最新圆锥曲线一轮复习

合集下载

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

所以B→D=(x1-2,y1),B→E=(x2-2,y2),
则(x1-2)(x2-2)+y1y2=0,
将x1=ky1+m,x2=ky2+m代入上式得
(k2+1)y1y2+k(m-2)(y1+y2)+(m-2)2=0,







(k2+
1)
m2-4 k2+4

k(m

2)
-k2+2km4 +
(m
x1+x2=-8 267m,x1x2=4m227-3, y1y2=6x1x2+ 6m(x1+x2)+m2=24m2-3-2748m2+27m2, ∵O→A·O→B=0,∴x1x2+y1y2=0, 代入根与系数的关系得 m2=12,m=±2 3,满足 Δ>0, ∴直线 l 的方程为 y= 6x±2 3.
4k2+1
又直线 OP 的斜率为--12--00=12,且直线 OP 与 MQ 不重合,
所以MQ∥OP.
题型二 定点与定值
例 2 (2022·济南模拟)已知椭圆 C:ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,点 P(0,2),连接 PA,PB 交椭圆 C 于点 M,N,△PAB 为直角三角 形,且|MN|=35|AB|. (1)求椭圆的标准方程;
设经过点F且斜率为k(k≠0)的直线的方程为y=kx+1,与曲线C的方 程联立得 y=kx+1, x32+y42=1, 消去 y 整理得(4+3k2)x2+6kx-9=0, Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立, 设M(x1,y1),N(x2,y2),
则|MN|= 1+k2|x1-x2|= 1+k2×4+Δ3k2=124+1+3kk22, x1+x2=-4+6k3k2,

圆锥曲线压轴小题课件-2025届高三数学一轮复习

圆锥曲线压轴小题课件-2025届高三数学一轮复习
专题培优课 高考中的圆锥曲线压轴小题
【考情分析】 近几年高考常常把圆锥曲线作为压轴小题,难度较 大,综合考查学生的分析问题、解决问题的能力.
关键能力·题型剖析 题型一 离心率范围问题 例1 (1)过双曲线xa22 − by22=1(a>0,b>0)的左焦点且垂直于x轴的直线与 双曲线交于A,B两点,D为虚轴上的一个端点,且∠ADB为钝角,则 此双曲线离心率的取值范围为( ) A.(1, 2)

(1)x1·x2=p42,y1y2=-p2; (2)若A在第一象限,B在第四象限,则|AF|=

,|BF|=
p

1−cos α
1+cos α
弦长|AB|=x1+x2+p=sin2p2 α(α为弦AB的倾斜角);
(3)
1 FA
+
1 =2;
FB p
(4)以弦AB为直径的圆与准线相切; (5)以AF或BF为直径的圆与y轴相切; (6)过焦点弦的端点的切线互相垂直且交点在准线上; (7)通径:过焦点与对称轴垂直的弦长等于2p.
巩固训练2
(1)
设椭圆xa22
+
y2 b2
=1(a>b>
0)的
左、
右焦
点分别为F1
,F2,
上、

顶点分别为A,B,直线AF2与该椭圆交于A,M两点,若∠F1AF2= 90°,则直线BM的斜率为( )
A.13 C.-1
B.12 D.-12
答案: B
(2)[2024·安徽合肥模拟]已知M,N为双曲线xa22
巩固训练3 (多选)已知抛物线C:y2=2px(p>0)的焦点为F(4,0),P为C上的一动 点,A(5,1),则下列结论正确的是( ) A.p=4 B.当PF⊥x轴时,点P的纵坐标为8 C.|PF|的最小值为4 D.|PA|+|PF|的最小值为9

圆锥曲线之中点问题及应用+讲义——2024届高三数学一轮复习

圆锥曲线之中点问题及应用+讲义——2024届高三数学一轮复习

第2讲圆锥曲线论之中点问题及应用一、知识点1.中点弦所在直线方程2.有心圆锥垂径定理3.有心圆锥曲线第三定义4.对称问题二、典型例题【题型1 中点弦所在的直线的方程】例1.(1)已知直线l与圆x2+y2=9交于A,B两点,且AB的中点为P(1,1),求直线l的方程(2)已知直线l与椭圆x 24+y23=1交于A,B两点,且AB的中点为P(1,1),求直线l的方程(3)已知直线l与双曲线x2−y22=1交于A,B两点,且AB的中点为P(2,1),求直线l的方程(4)已知直线l与抛物线y2=4x交于A,B两点,且AB的中点为P(1,1),求直线l的方程【题型2有心圆锥曲线垂径定理】例2、(1)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,点(2,√2)在C上,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,直线OM的斜率与直线l的斜率的乘积为定值。

(2)已知椭圆C:9x2+y2=m2(m>0), 直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值。

(3)已知A,B,C是椭圆W:x 24+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。

(4)已知椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√32,且过点(√72,34),点P在第一象限,A为左顶点,B为下顶点,PA交y轴于点C,PB交x轴于点D,若CD∥AB,求点P的坐标。

