中考数学资料-变量与函数导学案

合集下载

初中数学 导学案2:变量与函数

初中数学 导学案2:变量与函数

水费(元)
从这个表格可以看出用水量随着天气变暖和,用水量增多,水费怎样变化?
3. 变量和常量
归纳:像这样在某一变化过程中,可以取不同数值的量,叫做变量,取值固定不变的量叫常量(或常数)。

4. 写出下列各问题中的关系式,并指出其中的常量与变量:
(1)圆的周长C与半径r的关系式;
(2)火车以60千米/时的速度行驶,则路程s千米和所用时间t 时的关系式;
(3)n边形的内角和S与边数n的关系式.
5. 函数
归纳:一般地,如果在一个变化过程中,有两个变量,例如x 和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.
三、质疑探究
6. 下表是某市2000年统计的该市男学生各年龄组的平均身高.
①从表中你能看出该市14岁的男学生的平均身高是多少吗?
②该市男学生的平均身高从哪一岁开始迅速增加?
③上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?
7. 已知圆柱的高是4,底面半径是r。

①求圆柱的体积V与r之间的函数表达式,并指出r的取值范围。

②当r=5时,求V。

初中八年级数学 14.1变量与函数(第2课时)导学案(人教新课标八年级上)

初中八年级数学 14.1变量与函数(第2课时)导学案(人教新课标八年级上)

集体备课导学案教学目标:知识与能力:(1)探索具体问题中的数量关系和变化规律.(2)从具体的事例了解常量、变量的意义.(3)结合实例,理解函数的概念以及自变量的意义.过程与方法:在探究问题的过程中,体会从具体的事例中寻找常量、变量、判断两个变量之间是否满足函数关系的过程.情感态度与价值观:通过列举同学们身边的事例,激发同学们探究问题的兴趣.教学重难点及教学突破:(1)从具体的事例了解常量、变量的意义.(2)结合实例,理解函数的概念以及自变量的意义.教学设计过程活动一、设置问题情境、激发学生的学习兴趣和学习欲望问题在抗震救灾募捐活动中,某班有学生44人,若每人捐款10元,共捐多少?若每人捐款15元呢?20元呢?得出结论:捐款总数随着人数的变化而变化.其实生活中还有很多类似的现象.活动二、探究具体问题的数量关系,感受变量和常量的含义我们生活之中常常会遇见许多数量,这些数量之间的关系都是怎样表达的呢?让我们看一些具体的实例(大屏幕显示).1.一辆汽车以60 km / h的速度行驶,行驶的路程s(千米)和行驶的时间t(小时)有怎样的关系?先填写下表,再试着用含的式子表示。

(小时)12345(千米)学生回答:s = 60 t(板书).2.用10cm长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。

记录不同的长方形的长度值。

计算相应的长方形面积的值,探索它们的变化规律。

设长方形的长为cm,面积为S,怎样用含的式子表示S?cm教师活动设计:让学生体会上述两个变量之间的变化,引导学生总结.函数的概念:在一个变化过程中,有两个变量,例如,x、y,对于x的每一个值,y都有唯一的值与之对应,我们称y是x的函数.其中x是自变量.问题回顾:指出前面三个问题中涉及到的量,并指出其中的变量、常量、自变量与函数.活动四、展示提高、拓展创新:1:在计算器上按照下面的程序进行操作输入x(任意一个数)→按键×、2、+、5、=→显示y.根据你的操作,你能发现y是x的函数吗?若是请写出它的表达式!2.购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:(1)y随x变化的关系式y = ,是自变量,是的函数;(2)当购买8支签字笔时,总价为元.3.一个三角形的底边为5,这一边上的高h可以任意伸缩.(1)高h的变化会引起三角形中哪些量发生变化?这些变量是高h的函数吗?(2)试求面积s随h变化的关系式,并指出其中的常量、变量与自变量。

人教版初中数学八年级下册《19.1变量与函数》第一课时学习任务单导学案

人教版初中数学八年级下册《19.1变量与函数》第一课时学习任务单导学案

人教版初中数学八年级下册《19.1变量与函数》第一课时学习任务单(导学案)◆学习目标1. 通过生活实例,了解常量与变量的概念,会在实际问题中辨别常量和变量,自变量与因变量。

