第七讲坐标系中的几何问题(含答案)

第七讲坐标系中的几何问题(含答案)
第七讲坐标系中的几何问题(含答案)

中考数学重难点专题讲座

第七讲 坐标系中的几何问题

【前言】

前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。

第一部分 真题精讲

【例1】2018,石景山,一模

已知:如图1,等边ABC ?

的边长为,一边在x

轴上且()

10A -,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F .

(1)直接写出点B C 、的坐标;

(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;

(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段OB 上运动时,现给出两个结论:

① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.

图2

图1

【思路分析】

很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。

【解析】解:(1)()

10B +;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R .

∵ABC ?是等边三角形,()

10A . ∴60EAO ∠=? .

在Rt EOA ?中,90EOA ∠=?.

∴(tan 6013EO AO =??=--=

∴(0,3E .

∵EF ∥AB 交BC 于F ,()13C ,

∴1R ? ??

. (就是四边形对角线的中点,横坐标自然和C 一样,纵坐标就是E

的纵坐标的一半)

∵直线1y kx =-将四边形EABF 的面积两等分.

∴直线1y kx =-必过点1R ? ??

∴1k -=

,∴k =

(3)正确结论:①GNM CDM ∠=∠.

证明:可求得过A B C 、、的抛物线解析式为222y x x =-++ ∴()02D ,. ∵()20G -,

. ∴OG OD =.

由题意90GON DOM ∠=∠=?. 又∵GNO DNH ∠=∠ ∴NGO MDO ∠=∠ ∴NGO ?≌MDO ?

∴GNO DMO ∠=∠,OM ON = ∴45ONM NMO ∠=∠=? 过点D 作DT CP ⊥于T ∴1DT CT == ∴45CDT DCT ∠=∠=? 由题意可知DT ∥AB ∴TDM DMO ∠=∠

∴454545TDM DMO GNO ∠+?=∠+?=∠+? ∴TDM CDT GNO ONM ∠+∠=∠+∠

即:GNM CDM ∠=∠. (这一问点多图杂,不行就直接另起一个没有抛物线干扰的图)

【例2】2018,怀柔,一模

如图,在平面直角坐标系xoy 中,抛物线214

10189

y x x =

--与x正半轴交于点A,与y轴交于点B,过点B 作x 轴的平行线BC,交抛物线于点C,连结AC .现有两动点P 、Q 分别从O 、C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒)

(1)求A,B,C 三点的坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;

(3)当0<t <

9

2

时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;

(4)当t _________时,△PQF 为等腰三角形?

【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。注意平行于X 轴的直线交抛物线的两个点一定是关于对称轴对称的。第二问就在于当四边形PQCA 为平行四边形的时候题中已知条件有何关系。在运动中,QC 和PA 始终是平行的,根据平行四边形的判定性质,只要QC=PA 时候即可。第三问求△PQF 是否为定值,因为三角形的一条高就是Q 到X

轴的距离,而运动中这个距

离是固定的,所以只需看PF 是否为定值即可。根据相似三角形建立比例关系发现OP=AF ,得解。第四问因为已经知道PF 为一个定值,所以只需PQ=PF=18即可,P 点(4t,0)Q (8-t,-10),F(18+4t,0)两点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ 就可以。实际考试中如果碰到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时间都可以把选择填空仔细过一遍了.

【解析】解:(1) 2

1(8180)18

y x x =

--,令0y =得281800x x --=,()()18100x x -+=

∴18x =或10x =-∴(18,0)A ;

在214

10189

y x x =--中,令0x =得10y =即(0,10)B -; 由于BC ∥OA ,故点C 的纵坐标为-10,由214

1010189

x x -=--得8x =或0x = 即(8,10)C -

于是,(18,0),(0,10),(8,10)A B C --

(2)若四边形PQCA 为平行四边形,由于QC ∥PA.故只要QC=PA 即可 ∵184,PA t CQ t =-= ∴184t t -= 得18

5

t =

(3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,

由于QC ∥OP 知△QDC ∽△PDO ,故1

44

QD QC t DP OP t === ∴4AF t OP ==

∴18PF PA AF PA OP =+=+= 又点Q 到直线PF 的距离10d = ∴11

18109022

PQF S PF d ?=

=??= ∴△PQF 的面积总为90

(4)由上知,(4,0),(184,0),(8,10)P t F t Q t +--,0 4.5t <<。构造直角三角形后

易得

2222(48)10(58)100PQ t t t =-++=-+,

2222(1848)10(510)100FO t t t =+-++=++

若FP=PQ ,即2218(58)100t =-+,故225(2)224t +=,

∵22 6.5t +≤≤∴25t +=

=∴2t =-

若QP=QF ,即22(58)100(510)100t t -+=++,无0 4.5t ≤≤的t 满足条件;……………12′

若PQ=PF ,即22(58)10018t -+=,得2

(58)224

t -=,∴8 4.55

t +=>或

0t =

<都不满足0 4.5t ≤≤,故无0 4.5t ≤≤的t 满足方程;

综上所述:当2t =

-时,△PQR 是等腰三角形。 【例3】2018,延庆,一模

如图,已知抛物线1C :()522

-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点

A 在点

B 的左边)

,点B 的横坐标是1. (1)求P 点坐标及a 的值;

(2)如图(1),抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求3C 的解析式;

(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线1C 绕点Q 旋转180?后得到抛物线4C .抛物线4C 的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.