(5)双曲线C:x 2a2−y2b2=1(a>0,b>0),直线y=kx+m交双曲线C于A,B两点,交双曲线C的渐近线于C,D,求证:|AC|=|BD|(6)已知斜率为k的直线l与椭圆C:x 24+y23=1交于A,B两点,且AB的中点为M(1,m)(m>0),证明:k<−12(7)已知双曲线x2−y22=1,过点P(1,1)能否作直线l,使l与所给双曲线交于Q1,Q2两点,且点P是弦Q1Q2的中点?直线l如果存在,求出它的方程;如果不存在,说明理由。

高考一轮复习圆锥曲线

高考一轮复习圆锥曲线

师一、学习目标:1.理解椭圆、双曲线、抛物线的定义及其定义的应用2.掌握椭圆、双曲线、抛物线的标准方程形式及标准方程的求法.3.掌握椭圆、双曲线、抛物线的简单的几何性质及其简单的应用.二、重点、难点:1.椭圆、双曲线、抛物线的定义的应用.2. 椭圆、双曲线、抛物线标准方程的求法.3. 椭圆、双曲线、抛物线的简单的几何性质的应用三、考点分析:在新课标高考中,圆锥曲线知识点是极其重要的考点,根据考试说明的要求,对圆锥曲线的定义、标准方程、简单的几何性质要熟练的掌握.考试的题型有选择题、填空题、综合题,对圆锥曲线的基础知识的考查形式主要是选择题、填空题.综合知识的考查以大题形式出现.b5E2RGbCAP一、椭圆的有关知识1.定义:平面内到两个定点F1,F2的距离之和等于常数<大于|F1F2|)的点的集合叫椭圆.是椭圆焦点,|,点集M={P| |PF1|+|PF2|=2a>|F1F2|}注:<1)当即a=c ,时点的集合是线段.<2)当,点的集合是空集.2.椭圆的标准方程:<焦点在x轴上),.<焦点在y轴上),.注:点与椭圆的位置关系.点.点.点.椭圆的参数方程:椭圆上任意一点P<x ,y),则.3.椭圆的几何性质:x=y=讨,分焦点在x 轴上、y 轴上两种情形或把所求的椭圆标准方程设为:.p1EanqFDPw <2)与椭圆共焦点的椭圆可设为:=1,<a>0,b>0)<3)椭圆上任意一点P 到焦点F 的距离的最大值是|PF|=a+c ,最小值是|PF|=a-c.<4)椭圆上任意一点P 到两焦点距离之积的最大值是a2,此时P 点与椭圆短轴的两端点重合. 二、抛物线的有关知识1.抛物线的定义:平面内与一个定点F 和一条定直线l<l 不过F 点)距离相等的点的集合叫抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.DXDiTa9E3d2. 抛物线的标准方程形式:<p>0) <p>0)<p>0)<p>0)P:称为焦准距<焦点到准线的距离)3. 抛物线的几何性质:对称性,范围,顶点,离心率<以为例)4. 抛物线的通径:过抛物线焦点且垂直于对称轴的直线与抛物线相交,两交点之间的距离是抛物线的通径,长度是2p.RTCrpUDGiT5. 有关的重要结论:设过抛物线的焦点的直线的倾斜角是,与抛物线交于A<.则有下列结论<1)|AB|=,|AB|=,<显然当时,|AB|最小,最小值是2p,此时|AB|是抛物线的通径.)<2),<3)<4)<5)以|AB|为直径的圆与准线相切.三、双曲线的有关知识1.双曲线的定义:定义:平面内到两定点距离之差的绝对值等于常数<小于)的点的集合叫做双曲线.定点叫双曲线的焦点,两焦点间的距离是焦距.5PCzVD7HxAM=.注意:<1)在定义中:若2a=,则点的集合是以为端点的射线,若2a>,则点的集合是空集.<2)在定义中:当,则点的集合是双曲线的右支<如图1),当,则点的集合是双曲线的左支<如图2).2. 双曲线的标准方程轴上),<1),焦点在x轴上<实轴在x轴上),3. 双曲线的几何性质或或<e :确定双曲线的开口程度),,确定的值.<2)不能确定双曲线的焦点位置时,可设方程为:<3)与双曲线共焦点的双曲线方程设为:4. 几种特殊的双曲线 <1)等轴双曲线:,<等轴双曲线的离心率是)<2)共轭双曲线:互为共轭双曲线.性质:①互为共轭双曲线的四个焦点共圆,②离心率倒数平方之和等于1,③有相同的渐近线5. 双曲线中的基本三角形:<1)如图:<2)焦点三角形的面积:,<)知识点一:椭圆、抛物线、双曲线的标准方程例1.把下列正确命题的序号填在题后的横线上.<1)平面内到定点的距离之和为6的点的轨迹是椭圆.<2)平面内有两点,动点P满足:,则P点的轨迹是双曲线.<3)P是椭圆上任意一点,则的最大值是.<4)双曲线与椭圆有相同的焦点和焦距.<5)以抛物线过焦点F的弦为直径的圆与抛物线的准线的位置关系是相切.<6)是方程“表示焦点在y轴上的椭圆”的充分必要条件.正确的命题是_____________.【思路分析】<1)<2)根据椭圆和双曲线的定义判断.<3)<4)<5)通过计算判断.<6)利用充要条件定义判断.【解题过程】<1)根据椭圆的定义知:点的轨迹是以为端点的线段.命题<1)错.<2)由双曲线的定义知:点的轨迹是双曲线的一支<右支),故命题<2)错.<3)由椭圆的定义知:,等号成立的条件是:.故命题正确.<4)由椭圆方程和双曲线的方程知:它们的焦点都在x轴上,且相等,是,焦距显然相等.故命题正确.<5)如图:M是过焦点F的弦AB的中点,则,由抛物线的定义知:,故以|AB|为直径的圆的圆心M到准线的距离等于圆的半径,命题正确.jLBHrnAILg<6)若m>n>0则,方程化为:,故焦点在y轴上.反之,方程表示焦点在y轴上的椭圆,则必有,即m>n>0成立.是充要条件.故命题正确.xHAQX74J0X 【解题后的思考】上述命题主要考查圆锥曲线的定义,圆锥曲线的标准方程等基础知识.