北京四中名师苗金利谈高中数学学习

合集下载

03高考数学热点3--“细节”是函数综合题得分的关键

03高考数学热点3--“细节”是函数综合题得分的关键

高考热点3—“细节”是函数综合题得分的关键
北京四中 苗金利
一、注意问题
1.牢固掌握函数相关的基础知识是求解函数综合题的关键;
2.平时加强落实,良好的执行力是求解函数综合题的保障。

二、典型例题
评注:本题特别注意定义域,区间法表示,直线平行的充要条件等,失分点主要有:
(1)斜率相等是直线平行的既不必要又不充分条件
(2)分类讨论要注意使区间不能表示单元素集,空集等。

例1.已知函数a f x x ax x 1()ln(1)1-=+-++ (a 12≥). (Ⅰ)当曲线y f x ()=在f (1,(1))处的切线与直线 l y x :21=-+平行时,求a 的值; (Ⅱ)求函数()f x 的单调区间. 例2.记函数f (x )的定义域为D ,若存在x D 0∈,使f (x 0)=x 0成立,则称以(x 0,x 0)为坐标的点为函数f (x )图象上的不动点。

(1)若函数x a f x 3()+=图象上有两个相异的关于
解析:此题为综合性较强的一道探索性题目,需分析假设的条件并将其化归成熟知的问题来解决。

评注:本题特别注意
b
a
30
-=


-<


x a
f x
x b
3
()
+
=
+
图象上有两个相异的关于原点对称不动点的必要不充分条件。

北京市第四中学2016高考理科数学总复习例题讲解:基本初等函数 01二次函数及幂函数

北京市第四中学2016高考理科数学总复习例题讲解:基本初等函数 01二次函数及幂函数

二次函数与幂函数
北京四中 苗金利
一、知识要点:
1、
二次函数的图象和性质 2、
二次方程根的分布 3、 幂函数的图象与性质
二、典型例题: 例1、利用幂函数性质比较111
3622
,3,6值的大小:
例2、当关于x 的方程x 2-ax+a 2—7=0的两个根一个大于2,另一个小于
2时,求实数a 的取值范围。

例3、当关于x 的方程ax 2+3x+4a=0的根都小于1,求实数a 的取值范围.;
例4、当关于x 的方程7x 2—(a+13)x+a 2—a —2=0的一个根在区间(0,1)上,
另一根在区间(1,2)上,求实数a 的取值范围。

例5、已知二次函数2()f x ax bx c =++的图象过点()1,0-,是否
存在常数a b c 、、,使不等式21()(1)2
x f x x ≤≤+对一切实数x 都成立;
若存在,求出a b c
、、;若不存在,说明理由。

高中数学苗金利全套教学

高中数学苗金利全套教学

高中数学苗金利全套教学一、教学任务及对象1、教学任务本次教学任务是基于高中数学课程,以著名数学教育家苗金利先生的全套教学理念为指导,全面系统地教授数学知识,旨在提高学生的数学思维能力、解题技巧和创新能力。