【思路分析】出题人比较仁慈,上来就直接给出抛物线顶点式,再将B (1,0)代入,第一问轻松拿分。第二问直接求出M 坐标,然后设顶点式,继续代入点B 即可。第三问则需要设出N ,然后分别将NP ,PF,NF 三个线段的距离表示出来,然后切记分情况讨论直角的可能性。计算量比较大,务必细心。

【解析】

解:⑴由抛物线1C :()2

25y a x =+-得 顶点P 的为(25)--, ∵点(10),

B 在抛物线1

C 上 ∴ ()2

0125a =+-

解得,5

9

a =

⑵连接PM ,作⊥PH x 轴于H ,作⊥MG x 轴于G ∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且=PB M B ∴PBH MBG △≌△

∴5==MG PH ,3==BG BH

∴顶点M 的坐标为(45),

(标准答案如此,其实没这么麻烦,点M 到B 的横纵坐标之差都等于B 到P 的,直接可以得出(4,5))

抛物线2C 由1C 关于x 轴对称得到,抛物线3C 由2C 平移得到

∴抛物线3C 的表达式为()25

459

y x =-

-+ ⑶∵抛物线4C 由1C 绕点x 轴上的点Q 旋转180?得到 ∴顶点N 、P 关于点Q 成中心对称 由⑵得点N 的纵坐标为5 设点N 坐标为(5),

m 作⊥PH x 轴于H ,作⊥NG x 轴于G 作⊥PK NG 于K ∵旋转中心Q 在x 轴上 ∴26===EF AB BH

∴3=FG ,点F 坐标为(30)+,m H 坐标为(20),

,K 坐标为(5)-,m , 根据勾股定理得

22224104PN NK PK m m =+=++ 22221050PF PH HF m m =+=++

2225334NF =+=

①当90∠=?PNF 时,222PN NF PF +=,解得443m =,∴Q 点坐标为19

(0)3,

②当90∠=?PFN 时,222PF NF PN +=,解得103m =,∴Q 点坐标为2

(0)3

③∵10>=>PN NK NF ,∴90NPF ∠?≠

综上所得,当Q 点坐标为19(0)3,或2

(0)3,时,以点P 、N 、F 为顶点 的三角形是直角三角形.

【例4】2018,房山,一模

如图,在平面直角坐标系xOy 中,直线l1

:y =+x 轴、y 轴于A 、B 两点,点(),M m n 是线段AB 上一动点,点C 是线段OA 的三等分点.

(1)求点C 的坐标;

(2)连接CM ,将ACM △绕点M 旋转180?,得到''A C M △. ①当1

2

BM AM =

时,连结'A C 、'AC ,若过原点O 的直线2l 将四边形''A CAC 分成面

积相等的两个四边形,确定此直线的解析式;

②过点'A 作'A H x ⊥轴于H ,当点M 的坐标为何值时,由点'A 、H 、C 、M 构成的四边形为梯形?

【思路分析】本题计算方面不是很繁琐,但是对图形的构造能力提出了要求,也是一道比较典型的动点移动导致特殊图形出现的题目。第一问自不必说,第二问第一小问和前面例题是一样的,也是要把握过四边形对角线交点的直线一定平分该四边形面积这一定理。求出交点就意味着知道了直线.第二小问较为麻烦,因为C 点有两种可能,H 在C 点的左右又是两种可能,所以需要分类讨论去求解.只要利用好梯形两底平行这一性质就可以了.

【解析】

(1)根据题意:()6,0

A ,(0,

B ∵

C 是线段OA 的三等分点

∴()2,0C 或()4,0C ---------------2分 (2)①如图,过点M 作MN y ⊥轴于点N , 则BMN BAO △∽△. ∵1

2

BM AM =

. ∴1

3

BM BA =

∴1

3BN BO =

∴(0,N

∵点M

在直线y =+

∴(2,M -

∵''A C M △是由ACM △绕点M 旋转180?得到的 ∴''A C AC ∥

∴无论是1C 、2C 点,四边形A CAC ''是平行四边形且M 为对称中心 ∴所求的直线2l

必过点(2,M . ∴直线2l 的解析式为

:y =

② 当()12,0C 时,

第一种情况:H 在C 点左侧 若四边形1A HC M '是梯形 ∵A M '与1HC 不平行 ∴AH '∥1MC

此时(2,M

第二种情况:H 在C 点右侧 若四边形1'A C HM 是梯形 ∵'A M 与1C H 不平行 ∴1'A C HM ∥ ∵M 是线段'AA 的中点 ∴H 是线段1AC 的中点 ∴()4,0H

由6OA =,OB = ∴60OAB ∠=? ∴点M 的横坐标为5

∴(5,M

当()24,0C 时,同理可得

第一种情况:H 在2C 点左侧时,(4,M -

第二种情况:H 在2C 点右侧时,11,2M ? ??

