高斯公式及其应用

高斯求和公式,分组计算

整数巧算问题2-高斯求和与分组求和 授课时间:年月日 一、知识要点 (一)高斯求和公式 当一个算式中每两个相邻数之间的差值一定时我们可以使用高斯求和公式达到简便运算的目的。 和=(首项+尾项)项数 项数=(尾项-首项)公差+1 其中项数就是整个算式的数字个数,在运用高斯公式时,难点就是找准算式的项数。 (二)分组求和 在数学计算特别是繁杂的计算中往往在题目之后隐藏着一些规律,我们可以按照规律对算式中的数字先进行分组,再计算,可以极大的节省我们的计算时间。 二、精讲精练 (一)高斯求和公式 【例题1】计算1+2+3+……+99 练习1: 1、1+2+3+……+198+199 2、2+3+4+……+199+200 3、2+3+4+……+997+998 【例题2】现在有一组数字为2,4,6……98,100请问这组数一共有多少个数字?

1、现在有一组数字为3,4,5……98,917请问这组数一共有多少个数字? 2、现在有一组数字为98,100,102……1234,1236请问这组数一共有多少个数字? 3、现在有一组数字为3,6,9……99,102请问这组数一共有多少个数字? 【例题3】计算2+4+6+……+998+1000 练习3: 1、1+3+5+……+97+99 2、3+6+9+……+198+201 3、7+14+21+……+994+1001 【例题4】有一组数为1,3,5……97,99,这组数中的第30项是多少?

1、有一组数为2,4,6……98,100,在这组数中的第40项是多少? 2、有一组数为1,3,5……97,99,在这组数中的第20项和第30项的差是多少? 3、有一组数为1,3,5……97,99……999,1001,在这组数中的第400项和第100项的差是多少?【例题5】1+2-3-4+5+6-7-8+……+97+98-99-100+101 练习5: 1、1+2-3-4+5+6-7-8+9+10 2、1+2-3-4+5+6-7-8+……+197+198-199-200+201 3、1+3-5-7+9+11-13-15+……-1999+2001

高斯定理在电磁学中的应用 毕业论文

第 19 页 ,共 20 页 目 录 1 高斯定理的表述 1.1数学上的高斯公式 1.2静电场的高斯定理 1.3磁场的高斯定理 2高斯定理的证明方法 2.1.1静电场的高斯定理 2.1.2磁场的高斯定理 2.2高斯定理的直接证明 2.3高斯定理的另一种证明 2.4对称性原理及其在电磁学中的应用 3理解和使用高斯定理应注意的若干问题的讨论与总结 (a) 定理中的 E 是指空间某处的总电场强度 (b) 注意ξ int ∑?= ?q dS E s 中 E 和 dS 的矢量性 (c) 正确理解定理中的∑int q (d) 不能只从数学的角度理解ξ int ∑?= ?q dS E s (e) 对高斯面的理解 4 高斯定理的应用? 4.1利用高斯定理求解无电介质时电场的强度 4.2利用高斯定理求解有电介质时电场的强度 5将高斯定理推广到万有引力场中 5.1静电场和万有引力场中有关量的类比 5.2万有引力场中的引力场强度矢量 5.3万有引力场中的高斯定理 6结束语 参考文献

高斯定理在电磁学中的应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。本文比较详细的介绍了高斯定理,并提供了数学法、直接证明法等方法证明它,总结出应用高斯定理应注意的几个问题,从中可以发现高斯定理在解决电磁学相关问题时的方便之处。最后把高斯定理推广到万有引力场中去。 关键词:高斯定理,应用,万有引力场 引言 高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。 1 高斯定理的表述 1.1数学上的高斯公式 设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶 连续函数偏导数,则 S V P Q R dxdydz Pdydz Qdzdx Rdxdy x y z ?? ???++=++ ????? ?????? 1-1 其中S 的方向为外发向。1-1式称为高斯公式[1] 。 1.2静电场的高斯定理 一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→ E 的方向处处垂直于球面,且→ E 的大小相等,都是2 04q E r πε= 。通过这个球面S 的电通量为 o o o o εππεπεπε φq r r q dS r q dS r q S d E s s s e = ?= = ?=?=??????→ → 22 2 2 4444 其中 S dS ?? 是球面积分,等于2 4r π。从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。