教学内容涵盖高中数学所有知识点,包括但不限于函数、几何、代数、概率统计等,注重理论与实践相结合,培养学生运用数学知识解决实际问题的能力。

2、教学对象教学对象为高中学生,他们已经具备了一定的数学基础和逻辑思维能力。

在此基础上,通过本套教学设计,激发学生的学习兴趣,挖掘他们的潜力,使他们在数学学科上取得更好的成绩,为未来的学习和生活打下坚实基础。

同时,针对不同学生的学习水平和接受能力,教学过程中将注重因材施教,使每个学生都能在原有基础上得到提高。

二、教学目标1、知识与技能(1)掌握高中数学的基本概念、性质、定理和公式,形成完整的知识体系。

(2)熟练运用数学方法解决实际问题,提高解题能力,特别是对复杂问题的分析、转化和解决能力。

(3)培养数学思维能力,包括逻辑推理、空间想象、抽象概括等,提高数学素养。

(4)学会运用数学软件和工具,辅助解决数学问题,提高数学实践操作能力。

(5)了解数学在实际生活和科学研究中的应用,增强数学与现实世界的联系。

2、过程与方法(1)采用探究式、讨论式教学方法,引导学生主动参与课堂,培养自主学习能力。

(2)运用案例分析、问题驱动等方法,激发学生的学习兴趣,培养他们独立思考、合作交流的能力。

(3)注重数学思想方法的传授,使学生掌握数学的基本思想,提高解决问题的策略。

(4)实施分层教学,针对不同学生的学习需求,提供个性化的指导,提高教学质量。

(5)利用信息技术手段,如网络资源、在线课程等,丰富教学手段,提高教学效果。

3、情感,态度与价值观(1)培养学生对数学学科的兴趣和热情,树立正确的数学观念,认识到数学的价值和美。

(2)培养良好的学习习惯和态度,使学生具备勤奋、严谨、求实的科学精神。

数学学习方法

数学学习方法

数学学习方法]高考辅导名师苗金利:学好数学的六大诀窍一、数学运算运算是学好数学的基本功。

初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。

初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。

从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。

帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。

在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识理解和记忆数学基础知识是学好数学的前提。

★什么是理解?按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。

所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。

理解的标准是“准确”、“简单”和“全面”。

“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。

对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。

★什么是记忆?一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。

借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。

北京四中高级教师苗金利指导2011高考数学复习方法

北京四中高级教师苗金利指导2011高考数学复习方法

北京四中高级教师苗金利指导2011高考数学复习方法北京四中数学名师苗金利老师2016年7月10日,高考大幕方才落下,“商务印书馆2016年度高考备考策略”系列公益讲座旋即开讲。

北京四中数学名师苗金利老师,结合教学实践,给广大师生奉献了一场精彩的讲座——“科学的数学复习方法”,现场气氛热烈,掌声不断。

苗金利老师现任北京四中高级数学教师,奥林匹克数学竞赛高级教练,中国数学学会会员。

曾荣获全国青年教师课堂教学竞赛一等奖,连任高三实验班数学课教学、班主任14届,过去数年间其指导的高三毕业班,高考数学单科平均分140以上,奥林匹克竞赛辅导多人获得全国金奖。

苗老师在讲座中说,小学、初中阶段采用模仿与记忆的学习方法是行之有效的,但是到了高中阶段则显得远远不够,需要优化提升学习方法和策略。

苗老师说要强调六个方法——配方法、换元法、待定系数法、判别式法、反证法、割补法;六个思想——函数与方程的思想、数与形结合的思想、分类与综合的思想、化归与转化的思想、特殊与一般的思想、或然与必然的思想;四个逻辑思维——分析与综合、归纳与演绎、分类与比较等。

从高一开始,同学们就要主动尝试进行观察、试验、猜测、验证、推理与交流等数学活动,逐步形成自己对数学知识的理解,在学习过程中建立系统的知识体系,按照教材编写遵循的逐级递进、螺旋上升原则,体会数学知识之间的有机联系,感受整体性,不断丰富解决问题的策略,提高解题的能力。

四中的做题理念以不变应万变,以少对多学理科的都知道一个顺口溜:“物理难懂,化学难记,数学有做不完的题。

”苗老师说,既然有这么多做不完的题,就需要找方法。

他说四中的教学方法就是:以不变应万变,以少对多。

苗老师强调了四大能力,第一,在高中数学中,函数是重点,所占分数在三分之一左右,学好函数非常重要。

第二,运算能力要尤其注意——这里的运算能力不是要做很多题,而是要做经典的好题,做精。

第三,要学会方程的思想方法。

世间万物都有数学,而所有的数学问题都可以转化为方程,所以要很好地利用这个思想解决数学问题。

10高考数学热点10--树立得分意识

10高考数学热点10--树立得分意识

高考热点10树立得分意识
北京四中 苗金利
一、考试中关注得分意识、创新意识和实践能力.
(1)扎实的基础知识,关注会的知识.
(2)关键落实的能力,强化对的能力.
(3)见多识广不断反思,方法的积累.
二、 典型例题分析
例1.函数(),,0)(0,sin x y x x ππ=
∈-的图象可能是下列 图象中的( )
例2.若0,0≥≥b a ,且当⎪⎩
⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,
则以b a ,为坐标的点),(b a P 所形成的平面区域的面积等于
例3.设椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心
和2C 的顶点均为原点,从每条曲线上至少取两个点,将其
(1)求1C 、2C 的标准方程; (2)设直线l 与椭圆1C 交于不同两点M 、N ,且0OM ON →→⋅=,
直线l 的方程;若不存在,说明理由.
例4.设关于x 的方程210x mx --=有两个实根α、β,且α<β. 定义函数22().1x m f x x -=
+
(Ⅰ)求()()f f αα+ββ的值;
(Ⅱ)判断()f x 在区间(,)αβ上的单调性,并加以证明; (Ⅲ)若,λμ为正实数,证明不等式:
|()()|||.f f λα+μβμα+λβ-<α-βλ+μλ+μ
总结与升华:
平时学习中注重得分意识、创新意识和实践能力的培养,
多关注以下几方面.
(1)扎实的基础知识,关注会的知识.
(2)关键落实的能力,强化对的能力.
(3)见多识广不断反思,方法的积累.。