2. 通过实例,让学生多角度、多层面地认识和理解函数的意义。

3. 经历观察、分析、思考等数学活动过程,由具体实例到抽象概括,进一步发展学生的抽象思维能力。

培养学生利用函数的观点认识现实世界的意识和能力,会运用运动、变化的观点思考问题。

◆课前学习任务预习新课:《19.1变量与函数》◆课上学习任务【学习任务一】问题1 :小刚从家骑自行车去上学,以每分钟300米的速度匀速驶向南瑞实验学校。

(速度v=300米/分钟)思考:1. 在这个变化过程中有几个量?2. 哪些是没有变化的量?哪些是发生变化的量?3. 在这个变化过程中,有几个变量?4. 随着时间t的变化,路程s有变化吗?5. 当时间t取定一个值比如t=2时,对应路程s的值是多少?是唯一确定的吗?请同学们根据以上几个问题总结出变量s与变量t的关系。

【学习任务二】问题2:如图,用热气球探测高空气象。

设热气球从海拔1800m处的某地升空,在一段时间内,它匀速上升,它上升过程中到达的海拔高度ℎ m与上升时间t min的关系记录如下表:思考:1. 观察表格,热气球在升空的过程中平均每分上升多少米?2. 你能用关系式表示出高度ℎ与时间t的关系吗?3. 在这个变化过程中有几个量?4. 哪些量是常量?哪些量是变量?有几个变量?5. 随着时间t的变化,高度ℎ会发生变化吗?6. 你能求出上升后3min,6min时热气球到达的海拔高度吗?求出的值是唯一确定的吗?请同学们根据以上几个问题总结出变量ℎ与变量t的关系。

【学习任务三】问题3:观察芜湖市今年5月9日的整点天气预报,思考:1. 这个问题中,有哪几个变量?2. 随着时间t的变化,气温y发生变化了吗?3. 给出这天中的某一时刻,如9点、16点,能找到这一时刻的气温y是多少吗?找到的值是唯一确定的吗?请同学们根据以上几个问题总结出变量y与变量t的关系。

初中数学《变量与函数》教案

初中数学《变量与函数》教案

初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别生活中的变量。

2. 让学生掌握函数的定义,能够判断生活中的函数关系。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 变量:定义、分类及表示方法。

2. 函数:定义、表示方法及生活中的函数关系。

三、教学重点与难点1. 重点:变量与函数的概念及表示方法。

2. 难点:函数关系的判断及应用。

四、教学方法1. 采用情境教学法,结合生活实例讲解变量与函数的概念。

2. 利用数形结合法,引导学生理解函数的表示方法。

3. 运用小组合作学习,培养学生的团队协作能力。

五、教学过程1. 导入:通过展示生活中的一些变化现象,引导学生认识变量。

2. 新课导入:介绍变量的定义、分类及表示方法。

3. 案例分析:分析生活中的函数关系,让学生理解函数的概念。

4. 课堂练习:让学生自主完成一些关于变量与函数的练习题。

六、教学评价1. 评价目标:检查学生对变量与函数概念的理解,以及能否运用所学知识解决实际问题。

2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。

3. 评价内容:a. 学生能否正确识别生活中的变量。

b. 学生能否理解并运用函数的定义。

c. 学生能否判断生活中的函数关系。

d. 学生能否运用数学知识解决实际问题。

七、教学资源1. 教学课件:展示生活中的变化现象,图片、图表等。

2. 练习题:提供一些关于变量与函数的练习题,包括选择题、填空题、解答题等。

3. 小组讨论材料:提供一些实际问题,让学生在小组内进行讨论和分析。

八、教学进度安排1. 第1周:介绍变量概念,让学生认识生活中的变量。

2. 第2周:讲解函数的定义,让学生理解函数关系。

3. 第3周:练习题讲解,巩固所学知识。

4. 第4周:小组合作学习,解决实际问题。

九、课后作业1. 复习本节课的主要内容,整理笔记。

2. 完成练习题,巩固所学知识。

3. 思考生活中的函数关系,尝试运用所学知识解决实际问题。

新人教版八年级数学下册《变量与函数》导学案

新人教版八年级数学下册《变量与函数》导学案

新人教版八年级数学下册《变量与函数》导学案学习过程:一、提出问题,创设情景问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.二、深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y(元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为Lcm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30cm2呢?怎样用含有圆面积S的式子表示圆半径。