掌握圆锥曲线的定义很关键,它给解决圆锥曲线的有关问题带来很大的方便.LDAYtRyKfE 例2. 根据下列条件求圆锥曲线的标准方程.<1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆的标准方程. <2)求与双曲线有相同的渐近线,且过点M<-2,)的双曲线的方程. <3)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M<m,-3)到焦点的距离是5,求抛物线的方程.Zzz6ZB2Ltk 【思路分析】<1)对于本题求椭圆的标准方程关键是确定焦点的位置及a,b 的值.若不能确定焦点的位置,要讨论焦点在x轴上和焦点在y轴上两种情形.或设方程为可避免讨论,简化运算.dvzfvkwMI1<2)设所求的双曲线方程为,确定的值.<3)因顶点在原点,对称轴是y轴,点M<m,-3)位于第三、四象限.故可设抛物线方程是.【解题过程】<1)解法一:①当焦点在x轴上时,设椭圆方程为由已知得:即所求的椭圆方程是②当焦点在y轴上时,设椭圆方程为,由已知得:解得b2=9,a2=3,与a>b矛盾.此种情形不存在.综合上述知:所求的椭圆方程是解法二:由已知设椭圆的标准方程是,故即所求的椭圆标准方程是.<2)设所求的双曲线的方程是,把M<-2,)代入求得,即所求的双曲线的方程是<3)解法一:设所求的抛物线的方程为,则焦点为F在抛物线上,且|MF|=5,,故抛物线的方程为解法二:设抛物线的方程为:<p>0)焦点F<0,-,准线L:y=,作MN,垂足是N,则|MN|=|MF|=5而|MN|=3+,故3+=5,即p=4,故抛物线的方程是.rqyn14ZNXI【解题后的思考】求圆锥曲线的标准方程是新课标高考常见的题型之一,掌握圆锥曲线的标准方程的形式是解题的突破口,求标准方程要选择标准方程的形式,可由已知条件确定.选择恰当的圆锥曲线方程的形式,可简化运算.如:椭圆经过两点A,B求标准方程:可设方程为与椭圆共焦点的椭圆标准方程可设为:EmxvxOtOco已知渐近线方程为,可设双曲线方程是,确定的值即可.已知双曲线过两点,设方程为:,与双曲线共焦点的双曲线方程设为:等.SixE2yXPq5例3.<1)已知圆和圆.动圆M同时和圆C1,C2相外切,求动圆的圆心M的轨迹方程.<2)有一张长为8宽为4的矩形纸片ABCD,按图示的方法进行折叠使每次折叠后的点B都落在AD上,此时将B记为,<注:EF为折痕,点F也可落在边CD上,过作交EF于T点,求点T的轨迹方程.6ewMyirQFL【思路分析】<1)根据动圆与两定圆相外切的条件可得|MC2|-|MC1|=定值,再根据双曲线的定义写出M点的轨迹方程.kavU42VRUs <2)在折叠的过程中:,由知:,故T点到直线AD的距离等于它到定点B的距离.根据抛物线的定义知:T点的轨迹是以B点为焦点,AD为准线的抛物线的一部分.y6v3ALoS89【解题过程】<1)定圆C1<-3,0),半径r1=1,定圆C2<3,0),半径r2=3,设动圆的圆心M<x,y),半径是r,由题意知:|MC1|=r+1,|MC2|=r+3,故|MC2|<,由双曲线的定义知:动点M的轨迹是以为焦点的双曲线的左支,即,故M点的轨迹方程是.M2ub6vSTnP <2)以AB的中点O为原点,AB所在的直线为y轴,建立坐标系.<如图),设T<x,y).由|AB|=4知:定点B到直线AD的距离是4,根据建立的坐标系设抛物线的方程是,则p=4,抛物线的方程为,因为在折叠的过程中:线段的长度在[0,4]范围内变化.故所求T点的轨迹方程是:0YujCfmUCw【解题后的思考】本题是圆锥曲线定义的应用.利用圆锥曲线的定义求动点的轨迹是求轨迹常用的方法,因此掌握圆锥曲线的定义使解决有关的轨迹问题很方便,同时,建立适当的坐标系,要根据图形中的条件抓住题中隐含的“等量关系”,灵活运用定义解答.但要注意不要漏掉x的范围的限制条件.eUts8ZQVRd例4.已知椭圆中心在原点,焦点在轴上,焦距为4,椭圆上一点P到两焦点的距离满足:<1)求椭圆方程;<2)设椭圆在y轴正半轴上的焦点为,又点A和点B在椭圆上.且有,求线段AB所在直线的方程.【思路分析】<1)由椭圆的焦点在y轴上及已知条件可求a,c的值.<2)先判断直线AB的斜率是否存在.在确定斜率存在的情况下,设直线方程为:y=kx+2,据的关系及向量的坐标运算求k的值.sQsAEJkW5T【解题过程】<1)设椭圆方程为,由2c=4得c=2,又,故a=3∴所求的椭圆方程为.<2)若直线AB的斜率k 不存在,则,故k 存在,则设直线AB的方程为:y=kx+2又设A由得,…①…②∵点F2坐标为F2<0,2)∴由得:∴把代入①、②得…③…④由③、④ 得∴,∴线段AB所在直线的方程为:.【解题后的思考】向量概念的引入,使这类问题的解决显得简洁而流畅.通过向量的坐标运算解决这类问题开辟了新的解题途径.GMsIasNXkA知识点二:椭圆、双曲线、抛物线的几何性质及其应用例5. 解答下列各小题<1)设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是_____________. <2)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________.TIrRGchYzg <3)点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为_______________.7EqZcWLZNX 【思路分析】<1)考查抛物线的定义,求P点到抛物线的准线的距离就是求P点到抛物线的焦点的距离. <2)不妨设双曲线的焦点在轴上,根据直线与该双曲线的一条渐近线垂直,其斜率之积为-1,建立关于a,c的等量关系.lzq7IGf02E <3)设点,由向量的坐标运算:,再根据P点在椭圆上得关于的二次函数,利用二次函数求最大值.