高考数学复习方法

高考数学复习方法

高考数学复习方法2019年7月10日,高考大幕方才落下,商务印书馆2019年度高考备考策略系列公益讲座旋即开讲。

北京四中数学名师苗金利老师,结合教学实践,给广大师生奉献了一场精彩的讲座科学的数学复习方法,现场气氛热烈,掌声不断。

苗金利老师现任北京四中高级数学教师,奥林匹克数学竞赛高级教练,中国数学学会会员。

曾荣获全国青年教师课堂教学竞赛一等奖,连任高三实验班数学课教学、班主任14届,过去数年间其指导的高三毕业班,高考数学单科平均分140以上,奥林匹克竞赛辅导多人获得全国金奖。

苗老师在讲座中说,小学、初中阶段采用模仿与记忆的学习方法是行之有效的,但是到了高中阶段则显得远远不够,需要优化提升学习方法和策略。

苗老师说要强调六个方法配方法、换元法、待定系数法、判别式法、反证法、割补法;六个思想函数与方程的思想、数与形结合的思想、分类与综合的思想、化归与转化的思想、特殊与一般的思想、或然与必然的思想;四个逻辑思维分析与综合、归纳与演绎、分类与比较等。

从高一开始,同学们就要主动尝试进行观察、试验、猜测、验证、推理与交流等数学活动,逐步形成自己对数学知识的理解,在学习过程中建立系统的知识体系,按照教材编写遵循的逐级递进、螺旋上升原则,体会数学知识之间的有机联系,感受整体性,不断丰富解决问题的策略,提高解题的能力。

四中的做题理念以不变应万变,以少对多学理科的都知道一个顺口溜:物理难懂,化学难记,数学有做不完的题。

苗老师说,既然有这么多做不完的题,就需要找方法。

他说四中的教学方法就是:以不变应万变,以少对多。

苗老师强调了四大能力,第一,在高中数学中,函数是重点,所占分数在三分之一左右,学好函数非常重要。

第二,运算能力要尤其注意这里的运算能力不是要做很多题,而是要做经典的好题,做精。

第三,要学会方程的思想方法。

世间万物都有数学,而所有的数学问题都可以转化为方程,所以要很好地利用这个思想解决数学问题。

第四,要注重实践能力和创新意识。

高中数学要学会“探究式”的学习

高中数学要学会“探究式”的学习

高中数学要学会“探究式”的学习
高中数学要学会“探究式”的学习进入高中后,内容一下子增加了很多,每堂课上需要理解和消化的知识点也非常多,学习起来感觉很难。

很多同学很难迅速适应从初中到高中的转变。

针对以上问题,北京四中网校主讲教师、北京四中数学高级教师苗金利老师表示,高中的数学知识,要学会探究式的学习。

一、计算能力。

高中涉及到更多的内容,而计算是一项基本技能,对于初中时候的有理数的运算、二次根式的运算、实数的运算、整式和分式运算,代数式的变形等方面如果还存在问题,应该把部分再好好复习巩固一下。

若计算频频出现问题,会成为高中学习的一个巨大的绊脚石。

二、反思总结。

很多同学进入高中后都会在学法上遇到很大的困扰。

因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。

对于高中的知识,不能认为做题多了自然就会了,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法,那就是要在每次学习过后进行总结和反思。

总结知识点之间的联系和区别,反思一下知识更深层的本质。

三、预习高一的知识。

新课程标准的高一第一学期一般是讲必修1和必修4两本。

目前高中采取模块教学,每个学期2个模块。

必修1的主要内容是三部分:
习一下新高一的内容,以期很快的适应高中的数学学习。

提升高三数学度末成绩的有效方法

提升高三数学度末成绩的有效方法

提升高三数学度末成绩的有效方法期末临近,学生们又开始为期末考试进行紧张地预备工作。

有些同学反应,平常学的都专门好,然而一遇到考试就头疼;还有的同学表示,自己仍旧未走出期中考试失利的阴影……北京四中数学高级教师苗金利老师表示:考试本身确实是学生学习的一个过程,是大伙儿在学习过程中检查自己、发觉问题的一个必备的过程,专门关于高三的学生而言,高考数学会考学生172个考点,这么多的考点需要学生在三年之内把握。