《变量与函数1》精品导学案 人教版八年级数学下册导学案

《变量与函数1》精品导学案 人教版八年级数学下册导学案

授课人年级八学科数学授课时间课题课型新授学习目标1.掌握常量和变量的意义;2.会用含有一个变量的代数式表示另一个变量.学习关键重点认识变量、常量, 用式子表示变量间关系难点会用含有一个变量的代数式表示另一个变量学教过程一、创设情境独立思考阅读课本P71 ~72 页, 思考以下问题:〔1〕什么叫常量?什么叫变量?〔2〕以下四个问题中的常量和变量分别是什么?①汽车以60千米/时的速度匀速行驶, 行驶里程为 s 千米, 行驶时间为 t 小时, 填表: S的值随t的值的变化而变化吗?试用含的 t 式子表示 s②每张电影票的售价为10元, 如果早场售出票150张, 午场售出205张, 晚场售出310张, 三场电影票的票房收入各多少元?早场票房收入 =午场票房收入 =晚场票房收入 =假设设一场电影售出票 x 张, 票房收入为 y 元, y的值随x的值的变化而变化吗?怎样用含 x 的式子表示 y ?③圆形水波慢慢的扩大, 当圆的半径r分别10cm,20cm,30cm时,圆的面积S分别是多少? S的值随r的值的变化而变化吗?④用10 m 长的绳子围成矩形, 矩形的一边长x分别为 3m, 3.5m, 4m, 4.5m时,他的邻边y分别为多少?y的值随x的值的变化而变化吗?一、s=60t y=10x S=πr2 y=5-x二、 A C 3. x,y;3,7;y=3x-7 4.1) α=90°-β三、C D 3.y=30x30 x, y4.〔1〕常量是20, 变量是a, b;〔2〕因为2(a+b)=20, 所以a=10-b;〔3〕8,6.5;(4)4第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元111223334 4A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是()A.h=6m B.h=6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表: 品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热,水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32 B.x≤32 C.x>32 D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k =〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g0<x ≤2020<x ≤4040<x ≤60(2)分别求当x取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B两种树的混合林, 需要购置这两种树苗2 000棵, 种植A, B两种树苗的相关信息如下表:(1)写出y与x之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

八年级数学变量与函数(第一课时)导学案

八年级数学变量与函数(第一课时)导学案
导学案
科目
数学
课题
变量与函数(第一课时)
授课老师
班级
上课时间
签审领导
节次
学习目标及重难点
1、理解变量、常量与函数的概念(重、难)
2、了解函数关系的三种表示方法(重)
教学过程
一、解读学习目标
二、讲授新课
1、探索:生活中的数学,体会数量变化、数量关系。(10min)
问题1:某地一天中的气变化图
问题2:小蕾的体重表
问题3:收音机波长与频率的关系表
问题4:圆的面积统计表
2、发现:(4min)
(1)前面研究的每个问题中都有几个变量?
(2)同一个问题中的两个变量有什么联系?
3、归纳:(8min)
(1)什么是变量?什么是常量?
(2)什么是自变量?什么是因变量?什么是函数?
(3)函数关系的三种表示方法
三、当堂训练(15min)
课件展示:1、判断题2、3、4、选择题5、简答题
四、课堂小结(3min)
1、定义:自变量、因变量、常量、函数
2、函数关系的三种表示方法:解析法、列表法、图像法
五、课后作业
课本P30练习题1-3题

初中数学《变量与函数》教案

初中数学《变量与函数》教案

初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别常量和变量。

2. 让学生掌握函数的定义,能够判断两个变量之间的函数关系。

3. 培养学生运用函数解决实际问题的能力。

二、教学内容1. 常量与变量的概念。

2. 函数的定义及其相关性质。

3. 函数关系的判断。

三、教学重点与难点1. 教学重点:常量与变量的概念,函数的定义及其性质。

2. 教学难点:函数关系的判断。

四、教学方法1. 采用问题驱动法,引导学生主动探究常量与变量、函数的关系。

2. 利用实例分析,让学生直观理解函数的概念。

3. 运用小组合作学习,培养学生解决实际问题的能力。

五、教学过程1. 导入新课:通过展示生活中常见的变化现象,引导学生认识常量和变量。

2. 自主学习:让学生通过教材自主学习常量与变量的概念,并尝试判断生活中的常量和变量。

3. 课堂讲解:讲解常量与变量的概念,并通过实例让学生理解函数的定义。

4. 课堂练习:设计相关练习题,让学生判断生活中的函数关系。

5. 拓展应用:让学生运用函数解决实际问题,如计算购物时的折扣等。

6. 总结反馈:对本节课的内容进行总结,收集学生反馈,为后续教学做好准备。

六、教学评价1. 课后作业:布置有关常量、变量和函数的练习题,要求学生在课后进行自主复习和巩固。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答以及合作学习的表现,了解学生的学习情况。