-

综上所述,所求M 点的坐标为:(2,M ,(5,M ,(4,M 或112M ? ??

【例5】通州,2018,一模

在平面直角坐标系中,抛物线223y x x =+-与x 轴交于A 、B 两点,(点A 在点B 左侧).与y 轴交于点C ,顶点为D ,直线CD 与x 轴交于点E.

(1)请你画出此抛物线,并求A 、B 、C 、D 四点的坐标.

(2)将直线CD 向左平移两个单位,与抛物线交于点F (不与A 、B 两点重合),请你求出F 点坐标.

(3)在点B 、点F 之间的抛物线上有一点P ,使△PBF 的面积最大,求此时P 点坐标及△PBF 的最大面积.

(4)若平行于x 轴的直线与抛物线交于G 、H 两点,以GH 为直径的圆与x 轴相切,求该圆半径.

【思路分析】本题看似错综复杂,尤其最后第四问的图像画出来又乱又挤,稍微没画好就会让人头大无比。但是不用慌,一步步来慢慢做。抛物线表达式很好分解,第一问轻松写出四个点。第二问向左平移,C 到对称轴的距离刚好是1,所以移动两个距离以后就到了关于对称轴对称的点上,所以F 直接写出为(-2,-3)第三问看似棘手,但是只要将△PBF 拆解成以Y 轴上的线段为公共边的两个小三角形就会很轻松了。将P 点设出来然后列方程求解即可。最后一问要分GH 在X 轴上方和下方两种情况,分类讨论。不过做到最后一步相信同学们的图已经画的乱七八糟了,因为和前面的问题没有太大关系,所以建议大家画两

个图分开来看。

【解析】 .解:

(1)()()()()30100314A B C D ----,

,,,,,,.

(2)()23F --,

(3)过点P 作y 轴的平行线与BF 交于点M ,与x 轴交于点H 易得()23F --,

,直线BF 解析式为1y x =-. 设()

223P x x x +-,

,则()1M x x -,, ∴22PM x x =--+

PM 的最大值是9

4.

当PM 取最大值时PBF ?的面积最大

19273248

PBF PFM PBM

S S S ???=+=??=

PFB ?的面积的最大值为

278

. (4)如图,①当直线GH 在x 轴上方时,设圆的半径为()0R R >,则()1H R R -,

代入抛物线的表达式,解得R =

②当直线GH 在x 轴下方时,设圆的半径为()0r r >, 则()1H r r --,

代入抛物线的表达式,解得r =

. .

【总结】 通过以上五道一模真题,我们发现这类问题虽然看起来十分复杂,但是只要一问一问研究慢慢分析,总能拿到不错的分数。将几何图形添进坐标系大多情况下是和抛物线有关,所以首先需要同学们对抛物线的各种性质熟练掌握,尤其是借助抛物线的对称性,有的时候解题会十分方便。无论题目中的图形是三角形,梯形以及平行四边形或者圆,只要认清各种图形的一般性质如何在题中体现就可以了。例如等腰/边三角形大多和相似以及线段长度有关,梯形要抓住平行,平行四边形要看平行且相等,圆形就要看半径和题目中的条件有何关系。还需要掌握平分三角形/四边形/圆形面积的直线分别都一定过哪些点。总之,再难的问题都是由一个个小问题组成的,就算最后一两问没有时间思考拿不了全分,至少要将前面容易的分数拿到手,这部分分数其实还不少。像例2最后一问那种情况,该放弃时候果断放弃,不要为1分的题失去了大量检查的时间。

第二部分 发散思考

【思考1】

2009,北京

. 如图,在平面直角坐标系xOy 中,ABC 三个顶点的坐标分别为()6,0A -,

()6,0B ,(0,C ,延长AC 到点D,使CD=1

2

AC ,过点D 作

DE ∥AB 交BC 的延长线于点E.

(1)求D

点的坐标;

(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个

四边形,确定此直线的解析式;

(3)设G为y轴上一点,点P从直线y kx b

=+与y轴的交点出发,先沿y轴到达G 点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G 点位置的方法,但不要求证明)

【思路分析】在一模真题部分我们谈到的是直线分四边形面积相等,但是这道去年中考原题则是分周长相等。周长是由很多个线段组成的,所以分周长相等只需要研究哪些线段之和相等就可以了。所以自然想到去证明全等三角形。第三问虽然不要求证明,但是只需设出速度,利用相似三角形去建立关系,还是不难证明的,有余力的同学可以试试.

【思考2】2009,西城,一模

已知:如图,在平面直角坐标系xOy中,直线

3

6

4

y x

=-+与x轴、y轴的交点分

别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出

QA QO

-的取值范围.