一定会有漏洞。

关键是发觉漏洞后该如何样去做,同学们应该第一要在心理上要正确对待考试,其次,在复习的方法上也要进行适当地调整。

1、重视基础,用心听课,课下反思。

检查听课的成效是否有到位,就要关注以下几点:1)错后复习。

例如上半学期差不多复习了函数,过了一段时刻后再找出三五道相关习题,看看自己是否会做,以此来检查自己的上课听课的效率。

2)隐性的思维。

听课时也要进行摸索,这种隐形的思维是学生学习的关键,靠的是学生自己的领会能力。

3)考试是考对多少,而不是会多少。

同学们一定要调整好自己的策略。

考试不是看会了多少,而是看对了多少。

因此,同学们应该及时修正、调整自己的应考模式,尽量发挥自己的最高水平,尽量少地留下遗憾。

2、复习时借助同学和老师的力量同学们现在不是在家里自学,现在我们国家采纳的是教学班的模式,一定有它科学的依据,同学们一定把握住“同学之间相互交流自己学习心得的体会和方法”。

相互之间取长补短,有问题能够找同学帮忙。

假如同学也不明白能够问老师,高三的复习时刻都专门紧张,不要自己一个人钻研两三天,因为高三的时刻都紧张。

被问到的同学,也是拥有一个复习知识的专门好的机会,“予人玫瑰手有余香”。

在解答别人疑问的过程中也得到有提高。

两个人交换一个苹果,那么得到的依旧一个苹果,然而假如两个人交流一个思想,每个人得到的确实是两个思想,因此要记得发挥集体的优势。

3、把握数学复习的方向和节奏1)跟上老师的复习步伐。

大部分学校在期中之前(以北京学校为例)复习了函数、不等式、向量和三角。

高考数学:高级教师-苗金利

高考数学:高级教师-苗金利

北京四中高级教师、北京四中主讲教师苗金利2011年高考数学(北京)《考试说明》日前已经公布,从试卷结构、考试内容及要求等方面具体的规范了今年高考数学试题,是今年数学命题的依据和纲要,是所有2011年参加高考的考生及指导高考的数学老师必须研学的文件。

一、考试内容及要求2011年高考数学考试内容,理科考试含19个板块内容,包括课标必修的5个模块和选修系列2、选修系列4的4-1和4-4;文科数学《考试说明》共16个板块,其中包含课标必修的5个模块及选修系列1的相关内容。

其中,对选修系列4中的4-1及4-4内容。

2011年高考数学(北京)《考试说明》罗列了考试内容理科有162个知识点,文科有124个知识点。

其中C层次(掌握与灵活应用)知识点理科有52个,文科有41个,复习中这些知识点涉及的相关技能、方法要重点掌握。

二、考试指导思想和目标注重考查中学数学的基础知识、基本技能、基本思想方法。

重视考生的“终身学习和发展”,即考查学生在中学所受到的数学教育,考查学生在大学需要的数学基础能力。

三、考查能力体系重点考查的能力体系包括:考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力(实践能力和创新意识)。

四、试卷结构和题型今年高考试卷结构和题型、题量等将与2010年保持一致。

试卷结构分为一选择题,二非选择题两部分;题型有选择题、填空题、解答题等三种题型,题目个数分别为8、6、6;分值分别为40、30、80。

五、对于今年毕业班的学生复习,在知识和内容的建议数学一般遭遇的困难是对基础知识的理解不扎实,不能形成应用。

其根本是欠缺数学思想和做题思维。

在基础知识方面,同学们大多都停留在对公式、定理及推理的表面了解和熟悉上;特别对于靠题海战术复习的考生,在解题的时候,大部分同学多是以简单的套用为手段。

因此遇到新题型、陌生题或对一些公式变换较为复杂的题型(如解析几何题,利用导数求复合函数的单调性、极最值、分类讨论等式子稍微多一些的题),很多学生不会做。

北京四中高中数学精品全套-高考总复习函数的概念和性质(01函数及解析式、02函数的基本性质)- 2页

北京四中高中数学精品全套-高考总复习函数的概念和性质(01函数及解析式、02函数的基本性质)- 2页

函数及其解析式 北京四中 苗金利一、知识要点1.函数是高中数学最重要、最基础的内容,函数思想方法自始至终贯穿于代数教材全过程,可以毫不夸张的说,“函数”在数学教材中扮演“统帅”的角色。