高斯求和讲解

第3讲高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列) 德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题 让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案 等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好能够分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广 泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中 第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列 称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末 项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加 数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时 就需要先求出项数。根据首项、末项、公差的关系,能够得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。

奥数高斯求和

奥数高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1 + 2+3 + 4+ …+ 99+ 100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1 + 100= 2+ 99= 3 + 98=-= 49+ 5 2 = 50+ 51。 1?100正好可以分成这样的50对数,每对数的和都相等。于是, 小高斯把这道题巧算为 (1 + 100)X 100 + 2 = 5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1) 1, 2, 3, 4, 5, (100) (2) 1, 3, 5, 7, 9,…,99;( 3) 8, 15, 22, 29, 36,…, 其中(1)是首项为1,末项为100,公差为1的等差数列; 是首项为1,末项为99,公差为2的等差数列;(3)是首项为末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和二(首项+末项)X项数+ 2。 例1 1+2+3+ …+ 1999=? 分析与解:这串加数1, 2, 3,-, 1999是等差数列,首项是1,末(2) 8,

项是1999,共有1999个数。由等差数列求和公式可得 原式=(1 + 1999)X 1999- 2= 1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+ 31 = ? 分析与解:这串加数11, 12, 13,…,31是等差数列,首项是11, 末项是31,共有31-11 + 1 = 21 (项)。 原式二(11+31)X 21-2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数二(末项-首项)+公差+1, 末项二首项+公差x(项数-1 )。 例3 3 + 7+11+ …+ 99=? 分析与解:3, 7, 11,…,99是公差为4的等差数列, 项数二(99- 3)- 4+ 1= 25, 原式=(3+ 99)X 25- 2= 1275。 例4求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+ 3X(40-1 ) = 142, 和=(25+ 142)X 40- 2= 3340。

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

四年级数学高斯求和讲解

四年级数学高斯求和讲解 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

四年级奥数《高斯求和》答案及解析

高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100= 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 ]例1 1+2+3+ (1999) 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+ (31) 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+ (99) 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

高斯公式的应用

1、高斯公式在普通物理中的应用 数学中的高斯公式是场论中的一个基本公式。它建立了空间某一区域v 上的体积分与其边界曲面S 上的面积分之间的关系,即 )(1?????++=???? ????+??+??s y Rdxdy Qdzdx pdydz dxdydz z R y Q x P 在物理学中,常用它的矢量形式:??????=s s d F dv F div v 式中k R j i ++=Q P F 在普通物理学中,应用高斯公式可以简洁明了地证明某些重要的结论。下面我们就用它来推证著名的阿基米德浮力定律和静电场中的高斯定理。 (1)高斯公式推证阿基米德浮力定律 在普通物理的教科书中,一般对阿基米德浮力定律都不作严格的数学证明,仅对它作一个说明。但是我们可以根据重力场中静止流体的压强分布,应用高斯公式给出一个证明。 一物体浮在液面上,液体表面的平面把浮体表面的封闭曲面S 分为两部分 1S 和2S ,也把整个浮体分为两部分。其中浮在液面上的那部分为1V ,浸没在液体中的那部分为2V 。建立坐标系,取液体表面为x o y 平面,Z 轴的方向取为竖直向下。作用在曲面1S 上的压强就是大气压0P ,而作用在曲面2S 上的压强则为 gz P P ρ+=0 式中P 为液体的密度,z 为曲面2S 上某点处位于液面下的深度。作用在物体上的浮力就是由于作用在物体下部的压强大于作用在物体上部的压强而产生的,我们来具体计算一下。 因为作用在物体表面上任一面元上的压力总是与面元的法向矢量n 方向相反,所以有: ( ) ???????????????????-?-?-=??-??-??-=?++?-=??-=-=s s s s s s s s s s d k p k s d j p j s d i p i ds P k ds P j ds P i ds k x j i P n ds P s Pd F )()()(cos cos cos cos cos cos γ βαγβα浮 式中αβγ为n 与三个坐标轴的夹角,应用在高斯公式,上式可化 为体积分:

高斯求和讲解

高斯求和讲解 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第3讲高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100= 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+ (1999) 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

六年级上册数学试题数学竞赛计算部分高斯求和

2019小学数学六年级(全国通用)-数学竞赛计算部分-高斯求和(含答案) 一、单选题 1.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子. A.100 B.500 C.1000 D.505 0 2.你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是() A.100000 B.499000 C.499500 D.500000 3.小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠. A.45 B.50 C.55 D.60 二、填空题 4.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果2019,则这个被加了两次的页码是________. 5.把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________. 6.1+2+3+4+5…+2019+2019的和是________(奇数或偶数). 7.1﹣64的自然数中去掉其中两个数,剩下62个数的和是2019,去掉的那两个数共有 ________种可能. 8.100以内的偶数和是________. 9.用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________个杯子. 10.已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________. 11.1+3+5+7+…+97+99=________=________2. 12.9个连续自然数的和是2019,其中最小的自然数是________. 13.1+3+5+…+99=________. 14.27个连续自然数的和是2019,其中最小的自然数是________. 15.自然数1、2、3…14、15的和是120,这15个自然数的平均数是________. 16.已知:

四年级奥数《高斯求和》答案及解析教学内容

高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 ]例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

高斯定理的应用

简析高斯定理在电场中的应用 高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧,就会感到高斯定理深不可测. 下面,笔者就几年来的教学体会对高斯定理及其在电场中的应用作以简要分析. 三、高斯定理在电场中的应用 [例题1]设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)带电面右半空间的场强与左半空间的场强,对带电平面是对称的. 为了计算右方一点A 的场强,在左取它的对称点B ,以AB 为轴线作一圆柱,如图-3所示. 对圆柱表面用高斯定理, 图-3 ?∑= +=?=s e e e q ds E 0 εφφφ两个底面侧面 (1) 0=侧e φ (2) ES e 2=两个底面φ (3) 圆柱内的电荷量为 ∑=S q σ (4) 把(2)、(3)、(4)代入(1)得 02εσ= E =12 81085.82103.9--???V/m=5.25×103 V/m [例题2]设有一根无限长块均匀带正电直线,电荷线密度为λ=5.0×10-9C/m ,放置在真空中,求空间距直线1m 处任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图-4).

高斯求和问题奥数

1、板书:1+2+3+4+…+99+100=? 2、围绕这一道数学题目,一直流传着这样一个故事。故事的主人翁是高斯,高斯是德国乃至世界著名的数学家,有着“数学王子”的美誉。高斯8岁时聪明过人,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案。 现在请同学们计算一下这道题目。 3、讲解 方法一:配对求和 方法二:倒序相加 方法三:公式法 介绍等差数列:小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,…,100;(2)1,3,5,7,9; 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为9,公差为2的等差数列。由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1:1+2+3+4+5+6+7+8+9+10 分析与解:这串加数1,2,3,…,10是等差数列,首项是1,末项是10,共有10个数。由等差数列求和公式可得原式=(1+10)×10÷2=55。 例2:计算:1+2+3+4+…+29+30 例3:1+3+5+7+…+97+99 练习: 1.计算:1+2+3+4+…+18+19 2.计算:2+4+6+8+…+98+100 3. 计算11+12+13+ (31) 4.有一串数,共有16个,第1个数是5,以后每个数比前一个数大5,最后一个数是90。这串数连加,和是多少? 5.一堆圆木共15层,第1层有8根,下面每层比上层多1根。这堆圆共多少根?

