中考总复习:36特殊的四边形--巩固练习(提高)

合集下载

《特殊平行四边形》全章复习与巩固(提高)知识讲解

《特殊平行四边形》全章复习与巩固(提高)知识讲解

《特殊平行四边形》全章复习与巩固(提高)知识讲解责编:常春芳【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S 4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:边长×边长=×对角线×对角线=S 形形形124.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、已知,△ABC 中,∠BAC=45°,以AB 为腰以点B 为直角顶点在△ABC 外部作等腰直角三角形ABD ,以AC 为斜边在△ABC 外部作等腰直角三角形ACE ,连结BE 、DC ,两条线段相交于点F ,试猜想∠EFC的度数并说明理由.【答案与解析】解法一:作DH//BE 交EA 延长线于H ,连接CH易证四边形BEHD 为平行四边形CEH EABCE=AE CEH=EAB=90HE=BD=AB CEH EAB SASCH=BE=DH CHE=ABECHD=90EFC=CDH=45⎧⎪∠∠⎨⎪⎩∴≅∴∠∠∴∠∴∠∠在△与△中△△(),解法二:作CG//BE 交AB 的延长线于G ,连接DG ,∵△ABC 与△ACE 都是等腰直角三角形,∴∠EAB=∠CAE+∠CAB=90°.又∠AEC=90°,∴AB∥CE.∴四边形BECG 为平行四边形,∴CE=GB,又AE=EC ,∴GB=AE.在△BGD 与△AEB 中,DB=AB ,∠DBG=∠BAE=90°,GB=AE ,∴△B GD ≌△AE B (S A S ), ∴∠GDB=∠ABE,BE=DG.∵平行四边形BGCE,∴∠ABE=∠AGC,BE=GC,∴∠GDB =∠AGC, GC= DG.∴∠DGC=∠DGA+∠AGC=∠DGA+∠GDB=90°.于是CDG △是等腰直角三角形,所以45EFC DCG ∠=∠= .【总结升华】通过做平行线,构造平行四边形,再证明全等,使问题得解.类型二、菱形2、如图,平行四边形ABCD 中,AB⊥AC,AB =1,BC AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F.(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF 为平行四边形;(2)证明△AOF≌△COE 即可;(3)当EF⊥BD 时,四边形BEDF 为菱形,又由AB⊥AC,AB=1,OA=AB ,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC 绕点O 顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明: 四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,2 AC==,∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB. 又∵∠EBD=∠FBD,∴∠FBD=∠EDB,ED∥BF.同理,DF∥BE, ∴四边形BFDE是平行四边形. 又∵EB=ED,∴四边形BFDE是菱形.3、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF ;(2)在上述条件下,若AC=BD ,G 是BD 上一点,且BG :GD=3:1,连接EG 、FG ,试判断四边形EBFG 的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO ,推出AB=BO ,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF 即可;(2)根据矩形性质和已知求出G 为OD 中点,根据三角形中位线求出EG∥AD,EG=BC ,12求出EG∥BC,EG=BC ,求出BF=EG ,BF∥EG,EG=GF ,得出平行四边形,根据菱形的判定12推出即可.【答案与解析】(1)证明:∵四边形ABCD 是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E 为OA 中点,∴BE⊥AC,∴∠BEC=90°,∵F 为BC 中点,∴EF=BF=CF,即EF=BF ;(2)四边形EBFG 是菱形,证明:连接CG ,∵四边形ABCD 是平行四边形,AC=BD ,∴四边形ABCD 是矩形,∴AD=BC,AB=CD ,AD∥BC,BD=2BO=2OD ,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD ,∴G 为OD 中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F 为BC 中点,∴GF=BC=AD ,1212∵E 为OA 中点,G 为OD 中点,∴EG∥AD,EG=AD ,12∴EG∥BC,EG=BC ,12∵F 为BC 中点,∴BF=BC ,EG=GF ,12即EG∥BF,EG=BF ,∴四边形EBFG 是平行四边形,∵EG=GF,∴平行四边形EBFG 是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型三、矩形4、(2015春•青山区期中)如图1,已知AB ∥CD ,AB=CD ,∠A=∠D .(1)求证:四边形ABCD 为矩形;(2)E 是AB 边的中点,F 为AD 边上一点,∠DFC=2∠BCE .①如图2,若F 为AD 中点,DF=1.6,求CF 的长度:②如图2,若CE=4,CF=5,则AF+BC= ,AF= .【答案与解析】(1)证明:∵AB ∥CD ,AB=CD ,∴四边形ABCD 为平行四边形,∵∠A=∠D ,∠A+∠D=180°,∴∠A=90°,∴四边形ABCD 为矩形,(2)解:①延长DA ,CE 交于点G ,∵四边形ABCD 是矩形,∴∠DAB=∠B=90°,AD ∥BC ,∴∠GAE=90°,∠G=∠ECB ,∵E 是AB 边的中点,∴AE=BE ,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,∵DF=1.6,F为AD中点,∴BC=3.2,∴AG=BC=3.2,∴FG=3.2+1.6=4.8,∵AD∥BC,∴∠DFC=∠BCF,∵∠DFC=2∠BCE,∴∠BCE=∠FCE,∵AD∥BC,∴∠BCE=∠G,∴CF=FG=4.8;②若CE=4,CF=5,由①得:AG=BC,CF=FG,GE=CE=4,AG=AD,∴CG=8,AF+BC=AF+AG=FG=CF=5;故答案为:5;设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,∴DG=5+=,∴AD=DG=,∴AF=AD﹣DF=;故答案为:..【总结升华】本题考查了矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理的运用;本题有一定难度.举一反三:【变式】如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.【答案】解:(1)四边形DEFG 是平行四边形.理由如下:∵D、G 分别是AB 、AC 的中点,∴DG 是△ABC 的中位线;∴DG∥BC,且DG =BC ;12同理可证:EF∥BC,且EF =BC ;12∴DG∥EF,且DG =EF ;故四边形DEFG 是平行四边形;(2)O 在BC 边的高上且A 和垂足除外.理由如下:连接OA ;同(1)可证:DE∥OA∥FG;∵四边形DEFG 是矩形,∴DG⊥DE;∴OA⊥BC;即O 点在BC 边的高上且A 和垂足除外.5、在Rt△ABC 中,∠ACB=90°,BC=4.过点A 作AE⊥AB 且AB=AE ,过点E 分别作EF⊥AC,ED⊥BC,分别交AC 和BC 的延长线与点F ,D .若FC=5,求四边形ABDE 的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF ,AC=EF ,再利用勾股定理得出AB 的长,进而得出四边形EFCD 是矩形,求出四边形ABDE 的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2. ∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC 和△EAF 中,∵,,342B AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△EAF(AAS ).∴BC=AF,AC=EF .∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC 中,.==.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD 是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE 的周长.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.举一反三:【变式】(2015•杭州模拟)如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC ⊥AC 垂足为C ,求(1)中矩形边BQ 的长.【答案】解:(1)当时间t=7秒时,四边形BPDQ 为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD 为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ 为平形四边形,∵PQ=BD=8∴四边形BPDQ 为矩形,(2)由(1)得BO=4,CQ=7,∵BC ⊥AC∴∠BCA=90°BC 2+CQ 2=BQ 2∴BQ=.类型四、正方形6、正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF =FM ;(2)当AE =1时,求EF的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF 和△DMF 中,DE DM EDF MDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS ),∴EF=MF ;(2)设EF =MF =,x ∵AE=CM =1,且BC =3,∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-,x ∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2,即,()22224x x +-=解得:,则EF =.52x =52【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG =DE ,BG⊥DE; 理由是:延长BG 交DE 于点H , 因为BC =DC ,CG =CE ,∠BCG=∠DCE所以△BCG≌△DCE,所以BG =DE ,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°, 得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG 交DE 于H ,BG 交DC 于K ,同理可证△BCG≌△DCE,得BG =ED ,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.所以BG⊥DE.。

苏科版数学中考复习专题练习— 特殊四边形(含答案)