2.函数是学习高等数学的基础,应深入理解函数的有关概念,灵活运用函数的解析式去分析问题。

3.函数的定义4. 函数的解析式二、 典型例题例1、判断下列从A 到B 的对应是否为映射,是否为一一映射?(1){|A αα=为三角形的内角},{|}B y y R =∈,对应法则:tan y α=;(2){|}A m m Z =∈,{|01}B y y y ===或,对应法则:0(2,)1(21,)m n n Z y m n n Z =∈⎧=⎨=+∈⎩; (3){|01}A x x =<<,{|01}B y y =<<,对应法则:y x(4){|01}A x x =≤≤,{|0}B ααπ=≤<,对应法则:sin .x α=例2、设()f x 是一次函数,,(())94x R f f x x ∈=+,求函数()f x 。

例3、(1)将函数y =3x 2-4x -12的图象沿向量a →=(-2,3)平移后的 解析式为____________;(2)函数y =f (x )与14y x =的图象关于直线x=1对称,则f (x )= ____________。

例4、设2111(1)1(0)f x x x x +=++≠,求函数(1)f x -.例5、函数1()21,()1,()32,,()2f x xg x x x x x R F x ϕ=+=-=-+∈ 表示(),(),()f x g x x ϕ中的最小值,求函数()F x 。

例6、已知1()()lg 1(0)f x f x x x=⋅+>,求()f x 。

函数的基本性质北京四中 苗金利一、知识要点1.函数的单调性、奇偶性、周期性2. 函数性质的考查经常以选择题、填空题的形式出现,一般在试题的前几个题中。

高考(数学)复习策略

高考(数学)复习策略

2018年高考复习策略——数学北京四中网校主讲教师北京四中数学高级教师苗金利2018年高考数学第一轮复习已经接近尾声,考生对数学试卷的结构、考试的内容及要求等方面也基本有了大体的认识,在后期复习中要关注以下几个方面:b5E2RGbCAP1、高考的指导思想和目标注重考查中学数学的基础知识、基本技能、基本思想方法。

重视考生的“终身学习和发展”,即考查学生在中学所受到的数学教育,考查学生在大学需要的数学基础能力。

p1EanqFDPw2、考查能力体系重点考查的能力体系包括:考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力<实践能力和创新意识)。

DXDiTa9E3d重视知识发生发展的过程考察,强化运算结果的重要性。

3、对于今年毕业班的学生复习,在知识和内容的建议数学一般遭遇的困难是对基础知识的理解不扎实,不能形成应用。

其根本是欠缺数学思想和做题思维。

在基础知识方面,同学们大多都停留在对公式、定理及推理的表面了解和熟悉上;特别对于靠题海战术复习的考生,在解题的时候,大部分同学多是以简单的套用为手段。

因此遇到新题型、陌生题或对一些公式变换较为复杂的题型<如解读几何题,利用导数求复合函数的单调性、极最值、分类讨论等式子稍微多一些的题),很多学生不会做。

在复习方向上,应以理解课本重要知识点为主,即首先弄清每一个公式、定理及推论是研究什么数学问题、用以描述数学什么现象,着重注意其切入点、推导过程和形成的结论是什么。

在解题上训练自己的思维。

用以加强抽象概括、空间想象、数形结合等能力。

并加强归纳总结意识。

高中数学大部分解答题都能形成较为固定的解题思维和相对基本相同的解题步骤,数学讲究严谨和规律,因此要逐渐形成一定的数学思想,才能在数学高考上获取好的成绩。

RTCrpUDGiT 在平时训练题型的解答上,选择题要打破常规,充分利用题目和选项,本着多思考、少计算、特殊化的原则进行解答。

北京市第四中学2016高考理科数学总复习例题讲解:数学热点2--函数问题要关注定义域

北京市第四中学2016高考理科数学总复习例题讲解:数学热点2--函数问题要关注定义域

高考热点2—函数问题要关注定义域
北京四中 苗金利
一、注意问题
1。

求解与函数、不等式有关的问题注意定义域优先的原则。

2。

判断函数奇偶性时,勿忽略检验函数定义域是否关于原点对称。

(1)函数定义
(2)函数的单调性与奇偶性。

二、例题分析
例1、(1)已知:f (l gx )的定义域为[10,100],
求f (x )定义域。

(2)已知:f (x +1)的定义域为[-2,3],求f x 1(+2) 定义域。

例2、(1)若函数y ax ax 243=++的定义域为R ,
求a 的取值范围。

(2)已知扇形的周长为10,求扇形半径长r 和面积S 的函数关系式S =S (r )及此函数的定义域。

例3、讨论函数的奇偶性
(1)f x ()=
(2)f x x ()|2|2=+- 【评注】
(1)函数的定义域关于原点的对称,是函数具备奇偶性的必要条件;
(2)函数的奇偶性是整个定义域上的性质 (整体性质) ;
(3)函数不一定具有奇偶性。

