讲 概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m ( m n )个元素(这里的被取元素各不相同)按照一定的顺... 序排成一 列,叫做从n个不同元素中取出m个元素的一个排列.。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二排列数的定义及公式 3、排列数:从n个不同元素中,任取m ( m n )个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号阳表示. 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n个不同元素中取出2个元素的排列数A:是多少?A'呢?A;呢? n(n 1)( n 2) (n m 1) ( m, n N , m n) 说明:公式特征:(1)第一个因数是n,后面每一个因数比它前面一个少 因数是n m 1,共有m个因数; (2) m, n N ,m n 即学即练: 1.计算(1 ) A4o; (2) A5 ;(3) A5 A3 m 2•已知A o10 9L5,那么m 3. k N ,且k 40,则(50 k)(51 k)(52 k)L (79 k)用排列数符号表示为() 例1.计算从a,b,c这三个元素中,取出3个元素的排列数,并写出所有的排列。 5、全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的全排列。 此时在排列数公式中,m = n 全排列数:A^1 n(n 1)(n 2)L 2 1 n!(叫做n的阶乘). 即学即练:口答(用阶乘表示):(1) 4A;(2) A:(3) n (n 1)! 排列数公式的另一种形式: 1,最后一个

高中数学排列组合知识点

高中数学排列组合知识点 排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 1 先排末位共有C3 1 然后排首位共有C4 3 最后排其它位置共有A4 4 4 3 113 由分步计数原理得C4C3A4=288 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同 的种法? 二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排 522 列,同时对相邻元素内部进行自排。由分步计数原理可得共有A5A2A2=480种不同的排法 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有A55种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种A6不同的方法,由分步计数原理,节目的不同顺序共有A5A6 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列 3 数除以这几个元素之间的全排列数,则共有不同排法种数是:A77/A3 4 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有A7种方法,其余的三个位置甲乙丙共有 1种坐法, 4 则共有A7种方法。 4 5 4 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

高中排列组合知识点汇总及典型例题全

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空 法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。

高中数学排列组合相关公式

排列组合公式 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求

每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种? 9个人排成一排,不同排法有9!种,对应集合为前面的集合A 9个人坐成一圈的不同之处在于,没有起点和终点之分。设集合D为坐成一圈的坐法的集合。以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,

高中数学排列组合经典题型全面总结版(最新最全)

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少 不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少 种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总 排列数除以这几个元素之间的全排列数,则共有不同排法种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位置甲乙丙共有 1 种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 510 C 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 定序问题可以用倍缩法,还可转化为占位插空模型处理

相关文档
最新文档