【思路分析】第二问有两个思路,第一个是看已知四边形的线段是否平行且相等,角是否符合平行四边形的条件。另一个是看假如有平行四边形,那么构成平行四边形的点P 是否在BC上。从这两个思路出发,列出方程等式即可求解。第三问根据抛物线的对称性来看三点共线,继而看出最大值和最小值分别是多少。

【思考3】2009,朝阳,一模

抛物线与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,-3),抛物线顶点为M ,连接AC 并延长AC 交抛物线对称轴于点Q ,且点Q 到x 轴的距离为6.

(1)求此抛物线的解析式;

(2)在抛物线上找一点D ,使得DC 与AC 垂直,求出点D 的坐标;

(3)抛物线对称轴上是否存在一点P ,使得S △PAM=3S △ACM ,若存在,求出P 点坐标;若不存在,请说明理由.

【思路分析】第一问要算的比较多,设直线以后求解析式,看出抛物线对称轴为x=1,然后设顶点式解个二元方程组即可.第二问利用三角形相似求出点N 坐标,然后联立抛物线与直线CN 即可求出点D.第三问考验对图形的理解,如果能巧妙的将△ACM 的面积看成是四边形ACEM 减去△AME,那么就会发现四边形ACEM 刚好也是△AOC 和梯形OCEM 之和,于是可以求出PM 的距离,然后分类讨论PM 的位置即可求解.

【思考4】2009,崇文,一模

如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且

OA OC OB 3==.

(I )求抛物线的解析式;

(II )探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形? 若存在,求出P 点坐标,若不存在,请说明理由; (III )直线13

1

+-

=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,

βαβ-=∠求,CBE 的值

【思路分析】本题虽然没有明确给出坐标,但是表达式中暗含了X=0时Y=-3,于是C 点得出,然后利用给定的等式关系写出A,B 去求解析式。第二问中,因为AC 是固定的,所以构成的直角三角形根据P 的不同有三种类型。注意分类讨论。第三问则是少见的计算角度问题,但是实际上也是用线段去看角度的相等。最方便就是利用正切值构建比例关系,发现∠CBE=∠DBO ,于是所求角度差就变成了求∠OBC 。

第三部分 思考题解析

【思考1解析】

解:(1)∵(60)A -,

,(0C ,

∴6OA OC ==,. 设DE 与y 轴交于点M .

由DE AB ∥可得DMC AOC △∽△.

又1

2

CD AC =

, ∴

1

2

MD CM CD OA CO CA ===.

∴CM =,3MD =. 同理可得3EM =.

∴OM =

∴D

点的坐标为(3.

(2)由(1)可得点M

的坐标为(0. 由DE AB EM MD =∥,,

可得y 轴所在直线是线段ED 的垂直平分线. ∴点C 关于直线DE 的对称点F 在y 轴上. ∴ED 与CF 互相垂直平分. ∴CD DF FE EC ===.

∴四边形CDFE 为菱形,且点M 为其对称中心. 作直线BM .

设BM 与CD EF 、分别交于点S 、点T .可证FTM CSM △≌△. ∴FT CS =. ∵FE CD =, ∴TE SD =. ∵EC DF =,

∴TE EC CS ST SD DF FT TS +++=+++.

∴直线BM 将四边形CDFE 分成周长相等的两个四边形.

由点(60)B ,

,点(0M 在直线y kx b =+上,

可得直线BM

的解析式为y =+

(3)确定G 点位置的方法:过A 点作AH BM ⊥于点H .则AH 与y 轴的交点为所求的G 点.

由6OB OM ==, 可得60OBM ∠=°, ∴30BAH ∠=°.

在Rt OAG △

中,tan OG AO BAH =∠=

∴G

点的坐标为(0.(或G 点的位置为线段OC 的中点)

【思考2解析】

解:(1)点C 的坐标为(3,0).

∵ 点A 、B 的坐标分别为(8,0),(0,6)A B ,

∴ 可设过A 、B 、C 三点的抛物线的解析式为(3)(8)y a x x =--.

将0,6x y ==代入抛物线的解析式,得1

4a =. ∴ 过A 、B 、C 三点的抛物线的解析式为2111

6

y x x =-+.

(2)可得抛物线的对称轴为11

2

x =,顶点D 的坐标为 1125

(,)216

-,设抛物线的对称轴与x 轴的交点为G. 直线BC 的解析式为26y x =-+.- 设点P 的坐标为(,26)x x -+.

解法一:如图8,作OP ∥AD 交直线BC 于点P , 连结AP ,作PM ⊥x 轴于点M. ∵ OP ∥AD ,

∴ ∠POM=∠GAD ,tan ∠POM=tan ∠GAD.

∴ PM DG

OM GA =,即25

26161182

x x -+=-

. 解得167x =. 经检验167

x =是原方程的解. 此时点P 的坐标为1610

(,)77

.

但此时165

,72

OM GA ==,OM <GA.

∵ ,,,cos cos OM GA

OP AD POM GAD POM GAD

=

=∠=∠∠∠

∴ OP <AD ,即四边形的对边OP 与AD 平行但不相等, ∴ 直线BC 上不存在符合条件的点P.

