刚体的运动方程
合集下载
刚体运动方程与平衡方程

刚体运动与平衡的实例分析
实例一
一个静止在地面上的杠铃,受到重力和地面的支持力作用,处于平衡状态。当有人推这 个杠铃时,推力大于杠铃的重力,杠铃开始加速向上运动,此时杠铃的运动状态发生了
改变。
实例二
一辆匀速直线行驶的汽车,受到牵引力和阻力的作用,处于平衡状态。当牵引力大于阻 力时,汽车会加速行驶;当牵引力小于阻力时,汽车会减速行驶,此时汽车的运动状态
刚体运动与平衡的转化关系
转化条件
当刚体受到的合外力为零时,即处于平衡状态,此时刚体的运动状态不会改变;反之,当刚体运动状态改变时, 其受到的合外力不为零,即不处于平衡状态。
转化关系
在一定条件下,刚体的运动状态与平衡状态可以相互转化,如静止的刚体受到外力作用后会开始运动,而匀速直 线运动的刚体受到合外力为零时会保持该运动状态。
实验结果与分析
根据实验数据,绘制刚体的位 移、速度和加速度随时间变化
的曲线图。
分析实验结果,验证刚体运动 方程与平衡方程的正确性。
探讨影响刚体运动和平衡的因 素,如质量、转动惯量、力矩 等。
比较实验结果与理论值的差异 ,分析误差来源,并提出改进 措施。
THANKS
感谢观看
平衡力
使物体处于平衡状态的力。
平衡力学
研究物体平衡状态的力学分支。
刚体动力学与平衡力学的联系与区别
联系
平衡力学是刚体动力学的一个特例,当 刚体处于静止状态时,其运动方程退化 为平衡方程。
VS
区别
刚体动力学研究刚体的运动规律,包括加 速、减速和匀速运动等;而平衡力学主要 关注静止或匀速直线运动状态的物体,研 究其平衡条件和稳定性。
刚体运动方程与平衡方程
• 刚体运动方程 • 平衡方程 • 刚体运动与平衡的关系 • 刚体动力学与平衡力学的关系 • 刚体运动与平衡的实验验证
刚体的平面运动

• 当f=0°时,vA与vBA 均垂直于OB连 • 线,vA与vBA也垂直于vB,按速度平行四 • 边形合成法则,应有 • vB=0。
•当f=90°时,vA与vB方向一致, •vBA垂直于AB,其速度平行四边形应为一直线, •显然有 vB=vA=rw •而 vBA=0。 •则此时杆AB的角速度wAB为零,
•
例1 曲柄连杆机构如图所示,OA=r,AB=1.73r。 如曲柄OA以匀角速度w转动,求当f=60°、0°和 90°时点B的速度。 • 解:连杆AB作平面运动,以点A为基点,点B的 速度为 • vB=vA+vBA
• 点B的速度为 vB=vA+vBA • 其中 vA=rw, 方向与OA垂直, • vB 沿OB方向, vBA与AB垂直。 • 可以作出其速度平行四边形。 当f=60°时,由于AB=1.73OA,OA恰好与AB垂 直,其速度平行四边形如图所示, 解出 : vB=vA/cos30°=1.15rw
• • • •
单独轮子作平面运动时,可在轮心O′处固 连一个平动坐标系x′o′y′,同样可把轮 子这种较为复杂的平面运动分解为平动和 转动两种简单运动。
一、研究平面运动的方法
• 1、动坐标系 • 对于任意的平面图形,可在图形上任取一点 O′为基点作为动系原点,建立跟随基点平动的坐 标系x′o′y′。 • 于是平面图形S的绝对运动可看成是: • 跟随基点的平动和绕基点的转动的合成。
若图形上某点I vI=0 ,选此点
为基点,则其它各点的速度
vB=vI+vBI=vBI
• 2、瞬时速度中心 • ①定义:一般情况下,在每一瞬时,平面图形上 • 都唯一地 存在一个速度为零的点。此点称为瞬 时速度中心。
②证明:如果点M在vA的垂线AN上 (由vA到AN的转向与图形的转向 一致),由图中看出,vA和vMA 在同一直线,而方向相反,故vM 的大小为 vM=vA-w·AM
《理论力学》第八章刚体的平面运动

刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。
§3.1 刚体运动的分析

力的作用线迁移后,转化为一个力和一个力偶(矩)
空间力系的简化 可以简化为空间定点的一个单力F和一个力偶矩M,F称主矢, M称主矩,定点称简化中心。
Note: (1)简化中心可以任意选取(一般取质心);
(2)主矢与简化中心无关,主矩与简化中心有关。
例如:作用在A点的力F分别向B、C迁移:
B rBC
迁移到B,需添加:M
z
质点组(n个质点):自由度= 3n
确定刚体在空间的位置,最少需要几个独立变量?
B
A
C
至少需要6个独立变6个独立变量?
刚体位置的描述 (1)三点法:
C xC , yC , zC
从9个非独立坐标 中任取6个独立的
A xA, yA, zA B xB , yB , zB
定点转动的自由度:3个
§3.2 角速度矢量
设刚体绕通过定点O的某轴线转动了Δθ角度
角位移: 在转动轴上截取有向线段 n称为角位移
n的方向:与旋转方向成右手螺旋关系
n
n
角位移是不是矢量?
——矢量的合成满足平行四边形法则 满足对易律:A+B=B+A
A B
有限转动 :角位移不是矢量,不满足矢量加法对易律
dJ dt
Fe Me
刚体: mdJrC dt
i i
Fie
F
ri
Fi e
M
Note:
6个方程正好确定
①明确方程中各个量的意义。 刚体的6个独立变量
F
:主矢
J ,
M:以质心为中心得到的动量矩和主矩。
②当研究刚体对固定点的转动时,可以将第二方程换为
dJ dt
i
ri
Fi e
空间力系的简化 可以简化为空间定点的一个单力F和一个力偶矩M,F称主矢, M称主矩,定点称简化中心。
Note: (1)简化中心可以任意选取(一般取质心);
(2)主矢与简化中心无关,主矩与简化中心有关。
例如:作用在A点的力F分别向B、C迁移:
B rBC
迁移到B,需添加:M
z
质点组(n个质点):自由度= 3n
确定刚体在空间的位置,最少需要几个独立变量?
B
A
C
至少需要6个独立变6个独立变量?
刚体位置的描述 (1)三点法:
C xC , yC , zC
从9个非独立坐标 中任取6个独立的
A xA, yA, zA B xB , yB , zB
定点转动的自由度:3个
§3.2 角速度矢量
设刚体绕通过定点O的某轴线转动了Δθ角度
角位移: 在转动轴上截取有向线段 n称为角位移
n的方向:与旋转方向成右手螺旋关系
n
n
角位移是不是矢量?
——矢量的合成满足平行四边形法则 满足对易律:A+B=B+A
A B
有限转动 :角位移不是矢量,不满足矢量加法对易律
dJ dt
Fe Me
刚体: mdJrC dt
i i
Fie
F
ri
Fi e
M
Note:
6个方程正好确定
①明确方程中各个量的意义。 刚体的6个独立变量
F
:主矢
J ,
M:以质心为中心得到的动量矩和主矩。
②当研究刚体对固定点的转动时,可以将第二方程换为
dJ dt
i
ri
Fi e
第四章 刚体的平面运动

vB = vA cot ϕ
vA vBA = sin ϕ
vBA vA ωAB = = l l sin ϕ
例2 如图所示平面机构中,AB=BD= DE= l=300mm。在图示位置时,BD∥AE,杆AB的角速度为 ω=5rad/s。 求:此瞬时杆DE的角速度和杆BD中点C的速度。
解:1 、 BD作平面运动
2 2 vC = vB − vCB ≈1.299m s
方向沿BD杆向右
2、速度投影定理
由
r r r vB = vA + vBA
沿AB连线方向上投影
r r ( vB ) AB = ( vA ) AB
同一平面图形上任意两点的速度在这两点连线上 的投影相等。
例5 如图所示的平面机构中,曲柄OA长100mm, 以角速度ω=2rad/s转动。连杆AB带动摇杆CD,并拖 动轮E沿水平面纯滚动。已知:CD=3CB,图示位置 时A,B,E三点恰在一水平线上,且CD⊥ED。 求:此瞬时点E的速度。
由速度投影定理得
vB sin β = vC cos β
vC = vB tan β = rω0 tan β
圆轮瞬心在E 圆轮瞬心在E点
vA = vB = rω0
vC rω0 ωC = = tan β R R
§4-4 用基点法求平面图形内各点的加速度
A :基点
Ax ' y '
:平移坐标系
r r rt rn aB = ae + ar + ar r r rt rn aB = aA + aBA + aBA
va= vB
ve= vA
vr= vAB
r r r v =v +v
B A
BA
刚体定轴转动(公式)