应用高斯公式计算下列曲面积分

1. 应用高斯公式计算下列曲面积分: (1)??++S xydxdy zxdzdx yzdydz ,其中S 是单位球面1222 =++z y x 的外侧; (2)?? ++S dxdy z dzdx y dydz x 222,其中S 是立方体a z y x ≤≤,,0表面的外侧; (3) ??++S dxdy z dzdx y dydz x 222,其中S 是锥面222z y x =+与平面z=h 所围空间区域)0(h z ≤≤的表面,方向取外侧; (4) ??++S dxdy z dzdx y dydz x 33 3,其中S 是单位球面1222=++z y x 的外侧; (5) ??++S zdxdy ydzdx xdydz ,其中S 是单位球面222y x a z +-= 的外侧。 分析:记住高斯公式 d d d P Q R x y z x y z Ω?????++ ????????? d d d d d d S P y z Q z x R x y =++??, 其中S 取外侧. 解: (1)因为(,,)P x y z yz =,(,,)Q x y z zx =,(,,)R x y z xy =, 所以 d d d d d d S yz y z zx z x xy x y ++?? d d d V P Q R x y z x y z ?? ???=++ ?????????0d d d 0 V x y z ==??? (2) 4 3202 00 2 223)(2]2 )[(2)(2)(2a dx a x a dy a a y x dx dz z y x dy dx dxdydz z y x dxdy z dzdx y dydz x a a a a a a V S =+=++=++=++=++??????????? (3) ?????++=++V S dxdydz z y x dxdy z dzdx y dydz x )(222 ,由柱面坐标变换 ) ,0,20(,sin ,cos h z r h r z z r y r x ≤≤≤≤≤≤===πθθθ 知 原式40 20 2 )sin cos (2h rdz z r r dr d h r h π θθθπ = ++=??? (4)

格林公式、高斯公式、斯托克斯公式的应用

Green公式、Stokes公式、Gauss公式在专业学科中 的应用 摘要 格林(Green)公式,斯托克斯(Stokes)公式和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。它们建立了向量的散度与通量、旋度与环量之间的关系,除了在数学上应用于计算多元函数积分,在其他领域也有很多重要的应用。本文将主要从这三个公式与物理学之间的联系展开介绍它们的其他应用,其中包括应用于GPS面积测量仪,确定外部扰动重力场,应用于保守场以及推证阿基米德定律和高斯定理等,帮助人们加深对格林公式、斯托克斯公式和高斯公式的理解,从而能够更准确地应用此三个公式。 关键词:格林公式斯托克斯公式高斯公式散度旋度应用

目录 一、引言 (1) 二、格林(Green)公式的应用 (1) (一)格林公式的定义 (1) 1、单连通区域的概念 (1) 2、区域的边界曲线的正向规定 (1) 3、陈述 (1) (二)格林公式的物理原型 (2) 1、物理原型 (2) 2、计算方法 (2) (三)格林公式与GPS面积测量仪 (3) 1.应用曲线积分计算平面区域面积 (3) 2.GPS面积测量仪的数学原理 (4) 3.实验结果 (5) 4.进一步讨论 (5) (四)应用格林积分直接以地面边值确定外部扰动重力场 6 1.扰动重力位的地面边值问题 (6) 2.地面边值问题的格林公式表示 (6) 三、Stokes公式的应用 (8) (一)Stokes公式简介 (8) (二)环量与环量密度 (9) (三)环量的应用 (9)

1.开尔文定理 (9) 2.开尔文定理的推论 (10) 3.升力 (10) (四)旋度 (11) (五)旋度的应用 (12) 1. 平面矢量场的旋度 (12) 2.环流量是区域S 内有无漩涡的量度 (12) 3.旋度是矢量场某点漩涡强度的量度 (13) 4.空间矢量场的旋度 (14) 四、Gauss公式的应用 (16) 1、数学中的高斯公式 (16) 2、保守场的推导 (17) 3、高斯公式在电场中的运用 (17) 4、高斯定理在万有引力场中的应用 (19) 5.高斯公式推证阿基米德浮力定律 (21) 6.高斯公式推证静电场中的高斯定理 (22) 7.高斯公式与散度 (24) 五、结语 (25) 六、参考文献 (26)