【解题过程】<1)P点到抛物线的准线的距离是,故点P到该抛物线焦点的距离是6.<2)不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为,一条渐近线的斜率为:,直线的斜率为:,,,解得.<3)由题意知,F<-1,0),设点P,则有,解得,,所以=+=,因为,所以当时,取得最大值.【解题后的思考】新课标高考中的选择、填空中的圆锥曲线问题通常考查圆锥曲线的定义与基本性质,这部分内容是高考的热点内容之一,常考查圆锥曲线方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识掌握的熟练程度以及对知识的综合应用能力和运算能力.zvpgeqJ1hk例6.已知椭圆的长、短轴端点分别为A、B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量.NrpoJac3v1<1)求椭圆的离心率e;<2)设Q是椭圆上任意一点,、分别是左、右焦点,求∠的取值范围.【思路分析】<1)由与共线得:,得出a,b,c的关系.<2)利用余弦定理和基本不等式求cos∠的范围.【解题过程】<1)∵,∴.∵是共线向量,∴,∴b=c,故.<2)设当且仅当时,cosθ=0,∴θ.【解题后的思考】由于共线向量与解读几何中的平行线、三点共线等具有异曲同工的作用,因此,解读几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题.求解此类问题的关键是:正确理解向量共线与解读几何中平行、三点共线等的关系,把有关向量的问题转化为解读几何问题.1nowfTG4KI圆锥曲线的知识是新课标高考考查的重点内容之一,考查的题型有选择、填空、综合题等,对圆锥曲线的定义、标准方程、简单的几何性质的基础知识的考查以选择、填空题为主,在第一轮复习中,掌握这些基础知识是很重要的,不可盲目的做难题.掌握这些基础知识是解决综合性试卷的前提,在解决综合性问题时,要充分理解数学思想和数学方法的应用.由于圆锥曲线试卷中的计算量较大,所以要掌握处理圆锥曲线的基本方法和运算中的技巧,尽量减少繁琐的运算量.fjnFLDa5Zo<答题时间:45分钟)一、选择题1.到两定点、的距离之差的绝对值等于6的点的轨迹是< )A. 椭圆B. 线段C. 双曲线D.两条射线2. 方程表示双曲线,则的取值范围是< )A. B. C.D.或3.双曲线的焦距是< )A. 4B.C. 8 D.与有关4.设抛物线的焦点为,准线为,为抛物线上一点,,为垂足,如果直线的斜率为,那么< )A. B.8 C. D. 165. 已知抛物线y2=2px<p>0)的准线与圆<x-3)2+y2=16相切,则p的值为<)A. B.1 C. 2 D. 46. 椭圆C:<a>b>0)的离心率为,过右焦点F且斜率为k<k>0)的直线与C相交于A、B两点,若,则k = <)tfnNhnE6e5A. 1B.C.D. 2二、填空题7. 若椭圆的两个焦点坐标为F1<-1,0),F2<1,0),长轴的长为10,则椭圆的方程为.8. 椭圆=1的焦点为F1、F2,点P为其上的动点,当时,离心率的取值范围是_____.三、计算题9. 已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线的方程.10. P为椭圆上一点,、为左右焦点,若<1)求△的面积; <2)求P点的坐标.11. 点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.<1)求点P的坐标;<2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.一、选择题1. D解读:双曲线的定义2. D解读:由已知得:.3. C解读:由双曲线的方程得:焦距2c=8.4. B解读:抛物线的焦点为F<2,0),直线AF的方程为,所以点、,|PF|等于P点到准线的距离,故|PF|=6+2=8.HbmVN777sL5. C解读:抛物线y2=2px<p>0)的准线方程是.圆<x-3)2+y2=16的圆心为M<3,0),半径是4,故,即p=2.V7l4jRB8Hs6. B解读:,∵ ,∴ ,∵,设,∴ 椭圆方程是:.直线AB的斜率为,则.代入椭圆方程消去x得,,,,.二、填空题7.8.解读:由椭圆的方程知:三、计算题9.解:由于椭圆焦点为F<0,4),离心率为e=,所以双曲线的焦点为F<0,4),离心率为2,从而c=4,a=2,b=2.所求双曲线的方程为:83lcPA59W910. 解:∵a=5,b=3c=4.<1)设,,则①②,由①2-②得,.<2)设P点坐标为,由得4,将,代入椭圆方程解得,或或或.11. 解:<1)由已知可得点A<-6,0),F<4,0),设点P坐标为<,),则=<+6,),=<-4,),由已知可得则2+9-18=0,=或=-6.由于>0,只能=,于是=,∴点P的坐标是<,)<2)直线AP的方程是-+6=0.设点M坐标为<,0),则M到直线AP的距离是,于是=,又-6≤≤6,解得=2.,椭圆上的点<,)到点M的距离有,,由于-6≤≤6,∴当=时,d取得最小值.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