苏科版数学中考复习专题练习—  特殊四边形(含答案)

特殊四边形一、学习目标1.理解多边形的内角和、外角和公式,了解正多边形,四边形的不稳定性;2.掌握平行四边形、矩形、菱形、正方形的定义,判定和性质,会利用这些性质和判定进行计算与推理;3.理解矩形、菱形、正方形与一般平行四边形之间的共性、特性和从属关系.二、典型例题题型一、多边形及其内角和、外角和1.多边形的对角线例题1.(1)五边形共有对角线的条数为( )A .5B .6C .7D .8(2)从十二边形的一个顶点作对角线,把这个十二边形分成三角形的个数是 .【题小结】找到对角线与边数的关系借题发挥:一个n 边形共有n 条对角线,将这个n 边形截去一个角后它的边数为 .2. 多边形内角和、外角和例题2.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为 .【题小结】运用多边形的内角和、外角和公式借题发挥:如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ ∥BC ,交DE 于点Q ,则∠EPQ 的度数为 .题型二、平行四边形及其判定和性质 1.平行四边形判定例题3.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是()A . AB ∥DC ,AD ∥BC B .AB = DC ,AD = BC C . AB ∥DC ,AD =BC D .OA = OC ,OB =OD【题小结】灵活运用平行四边形判定借题发挥:如图,在四边形ABCD 中,AD ∥BC ,∠B =∠C .E 使边BC 上一点,且DE =DC . 求证:AD =BE .2.平行四边形性质例题4.(1)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是□ABCD 的对角线,点E 在AC 上,AD =AE =BE ,∠D =102°,则∠BAC 的大小是____________.(2)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于.【题小结】灵活运用平行四边形性质A DB EC Q PD A B C OO E D C B A E D A B C F D A E C B D O A C B 借题发挥:如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( ) A .12B .13C .23D .34(例题4(1)) (例题4(2))(借题发挥)题型三、矩形及其判定和性质1.矩形判定例题5.已知平行四边形ABCD 中,下列条件:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AC 平分∠BAD ,其中能说明平行四边形ABCD 是矩形的是( )A .①B .②C .③D .④【题小结】灵活运用矩形判定借题发挥:如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F ,连接BF ,A C .若AD =AF ,求证:四边形ABFC 是矩形.2.矩形性质例题6.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知∠BOC =120°,DC =3cm ,则AC 的长为______cm .【题小结】灵活运用矩形性质借题发挥:如图,矩形ABCD 的对角线AC 、BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( ).A .485B .325C .245D .125(例题6)(借题发挥)3.折叠问题 E D B C F G A F D E A B C O。

【新】九年级数学上册第一章特殊平行四边形全章复习与巩固(基础篇)巩固练习(含解析)(新版)北师大版

【新】九年级数学上册第一章特殊平行四边形全章复习与巩固(基础篇)巩固练习(含解析)(新版)北师大版

《特殊平行四边形》全章复习与巩固【巩固练习】 一.选择题 1.如图,□ABCD 中,AB=3cm ,AD=4cm ,DE 平分∠ADC 交BC 边于点E ,则BE 的长等于( ). A .2cm B .1cm C .1.5cm D .3cm2.矩形、菱形、正方形都具有的性质是( ).A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直3.如图所示,将一张矩形纸ABCD 沿着GF 折叠(F 在BC 边上,不与B ,C 重合),使得C 点落在矩形ABCD 的内部点E 处,FH 平分∠BFE,则∠GFH 的度数α满足( ).A .90°<α<180° B.α=90°C .0°<α<90° D.α随着折痕位置的变化而变化4.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .32B .75D 5.正方形具备而菱形不具备的性质是( )A .对角线相等;B .对角线互相垂直;C .每条对角线平分一组对角;D .对角线互相平分.6.如图是一张矩形纸片ABCD 错误!未找到引用源。

,AD=10cm 错误!未找到引用源。

,若将纸片沿错误!未找到引用源。

折叠,使错误!未找到引用源。

落在错误!未找到引用源。

上,点C 的对应点为点F ,若BE=6cm ,则错误!未找到引用源。

( ).A .错误!未找到引用源。

B .6cmC .8cmD .10cm7.矩形对角线相交成钝角120°,短边长为2.8cm,则对角线的长为(). A.2.8cm B.1.4cm C.5.6cm D.11.2cm8.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为().A.16a B.12a C.8a D.4a二.填空题9.如图,若口ABCD与口EBCF关于B,C所在直线对称,∠ABE=90°,则∠F=______.10.矩形的两条对角线所夹的锐角为,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,矩形错误!未找到引用源。

初中数学中考复习 四边形综合复习(能力提升)

初中数学中考复习 四边形综合复习(能力提升)

考向19 四边形综合复习【知识梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定方法指导: 面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底. (2)不平行的两边叫做梯形的腰. (3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形; (3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a 、b 是梯形的上、下底,h 是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌. (2)n 种正多边形组合起来镶嵌成一个平面的条件: ①n 个正多边形中的一个内角的和的倍数是360°; ②n 个正多边形的边长相等,或其中一个或n 个正多边形的边长是另一个或n 个正多边形的边长的整数倍.【专项训练】一、选择题1.如图,在中,,是上异于、的一点,则的值是().A.16 B.20 C.25 D.302. 如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到().A.处B.处C.处D.处3.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有().A.1个 B.2个 C.3个 D.4个4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是().A. 2004B. 2005C. 2006D. 20075.如图所示,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC的面积是.若反比例函数的图象经过点B,则此反比例函数表达式为().A.B. C.D.6.如图,正方形ABCD的边长为1,将长为1的线段QR的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,按A→B→C→D→A的方向滑动到A停止,同时点R从点B 出发,按B→C→D→A→B的方向滑动到B停止,在这个过程中,线段QR的中点M所经过的路线围成的图形面积为()A.B.4﹣πC.πD.二、填空题7. 如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.8. 如图,在等腰梯形中,,= 4=,=45°.直角三角板含45°角的顶点在边上移动,一直角边始终经过点,斜边与交于点.若为等腰三角形,则的长等于____________.9.如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,A n B n B n+1C n,按如图所示放置,使点A1、A2、A3、A4、…、A n在射线OA上,点B1、B2、B3、B4、…、B n在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,S n,则S n=______.10.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.11.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.12.如图,直角梯形ABCD中,∠A=90°,∠B=120°,AD=,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.若射线EF经过点C,则AE的长是.三、解答题13.如图,在边长为4cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.在运动过程中,设四边形EFGH的面积为S(cm2),运动时间为t(s).(1)试证明四边形EFGH是正方形;(2)写出S关于t的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?(3)是否存在某一时刻t,使四边形EFGH的面积与正方形ABCD的面积比是5:8?若存在,求出t的值;若不存在,请说明理由.14.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片还原,使点D与P重合,得折痕EF(点E、F为折痕与矩形边的交点,再将纸片还原。