3. 实际问题解决:评估学生在解决实际问题时的应用能力,如购物折扣、行程规划等。

七、教学拓展1. 介绍函数在现实生活中的应用,如经济学中的需求函数、物理学中的速度与时间函数等。

2. 引导学生探究函数的图像,如直线、曲线等,并了解它们的特点和应用。

八、教学资源1. 教材:提供《变量与函数》的相关章节内容,供学生自主学习和参考。

2. 实例素材:收集生活中的实例,用于讲解和展示函数的应用。

3. 练习题库:准备不同难度的练习题,用于课堂练习和课后巩固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量与函数导学案(二)
学习目标:1.经过练习,观察,认识变量中的自变量与函数。


2.会写出函数关系式,会求函数值.
3.会确定自变量取值范围.
学习重点:会确定自变量的取值范围.
学习难点:函数概念的抽象性和列函数关系式
学习过程:
一.课前准备
首先回顾上节活动中的问题.思考每个问题中是否有两个变量,变量间存在什么联系.
二.情景引入
(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?
(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?
归纳:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量,y是x的函数.如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.
三.自主探究:教材97页的探究
四.新知运用
例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.
1.写出表示y与x的函数关系式.
2.指出自变量x的取值范围.
3.汽车行驶200km时,油桶中还有多少汽油?
实际问题中的自变量取值范围
问题:在上面所出现的各个函数关系式中,自变量的取值有限制吗?如果有.各是什么样的限制?
用数学式子表示的函数的自变量取值范围
例2.求下列函数中自变量x的取值范围
(1)y=3x -l (2)y =22
x +7 (3)y=1x +2
(4)y=x -2
随堂练习
1.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子. (1).改变正方形的边长x ,正方形的面积S随之改变. (2).秀水村的耕地面积是106m2,这个村人均占有耕地面积y 随这个村人数n•的变化而变化.
2.校园里栽下一棵小树高1.8米,以后每年长0.3米,则n 年后的树高L 与年数n 之间的函数关系式__________.
3.在男子1500米赛跑中,运动员的平均速度v=1500
t ,则这个关系式中________是自变量,
________函数.
4.已知2x-3y=1,若把y 看成x 的函数,则可以表示为____________.
5.△ABC 中,AB=AC ,设∠B=x °,•∠A=•y•°,•试写出y•与x•的函数关系式_____________. 6.到邮局投寄平信,每封信的重量不超过20克时付邮费0.80元,超过20克而不超过40克时付邮费1.60元,依此类推,每增加20克须增加邮费0.80元(信重量在100克内).如果某人所寄一封信的质量为78.5克,则他应付邮费________元.
小结:本节课我们认识了自变量、函数及函数值的概念,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.
自我检测: 1. 函数1
1
x y x -=
+中,自变量x 的取值范围是_________ 2. 面积是S (cm 2)的正方形地板砖边长为a (cm ),则S 与a 的关系式是_______,其中自变量是__________,___________是_________的函数
3. 函数1
23y x =
-的自变量x 的取值范围是 . 4. 函数232
+-=x y ,当0<y 时,x 的取值范围是
5. 已知4
1
32=-y x ,用含x 的一次式表示y =__________。

6 函数1
-=x x
y 的自变量x 的以值范围是________。

五.拓展提高
1、小明去商店为美术小组买宣纸和毛笔,宣纸每张3元,毛笔每支5元,商店正搞优惠活动,买一支毛笔赠一张宣纸.小明买了10支毛笔和x 张宣纸,•则小明用钱总数y (元)与宣纸数x 之间的函数关系是什么?
2、为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,请用方程的知识来求有关x 和y 的关系式,并判断其中一个变量是否为另一个变量的函数?
可以认为,__________是________的函数,上图就是这个函数的图象。

问题三:下面的图象反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家。

其中x表示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。

根据图象回答下列问题:
)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
14cm
11cm。

相关文档
最新文档