安全措施
旋转木马通常配备安全带、护栏等安全措施,以确保乘客安全。
儿童游乐设施
旋转木马是儿童游乐场常见的设施之一,为儿童提供娱乐和刺激。
电风扇的转动
电风扇的工作原理
电风扇通过电机驱动叶片 旋转,产生风流,实现送 风效果。
风力调节
电风扇通常配备调速器, 可调节电机转速,从而调 节风力大小。
维护保养
定期清洗电风扇叶片和外 壳,检查电线和开关是否 正常,以确保安全和正常 使用。
04
刚体定轴转动的实例分析
匀速转动的飞轮
01
02
03
飞轮的转动
飞轮在匀速转动时,其角 速度保持恒定,不受外力 矩作用。
动能与势能转换
飞轮在转动过程中,动能 和势能之间相互转换,但 总能量保持不变。
平衡状态
在匀速转动状态下,飞轮 的合力矩为零,处于平衡 状态。
旋转木马的转动
旋转木马的转动原理
旋转木马通过电机驱动,使木马旋转,当木马旋转时,离心力作 用使木马保持稳定。
力矩平衡方程
合力矩=0,即所有作用在刚体上的力对旋转轴产生的力矩之和为零。
注意事项
在应用力矩平衡方程时,需要明确各个力的作用点和方向,并计算其对旋转轴产生的力矩。同时,需要注意力的 方向和力臂的长度对力矩的影响。
如何应用动量矩守恒定律?
动量矩守恒定律
在没有外力矩作用的情况下,刚体的动量矩是守恒的。
05
刚体定轴转动的常见问题与解决方案
如何计算转动惯量?
转动惯量计算公式
I=mr^2,其中m是刚体的质量,r是质心到旋转轴的距离。
注意事项
在计算转动惯量时,需要明确旋转轴的位置,并计算质心到旋转轴的距离。同时 ,需要考虑刚体的质量分布情况,因为不同位置的质量对转动惯量的贡献不同。
旋转木马通常配备安全带、护栏等安全措施,以确保乘客安全。
儿童游乐设施
旋转木马是儿童游乐场常见的设施之一,为儿童提供娱乐和刺激。
电风扇的转动
电风扇的工作原理
电风扇通过电机驱动叶片 旋转,产生风流,实现送 风效果。
风力调节
电风扇通常配备调速器, 可调节电机转速,从而调 节风力大小。
维护保养
定期清洗电风扇叶片和外 壳,检查电线和开关是否 正常,以确保安全和正常 使用。
04
刚体定轴转动的实例分析
匀速转动的飞轮
01
02
03
飞轮的转动
飞轮在匀速转动时,其角 速度保持恒定,不受外力 矩作用。
动能与势能转换
飞轮在转动过程中,动能 和势能之间相互转换,但 总能量保持不变。
平衡状态
在匀速转动状态下,飞轮 的合力矩为零,处于平衡 状态。
旋转木马的转动
旋转木马的转动原理
旋转木马通过电机驱动,使木马旋转,当木马旋转时,离心力作 用使木马保持稳定。
力矩平衡方程
合力矩=0,即所有作用在刚体上的力对旋转轴产生的力矩之和为零。
注意事项
在应用力矩平衡方程时,需要明确各个力的作用点和方向,并计算其对旋转轴产生的力矩。同时,需要注意力的 方向和力臂的长度对力矩的影响。
如何应用动量矩守恒定律?
动量矩守恒定律
在没有外力矩作用的情况下,刚体的动量矩是守恒的。
05
刚体定轴转动的常见问题与解决方案
如何计算转动惯量?
转动惯量计算公式
I=mr^2,其中m是刚体的质量,r是质心到旋转轴的距离。
注意事项
在计算转动惯量时,需要明确旋转轴的位置,并计算质心到旋转轴的距离。同时 ,需要考虑刚体的质量分布情况,因为不同位置的质量对转动惯量的贡献不同。
刚体的运动方程

(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ
又
rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a
⇒
d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a
令
& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt
⇒
dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
理论力学第4节 刚体的定轴转动和平面运动微分方程