解法二:如图9,取OA 的中点E ,作点D 关于点E 的对称点P ,作PN ⊥x 轴于点N. 则∠PEO=∠DEA ,PE=DE.

可得△PEN ≌△DEG .

由42OA

OE =

=,可得E 点的坐标为(4,0). NE=EG=32, ON=OE -NE=52,NP=DG=25

16

.

∴ 点P 的坐标为525

(,)216

.

∵ x=52时,52526261216

x -+=-?+=≠,

∴ 点P 不在直线BC 上.

∴ 直线BC 上不存在符合条件的点P .

(3)QA QO -的取值范围是04QA QO ≤-≤.

说明:如图10,由对称性可知QO=QH ,QA QO QA QH -=-.当点Q 与点B 重合时,Q 、H 、A 三点共线,QA QO -取得最大值4(即为AH 的长);设线段OA 的垂直平分线与直线BC 的交点为K ,当点Q 与点K 重合时,QA QO -取得最小值0.

【思考3解析】

解:(1)设直线AC 的解析式为3-=kx y ,把A (-1,0)代入得3-=k . ∴直线AC 的解析式为33--=x y . 依题意知,点Q 的纵坐标是-6.

把6-=y 代入33--=x y 中,解得1=x ,∴点 Q (1,6-) ∵点Q 在抛物线的对称轴上,∴抛物线的对称轴为直线1=x .

设抛物线的解析式为n x a y +-=2)1(,由题意,得???-=+=+3

04n a n a ,解得

??

?-==.

4,

1n a

第七讲坐标系中的几何问题(包含答案)

中考数学重难点专题讲座 第七讲 坐标系中的几何问题 【前言】 前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。 第一部分 真题精讲 【例1】2010,石景山,一模 已知:如图1,等边ABC ?的边长为x 轴上且() 10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F . (1)直接写出点B C 、的坐标; (2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值; (3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段 OB 上运动时,现给出两个结论: 。 ① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判 断哪个结论正确,并证明.

图2 图1 【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。 【解析】解:(1 )() 10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ? 是等边三角形,() 10A . ∴60EAO ∠=? . 在Rt EOA ?中,90EOA ∠=?. ∴( tan 6013EO AO =??=-= ∴(0,3E . … ∵EF ∥AB 交BC 于F ,()13C , .

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

中考数学难点分类讲解 第七讲 坐标系中的几何问题

中考数学难点分类讲解 第七讲 坐标系中的几何问题 第七讲 坐标系中的几何问题 【前言】 前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。 第一部分 真题精讲 【例1】2010,石景山,一模 已知:如图1,等边ABC ? 的边长为x 轴上且() 10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F . (1)直接写出点B C 、的坐标; (2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值; (3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段 OB 上运动时,现给出两个结论: ① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明. 图2 图1

【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。 【解析】解:(1)() 10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ?是等边三角形,() 10A . ∴60EAO ∠=? . 在Rt EOA ?中,90EOA ∠=?. ∴(tan 6013EO AO =??=-= ∴(0,3E . ∵EF ∥AB 交BC 于F ,()13C , . ∴1R ? ?? . (就是四边形对角线的中点,横坐标自然和C 一样,纵坐标就是E 的纵坐标的一半) ∵直线1y kx =-将四边形EABF 的面积两等分. ∴直线1y kx =-必过点1R ? ?? . ∴1k -= ,∴k

平面直角坐标系中如何求几何图形的面积

图1 图2 图3 平面直角坐标系中如何求几何图形的面积 一、 求三角形的面积 1、有一边在坐标轴上或平行于坐标轴 例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你 能求出三角形ABC 的面积吗 2、无边在坐标轴上或平行于坐标轴 例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗 归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。 二、求四边形的面积 例3:如图3,你能求出四边形ABCD 的面积吗 分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。

归纳:会将图形转化为有边与坐标轴平行的图形进行计算。 怎样确定点的坐标 一、 象限点 解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。 例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0 二、轴上的点 解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。 例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4) 三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。 例3:已知点Q (8,4m 22 2++++m m m )在第一象限的角平分线上,则m=_________. 四、对称点 对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( ) A 、(-1,-4) B 、(1,-4) C 、(1,4) D 、(4,-1) 五、平行于坐标轴的直线上的点 平行于x 轴的直线上点的纵坐标相同,平行于y 轴的直线上点的横坐标相同。 例5:点A(4,y)和点B (x ,-3),过A 、B 的直线平 行于x 轴,且AB=5,则x=____,y=_____.

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

平面直角坐标系中的几何综合题

2015年七年级下学期期末备考之《平面直角坐标系中几何综合 题》 2015-06-15一.解答题(共17小题) 1.(2015春?玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0. (1)求a、b的值; (2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC 的面积表示为S△ABC) ②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标. 2.(2015春?汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C (3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0. (1)求a、b、c的值; (2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.