一轮复习--圆锥曲线

一轮复习--圆锥曲线

圆锥曲线(一)一、解答题(题型注释)1、已知椭圆的两个顶点分别为,焦点在轴上,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)点为轴上一点,过作轴的垂线交椭圆于不同的两点,过作的垂线交于点.求与的面积之比.2、在平面直角坐标系中,已知点和直线:,圆C与直线相切,并且圆心C关于点的对称点在圆C上,直线与轴相交于点.(Ⅰ)求圆心C的轨迹E的方程;(Ⅱ)过点且与直线不垂直的直线与圆心C的轨迹E相交于点A、B,求面积的取值范围.3、已知椭圆E的右焦点与抛物线的焦点重合,点M在椭圆E上.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设,直线与椭圆E交于A,B两点,,(其中O为坐标原点),求的值.4、已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(1)求椭圆的方程;(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,求直线的斜率的取值范围;(3)在(Ⅱ)的条件下,证明直线与轴相交于定点.5、已知椭圆:,斜率为的动直线l与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值.6、已知椭圆(的离心率,坐标原点到直线的距离为.(1)求椭圆的方程.(2)若直线(与椭圆相交于两点,是否存在实数,使得以为直径的圆过点,若存在,求出的值,若不存在,请说明理由。

7、已知椭圆的焦距为4,其长轴长和短轴长之比为(1)求椭圆的标准方程;(2)设是椭圆的右焦点,为直线上纵坐标不为0的任意一点,过点作的垂线交椭圆于点,若平分线段(其中为坐标原点),求的值.8、已知椭圆的左、右焦点分别为,离心率为,在轴上有一点满足.(1)求椭圆的方程;(2)直线与直线交于点,与直线交于点,且,判断并证明直线与椭圆的交点个数.9、已知椭圆:,点是椭圆上任意一点,且点满足(,是常数).当点在椭圆上运动时,点形成的曲线为.(Ⅰ)求曲线的轨迹方程;(Ⅱ)过曲线上点做椭圆的两条切线和,切点分别为,.①若切点的坐标为,求切线的方程;②当点运动时,是否存在定圆恒与直线相切?若存在,求圆的方程;若不存在,请说明理由.10、已知:点是离心率为的椭圆:上的一点.斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求证:直线AB、AD的斜率之和为定值.11、如图所示,A、B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区。