(4)常数函数的奇偶性: 0()0c f x c c ≠⎧=⎨=⎩偶函数奇且偶函数
例4、已知函数3()2log (19)f x x x =+≤≤,则函数[]y f x f x 22()()=+的最大值为多少?。

苗金利数学方法与解题指导

苗金利数学方法与解题指导

苗金利数学方法与解题指导苗金利数学方法与解题指导苗金利数学方法是一种独特的解题方法和指导理念,它注重培养学生的逻辑思维能力和解决问题的能力,使学生能够独立思考和灵活运用数学知识。

苗金利数学方法的核心思想是“培养数学思维,提高解题能力”。

这一思想强调数学不仅仅是一门知识,更是一种思维方式和解决问题的工具。

苗金利数学方法通过培养学生的思维能力,使他们能够运用数学知识解决实际问题。

苗金利数学方法的具体实施包括以下几个方面:1. 强调基础知识的掌握:苗金利数学方法认为,数学的高深知识是建立在扎实的基础知识上的。

因此,学生在学习数学时,要注重基础知识的掌握,从而为后续的学习打下坚实的基础。

2. 培养逻辑思维能力:苗金利数学方法通过提供一系列的逻辑思维训练,帮助学生培养逻辑思维能力。

这包括学会分析问题、归纳总结、推理判断等能力,使学生能够在解题过程中准确地抓住问题的关键点,从而解题更加得心应手。

3. 培养问题解决能力:苗金利数学方法注重培养学生的问题解决能力。

在学习过程中,学生将遇到各种各样的问题,而解决问题的过程正是培养学生解决实际问题的能力。

苗金利数学方法通过提供一系列有挑战性的问题,引导学生发展解决问题的策略和方法。

4. 培养团队合作精神:苗金利数学方法认为,团队合作是培养学生综合能力的重要手段。

在学习过程中,学生将进行小组合作,共同探讨和解决问题。

这不仅能够增强学生的合作意识和团队精神,还能够激发学生的学习兴趣和创造力。

总之,苗金利数学方法通过培养学生的数学思维能力和解决问题的能力,使他们能够在学习和生活中运用数学知识解决实际问题。

这一方法的核心思想和实施方式,为学生的数学学习提供了更加全面和有效的指导。

高考辅导名师苗金利.docx学好数学的六大诀窍

高考辅导名师苗金利.docx学好数学的六大诀窍

高考辅导名师苗金利:学好数学的六大诀窍2007年初,在美国的旧金山我见到了两个北京四中的学生,他们后来就读于斯坦福大学,获得了博士学位。

当我问到他们小有成就的秘诀时,他们说:一是要有近乎痴迷的兴趣;二是要有持之以恒、百折不挠的毅力;三是要有事倍功半的方法。

下面和同学们交流一些我的想法。

全面数学教育观所指教学,包括教与学两个方面。

其主要内容是:从数学的特征看,我们的数学教学既要重视数学内容的形式化、抽象化的一面,更要重视数学的发现、创造过程中具体化、经验化的一面;从教育的任务看,我们既要注意提高学生的数学学业水平和数学素质,也要注意提高学生的基本素质和持续发展的能力,注意提高学生的心理健康水平。

研究改革教学法,须研究改革“教法”,也须研究“学法”,还要研究“学法”与“教法”的关系,并将二者有机地统一起来。

目前,高中数学教学课,传授知识多,涉及学法少;教师注重自己的教法多,注重学生的学法少。

要改变这些状况,提高教学质量,培养未来社会所需的高素质人才,必须加大教学改革力度,在优化课堂教学结构,培养学生学习能力和大面积提高教学质量上取得突破性进展,只有这样才能使学生用较少的时间,掌握更多的有用知识,获得良好的学习效果。

学习的过程,本质上是解决认识主体与认识客体之间矛盾的过程。

在校学生的学习,其特点是在教师的指导下,在学习知识的基础上发展自己的认识知识、创新知识的能力。

在教学过程中,如果作为发展变化主体的学生态度消极、被动——不想学,不充分发挥自己的主观能动性,不充分运用或者不能以正确的方法运用自己的眼、耳、鼻、舌、身等,特别是不能或者不想动脑,去认识教师的所教,那么,即使教师“教”的再好,也不能促进学生自身知识、能力的发展。

一、良好的心理素养、痴迷的学习兴趣——学好数学的前提喜爱也就是做一件事的理由和把事情坚持下去的最强动力。

良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京四中名师苗金利谈高中数学学习
2007-11-08 20:15:31| 分类:数学教学| 标签:|字号大中小订阅
图:北京四中高级教师、奥林匹克数学竞赛高级教练苗金利(blog)。