3.(2015春?鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC. (2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P 的坐标;若不存在,试说明理由. (3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由. 4.(2014春?富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0 (1)求a、b的值; (2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标; ②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立若存在,请直接写出符合条件的点M的坐标;

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

八年级坐标与几何综合题压轴题

八年级坐标与几何综合 题压轴题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2701,直线AB; y=x-b 分别与x 轴y 轴交于A(6,0), B 两点,过点B 的直线交x 轴负半轴 于C , OB ;OC=3:1。 (1) 求直线BC 的解析式。 (2) 直线EF :y=kx —k (k ≠0).交AB 于E ,交BC 于F ,交x 轴于D ,是否存在这 样的直线EF 使得S △EBD=S △FBD 若存在求出k 的值,若不存在,说明理由。 (3) 如图2,P 为A 点右侧x 轴上的一动点,以P 为直角顶点 BP 为腰,在第一 象限内作 等腰直角三角形△BPQ ,连接QA 并延长交y 轴于点K 当P 点运动 时,K 点的位置是否发生变化 如果不变求出它的坐标,如果变化,说明理由。 2702,如图,在平面直角坐标系中,一次函数y=67 x+7与X 轴,Y 轴分别交与点A,C.点B 为x 轴正半轴上一点,且△ABC的面积为70。 (1) 求直线BC 的解析式。 (2) 动点P 从A 出发沿线段AB 向点B 以每秒2个单位的速度运动,同时点Q 从点 C 出发沿射线CO 以每秒1个单位的速度匀速运动,当点P 停止运动时点Q 也停止运动。连接PO,PC,设△ABC的面积为S ,点P,Q 的运动时间为t(秒),求 S 与t 的函数关系式,并直接写出自变量的取值范围。 (3) 在(2)的条件下,在直线BC 上是否存在点D ,连接DP,DO.使得△DPQ 是以PQ 为直角边的等腰直角三角形,若存在求出t 值,若不存在,说明理由。 2703.在平面直角坐标系中,直线y=x-4与X 轴,Y 轴分别交于A ,D 两点,AB ⊥AD ,交y 轴于点B 。 (1)求直线AB 的解析式。 (2)点P 为X 轴上一动点,PC ⊥PB ,交直线AD 于点C ,设 △PAC 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并写出自变量t 的取值范围。 (3)在(2)的条件下,当S=时,求t 的值。 2704,在平面直角坐标系中,正比例函数y=x 的图像上有一点P (点P 在第一象 限),点A 为Y轴上的一动点,PB⊥PA,交X轴正半轴与点B,PH⊥X轴。垂足为H。 (1),当点A在Y轴正半轴时,如图1,线段OA,OB,PH,之间的数量关系是______________________。 (2)当点A在Y轴负半轴时,如图2,求证;OB-OA=2PH. (3)在(2)的条件下,连接AB,过点P作PC⊥AB于点C,交X轴于点D,当∠OBP=30°,BD=8时,求线段OA的长。 2805,如图,在平面直角坐标系中,函数y=-x+32与Y 轴,X 轴分别交于点A ,B 两点, (1)求直线AB 的长。 (2)点P是AB 上的一动点,点C 在X 轴的正半轴上,且PO=PC ,若PA :PB=1:2,时求直线PC 的解析式。

平面直角坐标系与几何图形相结合

平面直角坐标系与几何图形相结合 扣庄乡陈官营中学田海凤 教学目标: (一)知识与技能:使学生进一步复习勾股定理、等腰三角形和平面直角坐标系的基础知识,通过知识的相互联系发展学生的基本技能,发展学生思维的灵活性. (二)过程与方法:通过学生的自主学习,合作探究等活动,让学生去感受和体会思考问题的正确的思路和方法,建立知识间的相互联系. (三)情感态度与价值观:体会事物间的相互作用和相互联系. 重点:掌握基础知识发展学生的基本技能 难点:提高学生的解决问题的能力 教学方法:自主探究、合作学习. 教学手段:小篇子 教学过程: 一、复习回顾 1.在R t△ABC中,∠C=90°a=3,b=4,则C=___ 2.如图1,等腰△ABC中,AB=AC,∠B=46°,BC=4,AD⊥BC (1)∠C=______° (2)∠BAD=______° (3)BD=______. 3. 等腰△ABC中∠B=60°,则△ABC是____三角形. BC=4,AD⊥BC,则AD=_____ 4.点A(1,-4),则点A在第______象限 5.点B(-1,-2),则点B关于x轴的对称点B′的坐标为_______;则点B关于y轴的对称点B〞的坐标为________;点B关于原点的对称点的坐标为_________;点B到x轴的距离是_______;点B到y轴的距离是_________ 二、例题讲解 等边△ABC中AB=AC=BC=6,请建一个适当的平面直角坐标系,求个点坐标。 教师总结:在坐标轴上只要有线段长就能求点的坐标,有坐标就会知道一些线段长,当点不在坐标轴上时,过点做两坐标轴的垂线,利用勾股定理也能求点的坐标。 变形:如图9,等边△ABC两个顶点的坐A(-4,0),B(2,0) (1)求点C的坐标; (2)求△ABC的面积 变形:如图8,在平面直角坐标系中,Rt△CDO的直角边OD在x轴、的正半轴上,且CD=2,OD=1,将△CDO沿x轴向左平移1个单位再把所得图像绕点O按逆时针旋转90°得到Rt△AOB,,

用坐标系解立体几何常见方法

建立空间直角坐标系,解立体几高考题 立体几重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,n 为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ(l PM ?,α∈M ,n 为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设b a , 为平面α的任意两个向量,)1,,(y x n =为α的法向量, 则由程组?????=?=?0 n b n a ,可求得法向量n .