从小高斯求和故事谈起

从小高斯求和故事谈起 伟大的德国数学家高斯有着“世界数学王子”的美誉。小高斯上小学三年级的时候,他的数学教师在黑板上给同学们写下了一个长长的算式:1+2+3+4+5……+98+99+100。可老师刚写完题目,就有同学说:“哇!这是多少个数相加呀?多难算呀!”这时老师也很得意,他想:你们这些调皮蛋就是乖乖算上1节课时间,也不一定会有正确结果的。 不一会儿,小高斯却拿着写有答案的小石板过来了,说“老师,我算出来了。”老师头也不抬地说:“去!去!去!,别瞎胡闹!”可小高斯坚持不走,说:“老师,我是认真的。”老师接过小石板一看,惊讶得几乎说不出话来,没想到这个10岁的孩子居然这么快就算出了正确答案。 大家想想,小高斯是怎样算的呢?原来小高斯不像其他同学那样一个数一个数地相加,而是通过细心观察、发现了以下规律:1和100,2和99,3和98……这样配对,共有50对数,每一对数的和都是101,求50个101的和可以用乘法很快算出正确结果。 小高斯用配对求和的故事,使我深受启发,要想算得又巧又快,就要动脑思考,还要善于观察,发现题目的构造规律。以上问题是从1开始的连续自然数求和,相邻两个自然数的差都是相等的,这样的数列求和,还可以用颠倒相加的方法求和:

和 = 1 + 2 + 3 + 4 +…… + 97 + 98 + 99 +100 和 = 100 + 99 + 98 + 97 +…… + 4 + 5 + 2 +1 2倍和 = 101+101+101+101+……+101+101+101+101 所以 1 + 2 + 3 + 4 +…… + 97 + 98 + 99 +100 =( 1 + 100 )× 100 ÷ 2 = 5050 有兴趣的同学,请做下面的思考题: (1)1+2+3+4+5+…+198+199+200 (2)2+4+6+8+10+…+96+98+100 (3)5+10+15+20+25+…+490+495+500 名师点评:文中小作者叙述了经典的高斯求和故事,当大家都在埋头苦算的时候,小高斯却细心观察数字的规律,最终找到了简便的求和方法。小作者也从高斯求和的故事中明白了:“要想算得又巧又快,就要动脑思考,还要善于观察,发现题目的构造规律”,看来小作者的收获不小。小作者还把掌握的规律运用到实际中,学以致用,值得表扬。 文章的条理清晰,内容也很有意义,告诉同学们学习也是需要寻找方法的。文章的语句通顺连贯,小作者的文字功底不错,写得挺好的。

小学奥数—高斯求和

海青教育一对一个性化教案

2、甲、乙两数的和是48,甲数是乙数的2倍,甲乙两数各是多少? 3、一班的图书比二班多216本,一班的图书数是二班的3倍,两班各有图书多少本? 4、小娟家到学校共450米,早晨上学,小娟每分钟走75米,下午放学回家时, 小娟 每分钟走50米,求小娟上学和回家平均每分钟走多少米? 5、按规律填数: ①1,1, 2, 3, 5, 8,13, 21, ( ),( ),89 ② 1 , 2, 4, 8, 16,( ),( ) 6、将一根木头锯成3段要6分钟,如果要锯成6段需要多少分钟? 新课学习——高斯求和 【知识概述】: 1、若干个数按照一定的顺序规律排列起来就是一个数列。例如: 斐波那契数列:1, 1,2 , 3, 5, 8, 13, 21, 34,…… 2、如果在一个数列中,任意两个相邻的数之间的差都相等,我们把这个数列称为等差数列。 其中第一个数称为首项,最后一个数称为末项。相邻两个数之间的差称为公差 (通常用d表示),这列数中数的个数称为项数。 3. 等差数列的计算公式:

前n项和:S(a1a n) n 2 项数:n(a n-a1) d 1n 2S (a1 a n) 第n项:a n a1(n--1) d 公差:d a - n -a1 ) (n -1) 例题1、计算1 + 2+ 3+……+ 99+ 100 (等差数列求和公式的推导) 你会怎么求?J 高斯算法:高斯,德国著名数学家,被誉 为“数学王子”。 200多年前,高斯的算术教师提出了下面 的问题:1 + 2 + 3+…+100=? 据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案: (1+ 100) + ( 2 + 99)+……+( 50+ 51)= 101X 50 = 5050 例题2、2 + 4+ 6+ 8+……+ 48+ 50 5 + 10+ 15+ 20 +……+ 45+ 50 练习:(1)计算1 + 2+ 3+……+ 49+ 50 刃计算1 + 3+ 5+ 7+……+ 97+ 99

相关文档
最新文档