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

中考总复习:多边形与平行四边形-巩固练习(提高)【巩固练习】一、选择题1.如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,□ABED 的面积是,则四边形ABCD的周长为()A.49cm B.43cm C.41cm D.46cm2.如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A. ; B.2; C.3; D.4.3. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限 C.第三象限 D.第四象限4.(2011·安徽)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.45.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB 相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的是().A.①②③④B.①③④C.②③④ D.①②④6.(2014•杭州模拟)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③B.①②④C.①③④D.②④二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.8.(2015春•淅川县期末)若工人师傅用正三角形、正十边形与正n边形这三种正多边形能够铺成平整的地面,则n的值为.9. 如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是__________.10.(2011•梅州)凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=_____;②a6-a5=____ ;③a n+1-a n=____.(n≥4,用n含的代数式表示)11.①如图(1),四边形ABCD中,AB∥E1F1∥CD,AD∥BC,则图中共有________个平行四边形;②如图(2),四边形ABCD中,AB∥E1F1∥E2F2∥CD,AD∥BC,则图中共有________个平行四边形;③如图(3),四边形ABCD中,AB∥E1F1∥E2F2∥E3F3∥CD,AD∥BC,则图中共有________个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,…,都是AD上的点,F1,F2,F3,…,都是BC上的点,且AB∥E1F1∥E2F2∥E3F3∥…∥∥CD,AD∥BC,则图中共有________平行四边形.12.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为___________.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+(82)1808-⨯•y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为12 xy=⎧⎨=⎩.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.14. 如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.(1)求∠C的度数;(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.15. (2015春•苏州校级期末)如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.16.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.【答案与解析】 一.选择题 1.【答案】D. 2.【答案】A.3.【答案】C . 4.【答案】B.【解析】如图所示,作AE ⊥BD 于E ,CF ⊥BD 于F ,由题意得AE =12BD =22AB =2>32,∴在边AB 和AD上各存在一个点P 到BD 的距离为32.∵AB =AD ,∠BAD =90°,∴∠ADB =45°.又∠ADC =90°,∴∠CDF =45°.∴CF =22CD =22×2=1<32,∴在边BC 和CD 上不存在符合题意的点P .综上所述.5.【答案】A.【解析】先证 ΔADF≌ΔABC,可得DF=AC=AE.∵DF ∥AE 且DF=AE ∴四边形ADFE 为平行四边形,即①②③④是正确的. 6.【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC , ∴∠ACD=∠CDE=90°, ∴AC ∥DE , ∵CE ∥AD ,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题7.【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8.【答案】十五.【解析】正三边形和正十边形内角分别为60°、144°,正n边形的内角应为360°﹣60°﹣144°=156°,所以正n边形为正十五边形.故答案为:十五.9.【答案】4+4.10.【答案】5;4;n-1.【解析】①五边形有5条对角线;②六边形有9条对角线,9-5=4;③n边形有(3)2n n-条对角线,n+1边形有(1)(2)2n n+-条对角线,a n+1-a n=(1)(2)2n n+--(3)2n n-=n-1.11.【答案】①3 ;②6 ;③10,.12.【答案】n(n+1).【解析】∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).三.综合题13.【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为121 mnc=⎧⎪=⎨⎪=⎩结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)14.【解析】(1)∵∠ABC与∠ADC互补,∴∠ABC+∠ADC=180°.∵∠A=90°,∴∠C=360°-90°-180°=90°;(2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.过点A作AF∥BC交CD的延长线于F,∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF .∵AD=AB ,∠AEC=∠AFD=90°,∴△ABE ≌△ADF . ∴AE=AF .∴四边形AECF 是正方形; (3)解法1:连接BD ,∵∠C=90°,CD=6,BC=8,Rt △BCD 中,BD=2286+=10 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =12×BD ×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM ∽△DAM .∴AM BM =MDAM.设BM=x ,则MD=10-x , ∴5x=105x -.解得x=5.∴AB=52.解法2:连接BD ,∠A=90°.设AB=x ,AD=y ,则x 2+y 2=102,① ∵12xy=25,∴xy=50.② 由①,②得:(x-y )2=0. ∴x=y .2x 2=100.∴x=52.15.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠PBA=90° 在△PBA 和△FBC 中,,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FCP=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)解:结论:四边形EPCF是平行四边形,理由是:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形.16. 【解析】(1)∵α=60°,BC=10,∴sinα=CEBC,即sin60°=10CE=32,解得CE=53;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF ,在△AFG 和△CFD 中,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△DFC (AAS ), ∴CF=GF ,AG=CD , ∵CE ⊥AB ,∴EF=GF (直角三角形斜边上的中线等于斜边的一半), ∴∠AEF=∠G ,∵AB=5,BC=10,点F 是AD 的中点, ∴AG=5,AF=12AD=12BC=5, ∴AG=AF ,∴∠AFG=∠G ,在△EFG 中,∠EFC=∠AEF+∠G=2∠AEF , 又∵∠CFD=∠AFG (对顶角相等), ∴∠CFD=∠AEF ,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF , 因此,存在正整数k=3,使得∠EFD=3∠AEF ; ②设BE=x ,∵AG=CD=AB=5, ∴EG=AE+AG=5-x+5=10-x ,在Rt △BCE 中,CE 2=BC 2-BE 2=100-x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10-x )2+100-x 2=200-20x , ∵CF=GF (①中已证),∴CF 2=(12CG )2=14CG 2=14(200-20x )=50-5x ,∴CE 2-CF 2=100-x 2-50+5x=-x 2+5x+50=-(x-52)2+50+254,∴当x=52,即点E 是AB 的中点时,CE 2-CF 2取最大值,此时,EG=10-x=10-52=152,CE=2100x -=251004-=5152, 所以,tan ∠DCF=tan ∠G=CEEG =5152152=153.。

中考总复习:特殊的四边形--知识讲解(提高)

中考总复习:特殊的四边形--知识讲解(提高)

中考总复习:特殊的四边形—知识讲解(提高)【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定考点二、中点四边形相关问题1. 中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2. 若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等. 【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.考点三、重心1.线段的中点是线段的重心;三角形三条中线相交于一点,这个交点叫做三角形的重心;三角形的重心与顶点的距离等于它与对边中点的距离的2倍.平行四边形对角线的交点是平行四边形的重心。