高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。

圆锥曲线中的最值范围问题 高三数学一轮复习

圆锥曲线中的最值范围问题 高三数学一轮复习
建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方
法、判别式法、基本不等式法及函数的单调性法等.
巩固训练1
x2
[2024·江西上饶模拟]已知椭圆C: 2
a
y2
1
=1(a>b>0)的离心率e= ,
b2
2
+
点F1,F2为椭圆C的左、右焦点且经过点F1(-c,0)的最短弦长为3.
(1)求椭圆C的方程;
高考大题研究课九 圆锥曲线中的
最值、范围问题
会用直线与圆锥曲线、函数、不等式的有关知识解决最值、范围问
题,提高学生分析问题、解决问题的能力.
关键能力·题型剖析
题型一 最值问题
x2
例1[2024·河北秦皇岛模拟]已知双曲线 2
a
y2
=1(a>0,b>0)实轴的
b2

一个端点是P,虚轴的一个端点是Q,直线PQ与双曲线的一条渐近线
m + = 5,
2
m=4
m = 1,
解得

p=2
p = 8,
故抛物线方程为x2=4y或x2=16y.
(2)过焦点F直线l与抛物线交于M,N两点,若MN最小值为4,且
∠MAN是钝角,求直线斜率范围.
1
AB
1
的中点且斜率为- 的直线与x轴交于点E,记μ=
,若k∈[ ,2],
k
求μ的取值范围.
DE
2
题后师说
解圆锥曲线中范围问题的策略
巩固训练2
[2024·吉林长春模拟]已知抛物线x2 =2py(p>0)焦点为F,点A(4,m)
在抛物线上,|AF|=5.
(1)求抛物线方程;

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中探索性与综合性问题

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中探索性与综合性问题
1234
(2)在抛物线E上任取与原点不重合的点A,过A作抛物线E的切线交x轴 于点B,点A在直线x=-1上的射影为点C,试判断四边形ACBF的形状, 并说明理由.
1234
设A(x0,y0),则过A作抛物线E的切线为y-y0=k(x-x0), 即 x=y-k y0+x0, 代入 y2=4x,整理得 ky2-4y+4y0-ky20=0, 因为此直线与抛物线相切,所以 Δ=4(4-4ky0+k2y20)=0, 即(ky0-2)2=0,解得 k=y20, 所以过 A 的切线为 y-y0=y20(x-x0),
=kx-p2, 联立抛物线方程得 k2x2-(k2p+2p)x+k24p2=0,
Δ=(k2p+2p)2-k4p2>0, 设 A(x1,y1),B(x2,y2),x1+x2=k2pk+2 2p=2kp2 +p, 此时|AB|=x1+x2+p=2kp2 +2p>2p,
显然当直线AB的斜率不存在时,|AB|的值最小, 即2p=4,解得p=2, ∴抛物线E:y2=4x.
第八章 直线和圆、圆锥曲线
§8.13 圆锥曲线中探索性 与综合性问题
题型一 探索性问题
例 1 (2023·南通模拟)已知双曲线 C:ax22-by22=1(a>0,b>0)的离心率为 2,
且过点
315,
2.
(1)求双曲线C的标准方程;
依题意ac=2, 35a2-b22=1,
结合 c2=a2+b2,
所以抛物线C的标准方程为x2=4y.
(2)不过点M的直线l与抛物线C相交于A,B两点,若直线MA,MB的斜率 之积为-2,试判断直线l能否与圆(x-2)2+(y-m)2=80相切?若能,求 此时直线l的方程;若不能,请说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如题21图,已知离心率为3的椭圆2222:1(0)x yC a ba b+=>>过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A、B。