高中新教材9(B)引入了空间向量坐标运算这一容,使得空间立体几的平行﹑垂直﹑角﹑距离等问题避免了传统法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

直角坐标系解决立体几何问题

在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。 重点:用空间向量数量积及夹角公式求异面直线所成角。 难点:建立恰当的空间直角坐标系 关键:几何问题转换为代数问题及正确写出空间向量的坐标。 Ⅰ、空间直角坐标系的建立 空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式): 若与的夹角为θ(0≤θ≤π),且={x 1,y 1,z 1},={x 2,y 2,z 2},则 ⑴ a ·b =|a ||b |cos θ 或 a ·b = x 1x 2+y 1y 2+z 1z 2 ⑵若a 与b 非零向量 cos θ = 22 22 22 21 21 21 212121x z z y y x x z y x z y ++?++++ 2. 向量的数量积的几何性质: ⑴两个非零向量与垂直的充要条件是·=0 ⑵两个非零向量a 与b 平行的充要条件是a ·b =±|a ||b | 利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。 D 1 x y o . M x y o . M 平面直角坐标系 空间直角坐标系 z

用向量解决角的问题 ①两条异面直线a 、b 间夹角 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ, 则cos |cos ,|AB CD θ=<>u u u r u u u r =。 注意,由于两向量的夹角范围为[]??180,0,而异面直线所成角的范围为 ()?<

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

立体几何空间直角坐标系

空间直角坐标系080617 好题选析: 例1、在空间直角坐标系中,给定点)3,2,1(-M 。求它分别关于坐标平面、坐标轴和原点的对称点的坐标。 例2、已知两点)1,0,1(P 与)1,3,4(-Q 。(1)求Q P ,两点的距离;(2)求z 轴上点M ,使||||MQ MP =。 例3、如图,在河的一侧有一塔m CD 5=,河宽m BC 3=,另 一侧有点A ,BC AB m AB ⊥=,4。求点A 与塔顶D 的距离AD 。 好题精练: (一)选择题: 1、关于空间直角坐标系,叙述正确的是( ) A 、),,(z y x P 中z y x ,,的位置可以互换; B 、空间直角坐标系中的点与一个三元有序数组是一种一一对应关系; C 、空间直角坐标系中的三条坐标轴把空间分为八个部分; D 、某点在不同的空间直角坐标系中的坐标位置可以相同。 2、已知点)4,1,3(--A ,则点A 关于原点的对称点的坐标为( ) A 、)4,3,1(-- B 、)3,1,4(-- C 、)4,1,3(- D 、)3,1,4(- 3、已知点)2,1,0(),1,2,1(B A -,则向量坐标为( ) A 、)3,1,1(- B 、)3,1,1(-- C 、)1,1,1(-- D 、)0,1,0( 4、设点B 是点)5,3,2(-A 关于面xoy 的对称点,则||AB 等于( ) A 、10 B 、10 C 、38 D 、38 (二)填空题: 5、已知ABC D 为平行四边形,且)5,7,3(),1,5,2(),3,1,4(--C B A ,则顶点D 的坐标为 。 (三)解答题: 6、在坐标面yoz 内求与三个已知点)1,5,0(),2,2,4(),2,1,3(C B A --等距离的点D 的坐标。 7、已知ABC ?的顶点)1,3,1(),2,6,5(),2,1,1(---C B A 。试求AC 边上的高BD 的长。