【典型例题】类型一、特殊的平行四边形的应用1.(2012•湛江)如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF 、再以对角线AE 为边作笫三个正方形AEGH ,如此下去….若正方形ABCD 的边长记为a 1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,…,a n ,则a n =___________.【思路点拨】求a 2的长即AC 的长,根据直角△ABC 中AB 2+BC 2=AC 2可以计算,同理计算a 3、a 4.由求出的【解析】∵a 2=AC ,且在直角△ABC 中,AB 2+BC 2=AC 2,【总结升华】考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n 的规律是解题的关键. 举一反三:【高清课堂: 多边形与特殊平行四边形 例4】 【变式】(2011德州)长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a 的值为________.【答案】5或4. 2.(2015秋•宝安区校级期中)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,AC=6,BD=8,点P 是AC 延长线上的一个动点,过点P 作PE⊥AD,垂足为E ,作CD 延长线的垂线,垂足为E ,则|PE ﹣PF|= .【思路点拨】延长BC 交PE 于G ,由菱形的性质得出AD ∥BC ,OA=OC=AC=3,OB=OD=BD=4,AC ⊥BD ,∠ACB=∠ACD ,由勾股定理求出AD ,由对顶角相等得出∠PCF=∠PCG ,由菱形的面积的两种计算方法求出EG ,由角平分线的性质定理得出PG=PF ,得出PE ﹣PF=PE ﹣PG=EG 即可. 【答案】4.8.【解析】解:延长BC 交PE 于G ,如图所示: ∵四边形ABCD 是菱形,∴AD ∥BC ,OA=OC=AC=3,OB=OD=BD=4,AC ⊥BD ,∠ACB=∠ACD , ∴AD==5,∠PCF=∠PCG ,∵菱形的面积=AD •EG=AC •BD=×6×8=24, ∴EG=4.8, ∵PE ⊥AD , ∴PE ⊥BG , ∵PF ⊥DF , ∴PG=PF ,∴PE ﹣PF=PE ﹣PG=EG=4.8. 故答案为:4.8.【总结升华】本题考查了菱形的性质、勾股定理、角平分线的性质定理、菱形面积的计算等知识;本题综合性强,有一定难度,通过作辅助线证出PG=PF是解决问题的关键.类型二、梯形的应用3.(2011•资阳)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长;(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).【思路点拨】(1)先证明四边形ABED为矩形,CE=BC-AD,继而即可求出答案;(2)设AF=CE=x,则HE=x-3,BF=7-x,再通过证明△BEF∽△HDE,根据对应边成比例,然后代入求解即可;(3)综合(1)(2)两种情况,然后代入求出解析式即可.【答案与解析】(1)∵F与B重合,且EF⊥DE,∴DE⊥BC,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABED为矩形,∴BE=AD=9,∴CE=12-9=3.(2)作DH⊥BC于H,则DH=AB=7,CH=3.设AF=CE=x,∵F在线段AB上,∴点E在线段BH上,CH=3,CE=x,∴HE=x-3,BF=7-x,∵∠BEF+90°+∠HED=180°,∠HDE+90°+∠HED=180°,∴∠BEF=∠HDE,【总结升华】本题考查直角梯形的知识,同时考查了矩形的判定与性质、相似三角形的判定与性质,是一道小的综合题,注意对这些知识的熟练掌握并灵活应用.举一反三:【变式】(2011•台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I 点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为().A.B.C.10-D.10+【答案】B.类型三、特殊四边形与其他知识结合的综合运用【高清课堂:多边形与特殊平行四边形例7】4.(2014秋•莒南县期末)正方形ABCD边长为2,点E在对角线AC上,连接DE,将线段DE绕点D顺时针旋转90°至DF的位置,连接AF,EF.(1)证明:AC⊥AF;(2)设AD2=AE×AC,求证:四边形AEDF是正方形;(3)当E点运动到什么位置时,四边形AEDF的周长有最小值,最小值是多少?【思路点拨】(1)由已知条件及正方形的性质易证△CDE≌△ADF,所以可得∠ECD=∠DAF=45°,CE=AF,进而可得∠CAF=90°,即AC⊥AF;(2)若AD2=AE×AC,再由条件∠CAD=∠EAD=45°,易证△EAD∽△DAC,所以∠AED=∠ADC=90°,即有∠AED=∠EDF=∠EAF=90°,又DE=DF,继而证明四边形AEDF为正方形;(3)当E点运动到AC中点位置时,四边形AEDF的周长有最小值,由(2)得CE=AF,则有AE+AF=AC=2,又DE=DF,所以四边形AEDF的周长l=AE+AF+DE+DF=4+2DE,则DE最小四边形的周长最小,问题得解.【答案与解析】解:(1)∵四边形ABCD是正方形,∴∠CDA=90°,CD=AD,ED=FD,∠CAD=45°,∵将线段DE绕点D顺时针旋转90°至DF的位置,∴∠EDF=90°,∴∠CDE=∠ADF,在△CDE和△ADF中,,∴△CDE≌△ADF,∴∠ECD=∠DAF=45°,CE=AF,∴∠CAF=90°,即AC⊥AF;(2)∵AD2=AE×AC,∴∵∠CAD=∠EAD=45°,∴△EAD∽△DAC,∴∠AED=∠ADC=90°,即有∠AED=∠EDF=∠EAF=90°,又DE=DF,∴四边形AEDF为正方形(3)当E点运动到AC中点位置时,四边形AEDF的周长有最小值,理由如下:由(2)得CE=AF,则有AE+AF=AC=2,又DE=DF ,则当DE 最小时,四边形AEDF 的周长l=AE+AF+DE+DF=4+2DE 最小,当DE⊥AC 时,E 点运动到AC 中点位置时,此时DE=2四边形AEDF 的周长最小值为8.【总结升华】本题用到的知识点有正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及四边形周长最小值的问题、动点问题,题目的综合性较强,难度中等,是一道不错的中考题压轴题.5.(2012•自贡)如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合. (1)证明不论E 、F 在BC 、CD 上如何滑动,总有BE=CF ;(2)当点E 、F 在BC 、CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【思路点拨】(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ; (2)根据△ABE ≌△ACF 可得ABES=ACFS,故根据S 四边形AECF =AECS+ACFS =AECS+ABES=ABCS即可解题;当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又根据CEFS=S 四边形AECF -AEFS,则△CEF 的面积就会最大.【答案与解析】(1)证明:连接AC ,如下图所示,∵四边形ABCD 为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°, ∴∠1=∠3, ∵∠BAD=120°, ∴∠ABC=60°,∴△ABC 和△ACD 为等边三角形, ∴∠4=60°,AC=AB ,∴在△ABE 和△ACF 中,134AB AC ABC ∠=∠⎧⎪=⎨⎪∠=∠⎩,6.的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH 的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x ≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.举一反三:【变式】如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?【答案】(1)AD=2AB.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD;∵E是BC的中点,∴AB=BE=EC=CD;则△ABE、△DCE是等腰Rt△;∴∠AEB=∠DEC=45°;∴∠AED=90°;四边形PFEH中,∠PFE=∠FEH=∠EHP=90°,故四边形PFEH是矩形;(2)点P是AD的中点时,矩形PHEF变为正方形;理由如下:由(1)可得∠BAE=∠CDE=45°;∴∠FAP=∠HDP=45°;又∵∠AFP=∠PHD=90°,AP=PD,∴Rt△AFP≌Rt△DHP;∴PF=PH;在矩形PFEH中,PF=PH,故PFEH是正方形..。