(1)求椭圆C的方程。

(2)证明:直线MA、MB与x轴围成一个等腰三角形。

解:(Ⅰ)设椭圆C的方程为:)0(12222>>=+babyax.由题意得:⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=++==28114,232222222babacbaac∴椭圆方程为12822=+yx.……………5分(Ⅱ)由直线OMl//,可设mxyl+=21:将式子代入椭圆C得:42222=-++mmxx设),(,),(2211yxByxA,则,221mxx-=+42221-=mxx…设直线MA、MB的斜率分别为1k、2k,则21111--=xyk21222--=xyk……………8分下面只需证明:021=+kk,事实上,21212121221121--++--+=+xmxxmxkk=++--+⋅+=-+-+=4)(241)2121(121212121xxxxxxmxxmm+104)2(242422=+-----⋅mmm故直线MA、MB与x轴围成一个等腰三角形.……………12分已知椭圆12222=+by a x (0>>b a )过点M (0,2),离心率36=e .(Ⅰ)求椭圆的方程;(Ⅱ)设过定点N (2,0)的直线l 与椭圆相交于B A 、两点,且AOB ∠为锐角(其中O 为坐标原点),求直线l 倾斜角的取值范围.解:(Ⅰ)由题意得36,2==a c b 结合222c b a +=,解得122=a所以,椭圆的方程为141222=+y x . ………………4分 (Ⅱ) 设),(),,(2211y x B y x A ,则),(),,(2211y x y x ==. ①当221==x x 时,不妨令)362,2(),362,2(-== 034384OB OA >=-=⋅,当斜率不存在时,AOB ∠为锐角成立 ………………6分②当21x x ≠时,设直线l 的方程为:)2(-=x k y由⎪⎪⎩⎪⎪⎨⎧-==+)2(141222x k y y x 得12)2(3222=-+x k x 即0121212)31(2222=-+-+k x k x k .所以22212221311212,3112k k x x k k x x +-=⋅+=+, ………………8分 ]4)(2[()2)(2(2121221221++-=--=⋅x x x x k x x k y y22424224314123124311212kk k k k k k k ++++-+-= 22318k k +-= ………………10分2121y y x x +=⋅03112422>+-=k k 解得33-<>k k 或. ……………………12分综上,直线l 倾斜角的取值范围是)32,3(ππ . …………………13分已知椭圆12222=+by a x (0>>b a )过点M (0,2),离心率36=e .(Ⅰ)求椭圆的方程;(Ⅱ)设直线1+=x y 与椭圆相交于B A 、两点,求AMB S ∆. 解:(Ⅰ)由题意得36,2==a c b 结合222c b a +=,解得122=a所以,椭圆的方程为141222=+y x . ………………5分 (Ⅱ)由⎪⎪⎩⎪⎪⎨⎧+==+1141222x y y x 得12)1(322=++x x ………………6分即09642=-+x x ,经验证0>∆. 设),(),,(2211y x B y x A . 所以49,232121-=⋅-=+x x x x , ………………8分 221221221)2)()AB x x y y x x -=-+-=((,2103]4)[2AB 21221=-+=x x x x ( ………………11分 因为点M 到直线AB 的距离222120=+-=d , ………………13分所以4532221032121=⨯⨯=⨯⨯=∆d AB S AMB . ………………14分 已知椭圆()22220y x C a b a b :+=1>>6,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m -+++-=与D 有公共点,试求实数m 的最小值.解:(1)由离心率6e =226a b -=223a b =. ① ……2分 又点(13)B --,在椭圆2222:1y x C a b =+上,即2222(3)(1)1a b --=+. ② ……4分 解 ①②得22124a b ==,,故所求椭圆方程为221124y x +=. ……5分由(20)(13)A B --,,,得直线l 的方程为2y x =-. ………6分(2)曲线2222440x mx y y m -+++-=,即圆22()(2)8x m y -++=,其圆心坐标为(2)G m -,,半径22r =,表示圆心在直线2y =-上,半径为22动圆.由于要求实数m 的最小值,由图可知,只须考虑0m <的情形. 设G e 与直线l 相切于点T 222=4m =±,………… 10分当4m =-时,过点(42)G --,与直线l 垂直的直线l '的方程为60x y ++=,解方程组6020x y x y ++=⎧⎨--=⎩,得(24)T --,.……………… 12分 因为区域D 内的点的横坐标的最小值与最大值分别为12-,,所以切点T D ∉,由图可知当G e 过点B 时,m 取得最小值,即22(1)(32)8m --+-+=,解得min 71m =- (14)分、过点)1,0(C 的椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆与x 轴交于两点(,0),(,0)A a B a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q(1)当直线l 过椭圆的右焦点时,求线段CD 的长;(2)当点P 异于点B 时,求证:OQ OP ⋅为定值设直线l 的方程为)210(1≠≠+=k k kx y 且代入椭圆的方程,化简得08)14(22=++kx x k ,解得1480221+-==k kx x 或代入直线l 的方程,得1441,12221+-==k k y y 所以,D 的坐标为)1441,148(222+-+-k k k k 又直线AC 的方程为12=+y x ,直线BD 的方程为)2(4221+-+=x kk y 联立解得⎩⎨⎧+=-=124k y kx 即)12,4(+-k k Q而P 的坐标为)0,1(k - 所以4)12,4()0,1(=+-⋅-=⋅k k k OQ OP 即OQ OP ⋅为定值设椭圆1C :22221(0)x y a b a b+=>>的左、右焦点分别是21,F F ,下顶点为A ,线段OA 的中点为B (O 为坐标原点),如图.若抛物线2C :21y x =-与y 轴的交点为B ,且经过21,F F点.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设)54,0(-M ,N 为抛物线2C 上的一动点,过点N 作抛物线2C 的切线交椭圆1C 于Q P ,两点,求MPQ ∆的最大值.解:(Ⅰ)由题意可知B (0,-1),则A (0,-2),故2b =.xyO PQ A MF 1B F 2N令0y =得210x -=即1x =±,则 1F (-1,0),2F (1,0),故1c =.所以2225a b c =+=.于是椭圆1C 的方程为:22154x y += (Ⅱ)设N (2,1t t -),由于'2y x =知直线PQ 的方程为:2(1)2()y t t x t --=-. 即221y tx t =--.代入椭圆方程整理得:222224(15)20(1)5(1)200t x t t x t +-+++-=,222222400(1)80(15)[(1)4]t t t t ∆=+-++-=4280(183)t t -++,21225(1)15t t x x t++=+ , 221225(1)204(15)t x x t +-=+,故12PQ x =-=215t =+.设点M 到直线PQ 的距离为d,则d ===.所以,MPQ∆的面积S 12PQ d =⋅2===≤= 当3t =±时取到“=”,经检验此时0∆>,满足题意.综上可知,MPQ ∆已知点)2,1(A 是离心率为22的椭圆C :)0(12222>>=+b a a y b x 上的一点。