苗金利(blog)简介:北京四中高级教师,北京四中网校主讲教师,奥林匹克数学竞赛高级教练,中国数学学会会员。

苗老师热爱教育事业,教学理念新,功底厚。

在教学中,积极进行教学研究,参加《数学》教材编写,著有《中学数学学习指导》等。

荣获全国青年教师课堂教学竞赛一等奖。

连任高三实验班(A班)数学老师、班主任,送走14届毕业班,辅导多人获得全国奥林匹克竞赛金奖。

1.如何把握今年数学高考的难度。

2006、2007年高考考试的数学题难度基本在0.58和0.59。

2007年命题中心的指导思想是使试题难度不比以前难或简单。

08年在继续保持稳定、和谐的基础上,难度会控制在0.58左右,试题不会明显加大难度,但对于有区分度试题,比如最后一个大题和选择与填空的最后一题会加大考试区分度,其他送分题会
更加善良,明确地把分送到考生手里。

2.关于文科同学复习三角函数的思路。

三角函数属于基础和应用题型,难度很低,一般文科比重比理科略大,在9%左右。

是一个大题、一个小题或者出成三个小题,比如,北京2007年高考,15分的选填题。

内容主要分布在三角函数的概念、图线和性质,淡化了反复利用复杂公式。

但是,重点公式的考查是一定要涉及的。

比如,角的诱导公式、辅助角公式、升幂缩角公式或降幂扩角公式,这些公式都是为了考查简谐振动方程的相关性质。

掌握这些就能
够得到三角函数的分数。

3. 孩子今年高考,作为学生家长应该做些什么。

作为高三班主任和指导教师,建议家长,第一,不要把学生的学习计划和学校的学习计划打乱,可以帮助学生制定与学校一致的、阶段复习目标和计划。

比如,现在是高三第一学期的期中,考试刚过,四中是今天刚刚考完。

那么,从现在到寒假,是一个阶段;寒假是第二阶段;寒假后开学到一模考试是第三阶段;一模考试之后到二模是第四阶段;二模之后到高考是第五阶段。

我们高三学生还有这五个阶段,家长可以和孩子坐在一起,共同制定各阶段的复习目标和最近第一阶段的复习计划,以后视完成情况再适当调整。

第二,要做好后勤保障,关键是不要让孩子生病,保证孩子的学习经历和营养。

第三,多与老师沟通,特别关注学生考前的思想和心理活动。

因为这一时期学生比较烦躁,会有各种心理问题,要与老师、特别是班主任共同解决在各时期出现的问题,让孩子愉快地度过高三生活。

4.每天什么时间看数学书,什么时间做数学题最有效。

这个问题,我是这样要求我们学生的。

首先,数学这样的学科,要保证每天都要见面,因为像著名的李富荣教练说过,一天不练,自己知道;两天不练,师傅知道;三天不练,观众就能看出来。

所以,要想保持数学的熟练和做题的“题感”,就要天天与数学题见面。

什么时间要视学校课余时间而定,要把自己的课余时间计划好、经营好,但总的原则一定要拿出整块时间(30分钟以上),去做数学。

零散时间做外语。

因为数学需要一个惯性,进入角色就需要15分钟左右。

5.孩子是个复读生,题做了不少,今年的数学考了129分,毛病只是看题不做题。

老师让做的题,如果没
有答案,则坚决不做。

小考考得不错,重要考试就考不好,为此就缺乏自信。

建议首先不要背上今年高考数学考129分这个包袱,因为129分从数学来讲已经相当不低了,就抱这样来讲,从数学的角度来说,上清华都可以。

但是,数学通过复习,要想达到真正发挥自己的真实水平,那
需要注意以下几个方面:
第一,基础知识真的落实(比如,kx+y-2=0的斜率不是k,而是-k),一定要认真、明确地分析题意,
不要模棱两可。