特殊平行四边形(考题猜想,易错必刷36题6种题型)(解析版)24-25学年九年级数学上学期期中考点

特殊平行四边形(考题猜想,易错必刷36题6种题型)(解析版)24-25学年九年级数学上学期期中考点

特殊平行四边形(易错必刷36题8种题型专项训练)➢直角三角形斜边上的中线有理数➢菱形的性质➢矩形的性质➢矩形的判定➢矩形的判定与性质➢正方形的性质➢正方形的判定➢轴对称-最短路线问题一.直角三角形斜边上的中线(共1小题)1.已知:如图,在四边形ABCD 中,∠BCD =∠BAD =90°,E ,F 分别是对角线BD ,AC 的中点.(1)请判断线段EF 与AC 的位置关系,并说明理由;(2)若∠ADC =45°,请判断EF 与AC 的数量关系,并说明理由.【答案】(1)EF ⊥AC ,理由见解答;(2)EF =AC ,理由见解答.【解答】解:(1)EF ⊥AC ,理由:连接AE ,EC,∵∠BCD=90°,点E是BD的中点,∴CE=BD,∵∠BAD=90°,点E是BD的中点,∴AE=BD,∴AE=CE,∵点F是AC的中点,∴EF⊥AC;(2)EF=AC,理由:∵∠BCD=90°,点E是BD的中点,∴CE=DE=BD,∴∠ECD=∠CDE,∵∠BAD=90°,点E是BD的中点,∴AE=DE=BD,∴∠EAD=∠ADE,∵∠ADC=45°,∴∠AEC=∠AEB+∠BEC=∠EAD+∠ADE+∠ECD+∠EDC=2∠ADE+2∠CDE=2(∠ADE+∠CDE)=2∠ADC=90°,∵点F是AC的中点,∴EF=AC.二.菱形的性质(共3小题)2.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=10,S=100,则OH的长为( )菱形ABCDA.B.10C.5D.【答案】C【解答】解:∵四边形ABCD是菱形,∴AC=2AO=20,=×AC×BD=20×BD=100,又∵S菱形ABCD∴BD=10,∵DH⊥AB,∴在Rt△BHD中,点O是BD的中点,∴OH=BD=10=5.故选:C.3.如图,边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°,…,按此规律所作的第2023A.B.C.D.【答案】B【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴∠AOB=90°,OB=BD,OA=AC,DA=AB=1,∵∠DAB=60°,∴△ADB是等边三角形,∴BD=AB=AD=1,∴OB=BD=,∴AO===,∴AC=2AO=,同理可得:AC1=3,∴第1个菱形的边长=1=()0,第2个菱形的边长==(1,第3个菱形的边长=3=()2,…∴第2023个菱形的边长=()2022,故选:B.4.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为 .【答案】4.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=8,且∠A=60°,∴△ABD是等边三角形,且点E是AD的中点,∴BE⊥AD,且∠A=60°,∴AE=4,BE=AE=4,∴PE=BE=4.故答案为:4.三.矩形的性质(共10小题)5.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )A.B.C.D.【答案】C【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD =S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.6.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP 为“智慧三角形”,则点P的坐标为( )A.(3,1)或(3,3)B.(3,)或(3,3)C.(3,)或(3,1)D.(3,)或(3,1)或(3,3)【答案】D【解答】解:由题意可知,“智慧三角形”是直角三角形,∠CPM=90°或∠CMP=90°,∴设P(3,a),则AP=a,BP=4﹣a;①若∠CPM=90°,在Rt△BCP中,由勾股定理得:CP2=BP2+BC2=(4﹣a)2+9,在Rt△MPA中,由勾股定理得:MP2=MA2+AP2=1+a2,在Rt△MPC中,由勾股定理得:CM2=MP2+CP2=1+a2+(4﹣a)2+9=2a2﹣8a+26,又∵CM2=OM2+OC2=4+16=20,∴2a2﹣8a+26=20,∴(a﹣3)(a﹣1)=0,解得:a=3或a=1,∴P(3,3)或(3,1);②若∠CMP=90°,在Rt△BCP中,由勾股定理得:CP2=BP2+BC2=(4﹣a)2+9,在Rt△MPA中,由勾股定理得:MP2=MA2+AP2=1+a2,∵CM2=OM2+OC2=20,在Rt△MCP中,由勾股定理得:CM2+MP2=CP2,∴20+1+a2=(4﹣a)2+9,解得:a=.∴P(3,).综上,P(3,)或(3,1)或(3,3).故选:D.7.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC =2,则点D到点O的最大距离是( )A.2﹣2B.2+2C.2﹣2D.【答案】B【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.8.如图,矩形ABCD中,AB=6,AD=8,且有一点P从B点沿着BD往D点移动,若过P点作AB的垂线交AB于E点,过P点作AD的垂线交AD于F点,则EF的长度最小为多少( )A.B.C.5D.7【答案】B【解答】解:如图,连接AP、EF,∵PE⊥AB,PF⊥AD,∴∠AEP=∠AFP=90°.∵四边形ABCD是矩形,∴∠BAD=90°.∴四边形AEPF为矩形.∴AP=EF.∴要求EF的最小值就是要求AP的最小值.∵点P从B点沿着BD往D点移动,∴当AP⊥BD时,AP取最小值.下面求此时AP的值,在Rt△BAD中,∵∠BAD=90°,AB=6,AD=8,∴BD====10.∵S==,△ABD∴AP===.∴EF的长度最小为:.故本题选B.9.如图,矩形ABCD中,AD=18,AB=24.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE 对称,当△CD'E为直角三角形时,DE的长为 9或18 .【答案】9或18.【解答】解:(1)当∠CED′=90°时,如图(1),∵∠CED′=90°,根据轴对称的性质得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=18;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD'E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得AC==30,∴CD′=30﹣18=12,设DE=D′E=x,则EC=CD﹣DE=24﹣x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+144=(24﹣x)2,解得x=9,即DE=9;综上所述:DE的长为9或18;故答案为:9或18.10.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF 的度数等于 °.【答案】见试题解答内容【解答】解:∵矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∴∠CFP=∠GFP,HE∥GF∴∠CFG=2∠GFP=124°,∴∠HFG=180°﹣∠CFG=56°,∴∠EHF=∠HFG=56°.故答案为56.11.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B点的纵坐标是 .【答案】见试题解答内容【解答】解:如图,过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,则AF⊥CF,延长CA交x轴于点H,∵四边形AOBC是矩形,∴OB=AC,AC∥OB,∴∠CAF=∠CHO=∠BOE,∵∠AFC=∠OEB=90°,∴△AFC≌△OEB(AAS),∴CF=BE=4﹣1=3,故答案为:3.12.如图,在长方形ABCD中,,AD=4,E,F分别为AD,BC上的两个动点,且∠EFC=60°,连接AF、CE,那么AF+CE的最小值为 .【答案】.【解答】解:如图,过点E作EH⊥BC于点H,则四边形ABHE是矩形,∴EH=AB=.∵∠EHF=90°,∠EFH=60°,∴∠FEH=30°.∴EF=2FH.∴FH=1,EF=2.设BF=x,则CH=4﹣x﹣1=3﹣x,∴AF+EC=+.欲求AF+EC的最小值,相当于在x轴上寻找一点P(x,0),使得P到M(0,),N(3,)的距离和最小(如图1中),作点M关于x轴的对称点F,连接FN,∵F(0,﹣),N(3,),∴直线FN的解析式为y=x﹣.令y=0,可得x=,∴x=时,PM+PN的值最小,此时NF=AF+EC=.故答案为:.13.如图,A,B,C,D为矩形的四个顶点,AB=4cm,AD=2cm,动点P、Q分别从点A,C同时出发,都以1cm/s的速度运动,其中点P由A运动到B停止,点Q由点C运动到点D停止.(1)求四边形PBCQ的面积;(2)P、Q两点从出发开始到几秒时,点P、Q、D组成的三角形是等腰三角形?【答案】见试题解答内容【解答】解:(1)设运动时间为t,则AP=t,CQ=t,∵四边形ABCD是矩形,∴CD=AB=4cm,BC=AD=2,∠B=∠C=90°,∴BP=4﹣t,∴四边形PBCQ的面积=(PB+CQ)•BC=4×2=4(cm)2;(2)设P、Q两点从出发开始到t秒时,点P、Q、D组成的三角形是等腰三角形,∵CQ=t,∴DQ=4﹣t,①当PQ=DQ=4﹣t时,如图1,过P作PH⊥DQ于H,则PH=AD=2,DH=AP=t,∵CQ=t,∴HQ=4﹣2t,∵PH2+HQ2=PQ2,∴22+(4﹣2t)2=(4﹣t)2,解得:t=2,t=,②当PQ=PD时,如图2,过P作PH⊥DQ于H,则PH=AD=2,DH=AP=HQ=t,∵CQ=t,∴HQ=4﹣2t,∴4﹣2t=t,∴t=,③当DQ=PD时,∴DQ=4﹣t,∴PD=DQ=4﹣t,∵AP2+AD2=PD2,∴t2+22=(4﹣t)2,∴t=,综上所述,当t=2秒或t=秒或t=秒或t=秒时,点P、Q、D组成的三角形是等腰三角形.14.如图,在矩形ABCD中,O是AB的中点,点P在线段AM上(不与点A重合),OP=AB,连接CP 并延长,交AD于点N.(1)判断△ABP的形状,并说明理由.(2)若M为DC的中点,求证:PN=AN.【答案】(1)△ABP是直角三角形;(2)证明见解析.【解答】(1)解:△ABP是直角三角形.理由如下:∵点O是AB的中点,∴AO=OB=AB.∵OP=AB,∴OP=OA=OB.∴∠OBP=∠OPB,∠OAP=∠APO.∵∠OAP+∠APO+∠OBP+∠BPO=180°,∴∠APO+∠BPO=90°.∴∠APB=90°.∴△ABP是直角三角形.(2)证明:如图,延长AM,BC交于点Q,∵M是CD的中点,∵∠D=∠MCQ=90°,∠AMD=∠QMC,∴△ADM≌△QCM(ASA).∴AD=CQ=BC.∵∠BPQ=90°.∴PC=BQ=BC.∴∠CPB=∠CBP.∵∠OPB=∠OBP,∴∠OBC=∠OPC=90°.∴∠OPN=∠OPA+∠APN=90°.∵∠OAP+∠PAN=90°,∠OAP=∠OPA,∴∠APN=∠PAN.∴PN=AN.四.矩形的判定(共1小题)15.如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分;(2)当线段AF与BC ADFE为矩形?请说明理由.【答案】见试题解答内容【解答】(1)证明:∵点D是AB的中点,∴AD=AB,∵点E是AC的中点,点F是BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF=AB,∴四边形ADFE是平行四边形,∴AF与DE互相平分;(2)解:当AF=BC时,四边形ADFE为矩形,理由:∵线段DE为△ABC的中位线,∴DE=BC,∵AF=BC,∴AF=DE,由(1)得:四边形ADFE是平行四边形,∴四边形ADFE为矩形.五.矩形的判定与性质(共1小题)16.下列命题错误的是( )A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.对角线相等的四边形是矩形D.矩形的对角线相等【答案】C【解答】解:平行四边形的性质有平行四边形的对边相等,故A选项错误;平行四边形的判定定理有两组对边分别相等的四边形是平行四边形,故B选项错误;C、对角线相等的平行四边形是矩形,故C选项正确;D、矩形的性质有矩形的对角线相等,故D选项错误;故选:C.六.正方形的性质(共18小题)17.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )A.75°B.60°C.54°D.67.5°【答案】B【解答】解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选:B.18.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为( )A.cm2B.cm2C.cm2D.()n cm2【答案】B【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.19.如图,以边长为4的正方形ABCD的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值为( )A.2B.4C.D.2【答案】D【解答】解:如图,连接EF,∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,∴∠AOE=∠DOF;在△AOE与△DOF中,,∴△AOE≌△DOF(ASA),∴OE=OF(设为λ);∴△EOF是等腰直角三角形,由勾股定理得:EF2=OE2+OF2=2λ2;∴EF=OE=λ,∵正方形ABCD的边长是4,∴OA=2,O到AB的距离等于2(O到AB的垂线段的长度),由题意可得:2≤λ≤2,∴2≤EF≤4.所以线段EF的最小值为2.故选:D.20.