斜率为2直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点不重合。

(Ⅰ)求椭圆C 的方程;(Ⅱ)ABD ∆面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?又点)2,1(在椭圆上 ∴122122=+cc , 22=∴c ∴2=a ,2=b , ∴椭圆方程为14222=+y x ……………………4分∴06482>+-=∆b 2222<<-⇒b,2221b x x -=+ 44221-=b x x ……………………7分设d 为点A 到直线b x y +=2的距离, ∴3b d =……………9分∴22)8(4221b b d BD S ABD -==∆ ……………………10分已知椭圆22221(0)x y a b a b+=>>的左焦点为F (2,0),离心率e=22,M 、N 是椭圆上的的动点。

(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P 满足:2OP OM ON =+u u u r u u u u r u u u r ,直线OM 与ON 的斜率之积为12-,问:是否存在定点12,F F ,使得12PF PF +为定值?,若存在,求出12,F F 的坐标,若不存在,说明理由。

(Ⅲ)若M 在第一象限,且点,M N 关于原点对称,点M 在x 轴上的射影为A ,连接NA并延长交椭圆于点B ,证明:MN MB ⊥;20.解:(Ⅰ)由题设可知:2,2c a c c a⎧=⎪==⎨=⎪⎩2分故2222b a c =-=……………………………3分故椭圆的标准方程为:22142x y +=……………………………4分 (Ⅱ)设1122(,),(,),(,)p P P x y M x y N x y ,由2OP OM ON =+u u u r u u u u r u u u r可得:12122.............2P P x x x y y y =+⎧⎨=+⎩①……………………………5分 由直线OM 与ON 的斜率之积为12-可得: 121212y y x x =- ,即121220............x x y y +=②……………………………6分 由①②可得:()()22222222121211222222(2)(2)P P x y x x y y x y x y +=+++=+++ M 、N 是椭圆上,故2222112224,24x y x y +=+=故2228PPx y +=,即22184P Px y +=……………..8分 由椭圆定义可知存在两个定点12(2,0),(2,0)F F -,使得动点P 到两定点距离和为定值……………………………….9分; (Ⅲ)设1122(,),(,)M x y B x y 由题设可知1122121110,0,0,0,,(,0),(,)x y x y x x A x N x y >>>>≠--………..10分由题设可知AB l 斜率存在且满足1211212NA NB y y ykk x x x +=∴=+………….③ 1211211 1.........MN MB y y y k k x x x -⋅+=⋅+-④…………………12分 将③代入④可得:222221212211222121212()(2)(2)11MN MB y y y y x y x y k k x x x x x x +-+-+⋅+=⋅+=+--……⑤………….13分 点,M B在椭圆22142x y +=,故2222221122222121(2)(2)4410MN MB x y x y k k x x x x +-+-⋅+===-- 所以101MN MB MN MB k k k k MN MB ⋅+=∴⋅=-∴⊥…………14分如图,正方形ABCD 内接于椭圆22221(0)x y a b a b+=>>,且它的四条边与坐标轴平行,正方形MNPQ 的顶点M ,N 在椭圆上,顶点P ,Q 在正方形的边AB 上,且A ,M 都在第一象限.(I )若正方形ABCD 的边长为4,且与y 轴交于E ,F 两点,正方形MNPQ 的边长为2. ①求证:直线AM 与△ABE 的外接圆相切; ②求椭圆的标准方程.(II )设椭圆的离心率为e ,直线AM 的斜率为k ,求证:22e k -是定值.(Ⅰ)①依题意:(2,2)A ,(4,1)M ,(0,2)E -(2,1),(2,4)AM AE ∴=-=--u u u u v u u u v0AM AE AM AE ∴•=∴⊥u u u u v u u u vL 3分AE Q 为Rt ABE ∆外接圆直径∴直线AM 与ABE ∆的外接圆相切; L 5分②由⎧⎪⎨⎪⎩22224411611a ba b +=+=解得椭圆标准方程为221205x y +=. L 10分 (Ⅱ)设正方形ABCD 的边长为2s ,正方形MNPQ 的边长为2t ,则(,)A s s ,(2,)M s t t +,代入椭圆方程22221x y a b+=得⎧⎪⎨⎪⎩222222221(2)1s s a b s t ta b+=++=⇒⎧⎪⎨⎪⎩22221(3)14(3)s t a s s t t b s s t -=+=+222514b t s e a t -∴=-= L 14分 (2)2t s t sk s t s t--==+-Q 222e k ∴-=为定值. L 15分设点E 、F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点E 垂直于椭圆长轴的直线交椭圆于A 、B 两点,ABF ∆是正三角形。

相关文档
最新文档