第二,给大家一个公式,叫“少错=多对”,修补知识漏洞是复读的同学提高成绩的法宝。

第三,“活页”形式过一遍考试大纲的知识点,结合复读老师的第一轮复习,把这些知识点一个个地解决掉
(文科137个,理科141个)。

第四,“错题”重做一遍,或者干脆重建错题本(以前错题已经解决了的就删掉)。

高考前错题本上要有80个错题就足够了。

事实上这些一定是所有考生都易错的,也是高考的重点。

第五,成绩较高层次的同学,比如,像数学能考129分的同学,做题时一定要注意做题质量,比如分析命题意图所考查的知识点,以及变换题目的形式和设问方式,题目还能否做。

6.有朋友问,平时成绩还可以,如何在大考里超常发挥。

数学考试要注意两条技巧,第一,拿到试卷后要沉着冷静,迅速识别试卷中曾做过的、会做的题,关注
会的、争取对的能力。

第二,通过审题,要舍得放弃不会的,正确对待得与失。

同时,在考场上,还要具有良好的心理素质,遇到意想不到的问题,要处乱不惊。

比如,期中考试,我有一个非常优秀的学生,看到一个问题,求直线方程,最后的结果是无解。

他就怀疑是否自己做错了,一遍之后,又怀疑是否老师出题出错了,在考场上,跟一个题叫劲,影响其它题的答题时间和情绪。

所以考场上要有良好的心理素质。

7.如何提高学习数学的兴趣。

事实上,我们不能强迫所有学生都对数学有兴趣,因为数学本身确实很枯燥。

但是毕竟有那么多人痴迷数学,所以他们的成绩会相当好。

那么,如何达到自己的理想,使自己学好数学?首先要提高兴趣。

建议找自己的数学老师,共同探讨学习数学的奥妙。

同时,一定要相信自己的任课老师,要让自己心理暗示:我的老师是最优秀的。

因为,非常负责任的说,往往对一个老师有了兴趣,对他所教的学科也会产生兴趣。

所以,要尝试,从对老师的尊重和爱,等价于对数学这个学科的兴趣。

另外,数学是需要做题的。

因为题目是数学的心脏。

那么怎样解数学题呢?拿到一个数学题,要想,这个问题如何转化成自己过去做过的,熟悉的问题。

然后通过过去已经有了的问题的解答,找到新的、陌生的问题的解答。

请你尝试一下,从对一个陌生的数学问题的精彩解答之后,享受胜利和成功的喜悦。

这样
就对数学有了浓厚的兴趣。

另外,数学确实能带给我们不断创新的思想品质,还有,锻炼我们敏锐的直觉、合理的猜想和正确地解决、恰当地推广。

这种好的思维品质,通过数学的学习,能够让你变成一个正直、逻辑、条理的人。

8.有的朋友问,在我教过的学生里,成绩特别拔尖的学生是怎样学习的。

我身边有非常多的优秀学生,他们不但成绩优秀,往往这些人身上有非常可贵的优秀的做人品质。

他们最大的特点是自信心强、思考问题睿智,还有刻苦、努力,效率极高。

比如,刚刚毕业的郭一明同学,他在2005年高一时就获得全国化学竞赛一等奖,2006年获得数学竞赛一等奖、北京市第一名,2007年被保送到北京大学数学系。

但这学生至今每周都回四中,与学弟学妹们交
流、学习,无私地把自己的心得与大家共享。

另外,在任何情况下,都要有非常强的自信心。

比如报考。

自己都不敢报北大,认为自己周围的人都比自己强,那就一定考不上。

四中学生有一个最大的优点,就是自信心近似于狂妄。

所以他们不会浪费自己
的分数和智能。

但是说到底,无论多么聪明,不去落实,不刻苦努力,是不行的。

我们有学生说过,我们一定要在高一高二的时候,做许多高三干不了的事,为高三做好充足的准备。

大家都知道,我们四中从不加课补课,下午三点半就放学。

但是,这么长时间学生不是在玩,他们是在自主查缺不漏,自己有计划的自主学习。

比如,五一我们放七天假,高三学生大都到学校的图书馆或国家、市、区图书馆,去看书学习。

这样,他们
自己在学习,效率会非常高。

8.关于留学的问题,是近两年来逐步加温的一个问题。

我身边涉及到很多同学,在做这件事。

事实上,对于高中毕业生留学,我不是特别支持,但是也不反对。

因为,如果申请有奖学金的国外著名大学,比如哈佛、宾大、牛津等,首先需要考托福或雅思,合格后,还要参加SAT的测试,两项都取得优异成绩之后,还要看所申请的学校所提出的许多苛刻的条件。

而且自己没有任何把握都是自己所不能左右的。

不像我们国家的高考,只要成就优秀,考试分数达到600多分,就一定能上自己理想的大学。

因为国外大学还要看这个申请的学生的能力,社会公益活动参加情况,综合素质以及毕业学校在国际的地位,等等。

而这些都是风险性极强的。

所以,建议想高中毕业就到国外读大学的同学,一定要给自己留下后路。

我经常给我的学生说,一定要以北大清华作为支撑点,去尝试冲击世界上更一流的大学,使得自己既不留遗憾,同时又接受了挑战。

相关文档
最新文档