如图,在正方形ABCD和正方形CEFG中,点G在CD上,BC=8,CE=4,H是AF的中点,那么CH的长为( )A.4B.2C.4D.2【答案】B【解答】解:连接AC、CF,如图:∵四边形ABCD和四边形CEFG是正方形,∴∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=8,CE=4,∴AC=8,CF=4,由勾股定理得,AF==4,∵H是AF的中点,∠ACF=90°,∴CH=AF=2,故选:B.21.如图所示,正方形ABCD的边长为2,AB在x轴的正半轴上,以A(1,0)为圆心,AC为半径作圆交x轴负半轴于点P,则点P的横坐标是( )A.B.C.﹣1D.【答案】D【解答】解:∵四边形ABCD是边长为2的正方形,∴AB=BC=2,∴AC=,∵以A为圆心,AC为半径画圆交x轴负半轴于点P,∴AP=AC=,又∵点A(1,0),∴OP=﹣1,∴点P(1﹣,0),故选:D.22.如图,在正方形ABCD的外侧,作等边△ADE,则∠ABE为( )A.10°B.15°C.20°D.25°【答案】B【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠ABE=(180°﹣150°)=15°.故选:B.23.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为( )A.6B.7C.8D.9【答案】D【解答】解:设大正方形的边为a,小正方形的边长为b,矩形的边长为a、b,如图所示:∵大正方形,有6张,小正方形有5张,矩形有4张,∴构成边长最大是为9正方形,其中有两边为9,则需要5个边长为3的正方形,另外两边的边长都为3+2+2+2=9也可以满足3a=3b+a,即2a=3b.故选:D.24.在直线l上依次摆放着7个正方形,已知斜放置的3个的面积分别是a、b、c,正放置的4个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4的值为( )A.a+b+c B.a+c C.a+2b+c D.a﹣b+c【答案】B【解答】解:∵∠ACB+∠DCE=90°,∠BAC+∠ACB=90°,∴∠DCE=∠BAC,∵AC=CE,∠ABC=∠CDE∴△ABC≌△CDE,∴BC=DE,在直角△ABC中,AB2+BC2=AC2,即,AB2+DE2=AC2,∵S3=AB2,S4=DE2∴S3+S4=c同理S1+S2=a故可得S1+S2+S3+S4=a+c,故选:B.25.如图,正方形ABCD中,点M是边BC异于点B、C的一点,AM的垂直平分线分别交AB、CD、BD 于E、F、K,连接AK、MK.下列结论:①EF=AM;②AE=DF+BM;③BK=;④∠AKM=90°.其中正确的结论有 个.【答案】见试题解答内容【解答】解:如图,作FG⊥AB于G,则AD=GF=AB,∵AM⊥EF,∴∠BAM=∠GFE,∵∠BAM=∠GFE,∠ABM=∠EGF,GF=AB,∴△ABM≌△FGE,∴EF=AM,故①正确;由题可得:AG=DF,GE=BM,∴AE=AG+GE=DF+BM;故②正确;如图,过K作KQ⊥AB于Q,KT⊥BC于T,∵∠KBQ=45°,∴△BQK是等腰直角三角形,∴BK=KQ<AK,故③错误;∵DB平分∠ABC,∴KQ=KT,又∵AM的垂直平分线交BD于K,∴KA=KM,∴Rt△AQK≌Rt△MTK,∴∠AKQ=∠MKT,又∵∠QKT=∠MKT+∠MKQ=90°,∴∠AKQ+∠MKQ=90°,即∠AKM=90°,故④正确;故答案为:3.26.如图,已知正方形ABCD中,AD=6,∠DAE=30°,点F为AE的中点,过点F作直线分别与AD、BC相交于点M、N,若MN=AE,则AM的长等于 .【答案】4或2.【解答】解:在正方形ABCD AD=6,∠DAE=30°,设DE=x,则AE=2x,由勾股定理x2+62=(2x)2,解得:x=2(负值舍去),∴AE=4,∵点F为AE的中点,∴AF=EF=2,分两种情况:①过M作MG⊥BC,G为垂足,则MG=DC=AD,在Rt△MGN和Rt△ADE中,,∴Rt△MGN≌Rt△ADE(HL),∴∠NMG=∠EAD,∴∠NMG+∠AMF=90°,∴∠EAD+∠AMF=90°,∴∠AFM=90°,在Rt△AFM中,∠DAE=30°,AF=2,设MF=m,则AM=2m,由勾股定理,得4m2﹣m2=12,解得m=2(负值舍去),则AM=4;②方法一:根据对称性由①可知:AM=6﹣4=2,方法二:如图,过N作NG⊥AD于G,过M作MH⊥AE于H,则NG=CD=AD,在Rt△ADE和Rt△NGM中,,∴Rt△ADE≌Rt△NGM(HL),∴∠GNM=∠DAE=30°,∴∠GMN=60°,△AMF中,∠GMN=∠MAF+∠AFM,∴∠AFM=∠DAE=30°,∴AM=MF,∵MH⊥AF,∴AH=FH,设MH=x,则AM=2x,AH=FH=x,∵F是AE的中点,∴AE=2AF=4AH=4x,Rt△ADE中,∠DAE=30°,∴DE=AE=2x,AD=DE=6x,∵AD=6,即6x=6,x=1,即AM=2x=2;故答案为:4或2.27.如图,若正方体的棱长为a,M是AB的中点,则图中阴影部分的面积为 .【答案】见试题解答内容【解答】解:找到CD的中点N,连接BN.正方形ABCD中,AC为BD的垂直平分线,∴OB=OD,∵在△OAD和△OAB中,AB=AD,OA=OA∴△OAD≌△OAB,又∵,所以阴影部分面积为△OAD和△OAB的面积和.根据中位线定理M、N分别为AB、CD的中点,∴CE=EO=OA,∴O到AD的距离为CD长度的.∴S△ADO +S△ABO=2S△ADO=2××a×=.故答案为.28.如图,分别以△ABC的边AB,AC为边往外作正方形ABDE和正方形ACFG,连接BG,CE,EG,若AB=3,AC=1,则BC2+EG2的值为 .【答案】20.【解答】解:如图,连接BE,CG,∵正方形ABDE和正方形ACFG,∴AB=AE,AG=AC,∠BAE=∠CAG=90°,∴∠BAG=∠CAE,∴△BAG≌△EAC(SAS),∴∠ABG=∠AEC,∵∠AHB=∠OHE,∴∠EOH=∠BAH=90°,∴∠EOG=∠BOC=90°,∴BC2+EG2=OB2+OC2+OE2+OG2=BE2+CG2,∵AB=3,AC=1,∴BE2=32+32=18,CG2=12+12=2,∴BE2+CG2=18+2=20,∴BC2+EG2=20.故答案为:20.29.如图,正方形MNKT由8个全等的直角三角形和正方形EFGH拼接而成,记图中正方形MNKT,正方形ABCD,正方形EFGH的面积分别为S1,S2,S3,若S1﹣S2+S3=10,则边AB的长度为 .【答案】.【解答】解:将四边形EFGH的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形MNKT,正方形ABCD,正方形EFGH的面积分别为S1,S2,S3,若S1﹣S2+S3=10,∴S1=8y+x,S2=4y+x,S3=x,∴S1﹣S2+S3=8y+x﹣(4y+x)+x=10,故x+4y=10,所以S2=x+4y=10,∴AB=.故答案为:.30.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的结论序号是 .【答案】①②③.【解答】解:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,故①正确;∴矩形DEFG为正方形;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),故②正确;∴AE=CG,∠DAE=∠DCG=45°,∴∠ACG=90°,∴AC⊥CG,故③正确;当DE⊥AC时,点C与点F重合,∴CE不一定等于CF,故④错误,综上所述:①②③.故答案为:①②③.31.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE,AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的结论有: (请填上序号).【答案】①②③④.【解答】解:∵点E是AD边的中点,∴AE=DE,而AB=DC,∠BAE=∠CDE,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,故①正确;∵DH=DH,AD=CD,∠ADH=∠CDH,∴△ADH≌△CDH(SAS),∴∠EAG=∠DCE,而∠ABE=∠DCE,∠ABE+∠AEB=90°,∴∠EAG+∠AEB=90°,∴AG⊥BE,故②正确;∵△CDE和△BDE同底等高,∴S△CDE =S△BDE,而S△CDE ﹣S△EHD=S△BDE﹣S△EHD,∴S△BHE =S△CHD,故③正确;∵△ADH≌△CDH,∴AH=CH,而AB=CB,∠EAG=∠DCE,∴∠HAB=∠HCB,∴△ABH≌△CBH(SAS),∴∠AHB=∠CHB,而∠EHD=∠CHB,∴∠AHB=∠EHD,故④正确,故答案为:①②③④.32.如图1,在正方形ABCD AEF=90°,且EF交正方形外角的平分线CF于点F.(1)若点E是BC边上的中点,求证:AE=EF;(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,若点E是BC边上的任意点一,在AB边上是否存在点M,使得四边形DMEF是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】见试题解答内容【解答】(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB=90°,∠2+∠AEB=90°∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF;(2)解:AE=EF成立,理由如下:如图2,延长BA到M,使AM=CE,∵∠AEF=90°,∴∠FEG+∠AEB=90°.∵∠BAE+∠AEB=90°,∴∠BAE=∠FEG,∴∠MAE=∠CEF.∵AB=BC,∴AB+AM=BC+CE,即BM=BE.∴∠M=45°,∴∠M=∠FCE.在△AME与△ECF中,,∴△AME≌△ECF(ASA),∴AE=EF.(3)存在,理由如下:如图3,作DM⊥AE于AB交于点M,则有:DM∥EF,连接ME、DF,在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴DM=AE,由(2)AE=EF,∴DM=EF,∴四边形DMEF为平行四边形.33.如图,正方形ABCD边长为4,点E在边AB上(点E与点A、B不重合),过点A作AF⊥DE,垂足为G,AF与边BC相交于点F.(1)求证:△ADF≌△DCE;(2)若△DEF的面积为,求AF的长;(3)在(2)的条件下,取DE,AF的中点M,N,连接MN,求MN的长.【答案】(1)证明见解答部分;(2)AF=5或.(3)MN的长度为或.【解答】(1)证明:∵AF⊥DE,∠B=90°,∴∠AED=∠AFB,在△ABF与△DAE中,,∴△ABF≌△DAE(AAS),∴AF=DE,∵∠ADE+∠CDE=∠ADE+∠DAG=90°,∴∠CDE=∠DAF,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS).(2)解:∵△ABF≌△DAE,∴AE=BF=x,∴BE=CF=4﹣x,∴△DEF的面积=S正方形﹣S△ADE﹣S△EBF﹣S△DCF=4×4﹣×4•x﹣(4﹣x)•x﹣×4•(4﹣x)=8﹣2x+x2,∴y=x2﹣2x+8=,解得,x1=3,x2=1,∴AE=3或AE=1,∴AF=DE=5或.(3)解:如图,连接AM并延长交CD于点P,连接PF,∵点M是DE的中点,∴DM=ME,∵AB∥CD,∴∠PDM=∠AEM,∠DPM=∠EAM,∴△DPM≌△EAM(AAS),∴PM=AM,DP=AE=3或1,当AE=3时,BF=DP=3,∴CF=CP=1,∴PF=,∴MN=PF=;当AE=1时,BF=EP=1,∴CF=CP=3,∴PF=3,∴MN=PF=;综上,MN的长度为或.34.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长.【答案】见试题解答内容【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四边形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.七.正方形的判定(共1小题)35.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F(1)线段OE与OF的数量关系 .(填空);(2)若CE=8,CF=6,则OC= .(填空);(3)当点O运动到 ,且∠BCA等于 时,四边形AECF是正方形.(填空)【答案】见试题解答内容【解答】解:(1)∵CE是∠ACB的平分线,∴∠1=∠2.∵MN∥BC,∴∠1=∠3.∴∠2=∠3.∴OE=OC.同理可证OC=OF.∴OE=OF.故答案为:OE=OF.(2)∵MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,∴∠2=∠ACB,∠5=∠ACD,∴∠ECF=∠2+∠5=(∠ACB+∠ACD)=90°,∴△ECF是直角三角形,又∵CE=8,CF=6,∴由勾股定理得EF=10,∵OE=OF,∴Rt△CEF中,CO=EF=5,故答案为:5;(3)当点O运动到AC ACB=90°时,四边形AECF是正方形.理由如下:∵O为AC中点,∴OA=OC,∵由(1)可得OE=OF,∴四边形AECF为平行四边形;由(2)可得∠ECF=90°,∴四边形AECF为矩形,∠5=∠6=45°,∠2=∠3=45°,∴∠3=∠6,∴CE=CF,∴平行四边形AECF是正方形.故答案为:AC的中点处,90°.八.轴对称-最短路线问题(共1小题)36.如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为( )A.10B.11C.12D.13【答案】D【解答】解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,连接PE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE==13.∴PC+PB的最小值为13.故选:D.。