中考数学专题:坐标系中的几何问题

以下是查字典数学网为您推荐的中考数学专题:坐标系中的几何问题,希望本篇文章对您学 习有所帮助。中考数学专题:坐标系中的几何问题【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。第一部分真题精讲【例1】已知:如图1,等边的 边长为,一边在轴上且,交轴于点,过点作∥交于点 .(1)直接写出点的坐 标;(2)若直线将四边形的面积两等分,求的值;(3)如图2,过点的抛物线与轴交于 点,为线段上的一个动点,过轴上一点作的垂线,垂足为,直线交轴于点,当 点在线段上运动时,现给出两个结论:①②,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.【思路分析】很多同学一看到这种题干又长条件又多又复杂的代几综 合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C点纵坐标直接用tg60 来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道过四边形对角线交点的任意直线都将四边形面积平分这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求, 因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D做一条垂线就发现图 中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。【解析】解: (1) ; .(2)过点作于,交于点,取的中点 .∵是等边三角形, ..在中, ...∵ ∥交于, .. (就是四边形对角线的中点,横坐标自然和C一样,纵坐标就是E的纵坐标 的一半)∵直线将四边形的面积两等分.直线必过点 .,(3)正确结论:① .证明:可求得 过的抛物线解析式为.∵ ..由题意 .又∵≌,过点作于由题意可知∥即: . (这一问点多 图杂,不行就直接另起一个没有抛物线干扰的图)【例2】如图,在平面直角坐标系xoy中,抛物线与x正半轴交于点A,与y轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连 结AC.现有两动点P、Q分别从O、C两点同时出发,点P以每秒4个单位的速度沿OA向终 点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止 运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动 点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标;(2)当t为何值时,四边形 PQCA为平行四边形?请写出计算过程;(3)当0(4)当t _________时,△PQF为等腰三角形?【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。注意平行于X轴的直线交抛物线的两个点一定是关于对称轴对称的。第二问就在于当四边形PQCA为平行四边形的时候题中已知条件有何关系。在运动中,QC和 PA始终是平行的,根据平行四边形的判定性质,只要QC=PA时候即可。第三问求△PQF是否 为定值,因为三角形的一条高就是Q到X轴的距离,而运动中这个距离是固定的,所以只需 看PF是否为定值即可。根据相似三角形建立比例关系发现OP=AF,得解。第四问因为已经知道PF为一个定值,所以只需PQ=PF=18即可,P点(4t,0)Q (8-t,-10),F(18+4t,0)两 点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是 3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ就可以。实际考试中如果碰 到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时 间都可以把选择填空仔细过一遍了.【解析】解:(1) ,令得,或在中,令得即 ;由 于BC∥OA,故点C的纵坐标为-10,由得或即于是,(2)若四边形PQCA为平行四边形, 由于QC∥PA.故只要QC=PA即可∵得(3)设点P运动秒,则,,说明P在线段OA上,且

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

立体几何解答题的建系设点问题

立体几何解答题的建系设点问题 一、基础知识: (一)建立直角坐标系的原则:如何选取坐标轴 1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点 2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上 (2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。 3、与垂直相关的定理与结论: (1)线面垂直: ① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若2 2 2 AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点 (1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0 (2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考 2、空间中在底面投影为特殊位置的点: 如果()' 11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐

平面直角坐标系中的作图题

透视平面直角坐标系中的作图题 在平面内建立起平面直角坐标系以后,平面内的点与坐标就有了一一对应的关系,数与形有机地结合在一起。下面就归类分析近年来中考坐标系中作图问题的常见题型。 1、平移作图 例1、如图1,在R t O AB △中,90OAB ∠= ,且点B 的坐标为(4,2). 画出O A B △向下平移3个单位后的111O A B △(08福建福州改编) 分析:在解答图形坐标的平移问题时,要善于抓住图形的关键点,只要把构成图形的关键按照要求进行平移,得到平移的对应点,最后按照原图形的顺序依次连接对应点,就得到原图形平移后的新图形了。 但是,点的坐标在平移时,严格遵循如下平移规律: 若点P (x ,y )向左平移a (a>0)个单位,则对应点的横坐标是x 减去a ,纵坐标不变; 若点P (x ,y )向右平移a (a>0)个单位,则对应点的横坐标是x 加上a ,纵坐标不变; 若点P (x ,y )向上平移b (b>0)个单位,则对应点的纵坐标是y 加上b ,横坐标不变; 若点P (x ,y )向下平移b (b>0)个单位,则对应点的纵坐标是y 减去b ,横坐标不变。 解: 因为三角形OAB 的三个关键点分别是A 、B 、O ,并且它们的坐标分别是(4,0),(4,2)和(0,0) 所以,它们向下平移时,各个点的横坐标是保持不变的,只需把各自的纵坐标分别减去平移的单位数, 所以, A (4,0)向下平移3个单位后到达A 1(4,0-3),即A 1(4,-3), B (4,2)向下平移3个单位后到达B 1(4,2-3),即B 1(4,-1),

O (0,0)向下平移3个单位后到达O 1(0,0-3),即O 1(0,-3), 依次连接O 1A 1,A 1B 1,B 1O 1,则三角形111O A B △即为所求。如图2所示。 2、旋转作图 例2、如图3,在R t O AB △中,90OAB ∠= ,且点B 的坐标为(4,2). 画出O A B △绕点O 逆时针旋转90 后的22OA B △,并求点A 旋转到点2A 所经过的路线长(结果保留π).(08福建福州改编) 分析:要想解决坐标系的旋转问题,同学们要做好四种知识准备: 1、找准旋转中心; 2、找准旋转角度; 3、找准旋转的线或点; 4、确定旋转的方向。 在这个问题中,准旋转中心是O ,旋转角度是90°,参与旋转的关键点是A 、B ,线段是OA 、OB ,旋转的方向是逆时针。按照旋转时对应线段长度不变的原则,就可以作出旋转后的对应线段或对应点。 解:如作图4所示。 点A 旋转到点2A 所经过的路线实际上一条弧长,

相关文档
最新文档