最新中考数学总复习:特殊的四边形--知识讲解(基础)(含答案解析)

最新中考数学总复习:特殊的四边形--知识讲解(基础)(含答案解析)
中考总复习:特殊的四边形 - 知识讲解(基础)
责编:常春芳 【考纲要求】 1. 会识别矩形、菱形、正方形以及梯形; 2. 掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题. 3. 掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题. 【知识网络】
).
A. 2 2 B. 2 3 1 C. 2.5 D.2.3
【答案】 D. 类型三、特殊四边形与其他知识结合的综合运用
4. (2015?北京)在 ?ABCD中,过点 D 作 DE⊥AB 于点 E,点 F 在边 CD上, DF=BE,连接 AF,BF. ( 1)求证:四边形 BFDE是矩形; ( 2)若 CF=3,BF=4, DF=5,求证: AF 平分∠ DAB.
3、对角线相等的平行四边形是矩 形
1、有一组邻边相等的平行四边形是菱 形; 2、四条边都相等的四边形是菱形; 3、对角线互相垂直的平行四边形是菱 形. 1、邻边相等的矩形是正方形 2、对角线垂直的矩形是正方形 3、有一个角是直角的菱形是正方形 4、对角线相等的菱形是正方形
中 心、 轴对 称图 形 中 心、 轴对 称图 形 中 心、 轴对 称图 形
E、 G、F、 H 四点,连结 EG、 GF、FH、 HE.
( 1)如图①,试判断四边形 EGFH的形状,并说明理由;
( 2)如图②,当 EF⊥ GH时,四边形 EGFH的形状是

( 3)如图③,在( 2)的条件下,若 AC=BD,四边形 EGFH的形状是

( 4)如图④,在( 3)的条件下,若 AC⊥ BD,试判断四边形 EGFH的形状,并说明理由 .
若中点四边形为菱形,则原四边形满足条件对角线相等;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:特殊的四边形--巩固练习(提高)【巩固练习】一、选择题1. 如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( ).A.B.C.D.2.如图,在梯形ABCD中,AB∥CD,中位线MN= 7,对角线AC⊥BD,∠BDC= 30°,则梯形的高为().A.B. C.D.3. 四边形ABCD的对角线AC=BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,得到四边形EFGH,则它是().A.正方形B.菱形C.矩形 D.任意四边形4如图,矩形ABCD中,其长为a,宽为b,如果,则的值为().A. B. C.D.5.如图,在菱形ABCD中,,的垂直平分线FE交对角线AC于点F,E为垂足,连接DF.则等于().A.B.C. D.6.(2012•台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为(). A.24 B.25 C.26 D.27二、填空题7. 如图,点E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=AB,则图中阴影部分的面积与正方形ABCD的面积之比为___________.8. 如图,在等腰梯形ABCD中,AD∥BC,AC与BD相交于点O.下面结论正确的是_________.①AC=BD;②∠DAO=∠DBC;③S△BOC=S梯形ABCD;④△AOB≌△DOC.9. 已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为_____.10.(2012•湖州)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若mn=4725,则△ABC的边长是_________.11.(2012•咸宁)如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为_________.12.如图,以菱形ABCD各边的中点为顶点作四边形A1B1C1D1,再以A1B1C1D1各边的中点为顶点作四边形A2B2C2D2,…,如此下去,得到四边形A2011B2011C2011D2011,若ABCD对角线长分别为a和b,请用含a、b的代数式表示四边形A2011B2011C2011D2011的周长_________________.三、解答题13. 已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=,用含的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.14.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为______;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_______;位置关系为_________.15.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.16.如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.(1)求梯形OABC的高BG的长;(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由.【答案与解析】一.选择题1.【答案】A.2.【答案】B.3.【答案】A.4.【答案】A.【解析】由题意,,.5.【答案】D.6.【答案】C.【解析】连接AC,∵梯形ABCD中,∠DAB=∠ABC=90°,AB=5,BC=4,AD=8,∴S梯形ABCD=12•(AD+BC)•AB=8+452()=30,S△ABC=12AB•BC=12×5×4=10,∴S△ACD=30-10=20,∵DE:EC=1:4,∴S△ACE=20×45=16,∴S四边形ABCE=10+16=26.故选C.二.填空题7.【答案】25.【解析】把△APD旋转到△DCM,把△ABF旋转到△BCN,则多边形PFBNMD的面积被分成10份,阴影部分占4份.8.【答案】①②④.10.【答案】12.【解析】设正△ABC 的边长为x ,则高为32x ,S △ABC =12x •32x=34x 2, ∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为32x-3, 较短的对角线为(32x-3)33=12x-1, ∴黑色菱形的面积=12(32x-3)(12x-1)=38(x-2)2,∴m n =22233(2)483(2)8x x x --=-4725,整理得,11x 2-144x+144=0, 解得x 1=1211(不符合题意,舍去),x 2=12,所以,△ABC 的边长是12. 11.【答案】28.【解析】先根据EF ∥BC 交AB 于F ,EG ∥AB 交BC 于G 得出四边形BGEF 是平行四边形,再由BE 平分∠ABC 且交CD 于E 可得出∠FBE=∠EBC ,由EF ∥BC 可知,∠EBC=∠FEB ,故∠FBE=FEB ,由此可判断出四边形BGEF 是菱形,再根据E 为CD 的中点,AD=2,BC=12求出EF 的长,进而可得出结论. 12.【答案】10042a b+. 【解析】结合图形,脚码为奇数时,四边形A 2n-1B 2n-1C 2n-1D 2n-1是矩形,长为2n a ,宽为 2n b ; 脚码为偶数时,四边形A 2n B 2n C 2n D 2n 是菱形,边长为2212n a b ++ ,∴四边形A 2010B 2010C 2010D 2010是菱形,边长为2210062a b +, 周长为 22100642a b +,即2210042a b +.∴四边形A 2011B 2011C 2011D 2011是矩形,长为10052a,宽为10052b,∴四边形A 2011B 2011C 2011D 2011的周长为:2(10052a +10052b )=10042a b +.故答案为:10042a b+.三.综合题(2)作FM⊥DC,M为垂足,连结GE,∵ AB∥CD,∴∠AEG=∠MGE,∵ HE∥GF,∴∠HEG=∠FGE.∴∠AEH=∠MGF。

在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG。

∴ FM=HA=2,即无论菱形EFGH如何变化,点F的直线CD的距离始终为定值2.因此(3)若,由,得,此时在△DGH中,. 相应地,在△AHE中,,即点E已经不在边AB上.故不可能有.14.【解析】(1)OE=OF(相等);(2)OE=OF,OE⊥OF;证明:连接BO,∵在正方形ABCD中,O为AC中点,∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,∵PF⊥BC,∠BCO=45°,∴∠FPC=45°,PF=FC.∵正方形ABCD,∠ABC=90°,∵PF⊥BC,PE⊥AB,∴∠PEB=∠PFB=90°.∴四边形PEBF是矩形,∴BE=PF.∴BE=FC.∴△OBE≌△OCF,∴OE=OF,∠BOE=∠COF,∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE⊥OF.(3)OE=OF(相等),OE⊥OF(垂直).15.【解析】(1)四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD ,∴∠APC+∠CPD=∠BPD+∠CPD . 即∠APD=∠CPB . 又∵PA=PC ,PD=PB ,∴△APD ≌△CPB (SAS )∴AD=CB .∵E 、F 、G 、H 分别是AC 、AB 、BD 、CD 的中点,∴EF 、FG 、GH 、EH 分别是△ABC 、△ABD 、△BCD 、△ACD 的中位线. ∴EF=12BC ,FG=12AD ,GH=12BC ,EH=12AD . ∴EF=FG=GH=EH .∴四边形EFGH 是菱形. (3)补全图形.判断四边形EFGH 是正方形. 理由:连接AD ,BC .∵(2)中已证△APD ≌△CPB . ∴∠PAD=∠PCB . ∵∠APC=90°, ∴∠PAD+∠1=90°. 又∵∠1=∠2.∴∠PCB+∠2=90°. ∴∠3=90°.∵(2)中已证GH ,EH 分别是△BCD ,△ACD 的中位线, ∴GH ∥BC ,EH ∥AD . ∴∠EHG=90°.又∵(2)中已证四边形EFGH 是菱形, ∴菱形EFGH 是正方形. 16.【解析】(1)根据题意,AB=2222108AO OB -=-=6,∵2S △AOB =AB •OB=AO •BG ,∴BG=AB OB AO =6810⨯=4.8; (2)设当E 点运动到x 秒时,四边形ABED 是等腰梯形,则BE=x ,OF=2x ,∵BC ∥OA ,∴BE OD =BF OF ,即x OD =822xx-,解得OD=24x x -,过E 作EH ⊥OA 于H ,∵四边形ABED 是等腰梯形, ∴DH=AG=22226 4.8 3.6AB BG -=-=,HG=BE=x ,∴DH=10-24x x --x-3.6=3.6,解得x=2817;(3)会同时在某个反比例函数的图象上.根据题意,OG=AO-AG=10-3.6=6.4, ∴点E (6.4-t ,4.8), ∵OF=2t ,∴2tcos ∠AOB=2t ×810=85t ,2tsin ∠AOB=2t ×610=65t , ∴点F 的坐标为(85t ,65t )假设能在同一反比例函数图象上,则85t ×65t=(6.4-t )×4.8,整理得:2t 2+5t-32=0,△=25-4×2×(-32)=281>0,∴方程有解,即E 、F 会同时在某一反比例函数图象上,此时,t=52814-+, 因此E 、F 会同时在某个反比例函数的图象上,t=52814-+.。

相关文档
最新文档