圆盘质心 加速度
aC
2M 3mR
FN
2)如果作用于圆盘的力偶矩 M
圆盘连滚带滑,所受摩擦力为
3 2
fmgR
时,则
F mgf
aC fg
2(M mgfR) mR2
0
d
dt
maC F
FN mg
1 mR 2 M FR
2
纯滚动 应满足
M C aC
mg F
FN
F f FN
M
3 2
fmgR
解得
F
2M 3R
,M
3 2
RF
,aC
2M 3mR
讨论
M
1)为使圆盘作纯滚动,应满足
作用于圆盘 的力偶矩
M
3 2
fmgR
C aC mg F
• 刚体绕定轴转动的运动微分方程:绕定轴转动的刚 体对转轴的转动惯量与其角加速度的乘积,等于作 用在刚体上的所有外力对转轴力矩的代数和。
例11-5 如图所示一均质圆盘质量 m = 100kg,半径 r = 0.5m,转速 n 擦因数 f = 0.6。开始加制动闸,使闸块对轮
dt
J C
n
M C (Fi(e) )
i1
式中 M 为刚体的质量,aC 为质心的加速度,J C为刚 体对通过质心Cz轴的转动惯量。
MaC
F (e) R
y
d(JC)
dt
JC
n
M C (Fi(e) )
i1
d
dt
d 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 'A = + ω× A dt
dAy dA d ' A dAx ≡ i+ j + z k) ( dt dt dt dt
d'A ⎛d' ⎞ 在运动坐标系中求导 ⎟ :A在运动坐标系中的改变⎜ : dt ⎝ dt ⎠
dL d ' L 令A=L ,得: = + ω× L dt dt
又 所以
dL =M dt
a
× Fa 外 = M ——对固定点o的总力矩
⇒
dL =M dt
——对固定点的角动量定理
以质心为坐标原点:(仍在惯性系中)
&& r ma (R 0 + &&a ) = Fa 内 + Fa 外
&& r ma ra × ( R 0 + &&a ) = ra × Fa 内 + ra × Fa 外 && ma ra × R 0 + ma ra × &&a = ra × Fa内 + ra × Fa 外 r
坐标系转动而引起的,故
dA = ω× A dt
一般情况:A相对于运动坐标系改变,说明如下。
K 设: 1、K 分别为静止坐标系和运动坐标系,如图。
现在 K1、K系中分别求矢量 A(t) 随时间的变化率。
i, j, k:K 系中的单位常矢量 i, j, k 对 K1系不是常矢量,即 i = i (t ), j = j(t ), k = k (t )
刚体:特殊的质点组。 考察刚体整体运动:
&& MR 0 = ∑ Fa 外 =
a
R 0 :质心在静止系中的矢径。 对第a个质点: 其中:
&& ma R a = Fa内 + Fa 外
R a = R 0 + ra
ra :以质心为原点的运动坐标系的矢径。
因为:
d & & & && && (R a × R a ) = R a × R a + R a × R a = R a × R a dt
六、欧勒动力学方程 刚体的运动方程为:
t t 而 L = I ⋅ ω 中 I 不是常数,这样要得到M与ω 的
关系很困难。 办法:建立运动坐标系——坐标轴沿三个惯量主 轴方向 此时: L = I 1ω 1e1 + I 2ω 2 e 2 + I 3ω 3 e 3
dL =M dt
(对静止坐标系)
dA 设:矢量A, :相对静止坐标系的改变量 dt dA 若:A相对于运动坐标系不变,则 仅仅是由于运动 dt
(ω × L)1 = ω2 L3 − ω3 L2 = ω2 I 3ω3 − ω3 I 2ω2 = ( I1 − I 2 )ω2ω3
(ω × L) 2 = ω3 L1 − ω1 L3 = ω3 I1ω1 − ω1 I 3ω3 = ( I1 − I 3 )ω3ω1 (ω × L)3 = ω1 L2 − ω2 L1 = ω1 I 2ω2 − ω2 I1ω1 = ( I 2 − I1 )ω1ω2
&& ma R a = Fa内 + Fa 外
所以:
&& ma R a × R a = R a × Fai + R a × Fae d & ma ( R a × R a ) = R a × Fa内 + R a × Fa 外 dt
N N d 作和: ∑ (R × m R ) = ∑ R × F + ∑ R × F & a a a a a a外 a内 dt a =1 a =1 a =1
三、刚体的动平衡 (见p88,略。)
四、刚体的自由运动
自由运动:不受外力、不受约束。 即:
F=0 M (o) = 0
&& 有: R 0 = 0
(质心:匀速运动); (绕质心的转动,且角动量守恒)
& L( o ) = 0
I 设:e1 , e 2 , e 3 为三个惯量主轴方向, 1 , I 2 , I 3 为沿这
对上式作和:
&& + ∑ d (r × m r ) = ∑ r × F + ∑ r × F ∑ mara × R 0 a dt a a &a a a a内 a a a 外 a
d && & (∑ ma ra ) × R 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a a
π
⇒
⇒
ω进动 = L I1 = 常量 (注意: 角动量守恒)
且 ω 不变 ( L = Iω ——匀速旋转)
⇒ L与 ox3 轴的夹角不变
规则进动:对称陀螺自由转动,有 绕 x3 转动 + x3 轴绕空间固定轴(L轴)进动, 且 x3 与L之间的夹角 θ 保持不变。
五、欧勒运动学方程
对称陀螺的基本运动: (1)刚体绕对称轴的自转; (2)自转轴绕空间固定轴的进动; (3)自转轴和固定轴间夹角的章动。 用欧勒角描述这三种运动: 设:o——固定点;oz:固定轴
a
则
dL( o ) = M (o) dt
——对质心的角动量定理
描述刚体的运动方程组
&& MR 0 = F
dL =M 或 dt
(平动)
dL( o ) = M (o) dt (转动)
二、刚体的静平衡 平衡时:
&& R 0 = 0,
dL =0 dt
⇒
F = 0, M = 0
——平衡方程
例题:见p88 [例1]
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt
⇒
dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
惯性系中:
§1.5.2 刚体的运动方程
刚体:6个自由度 ⇒ 自由度数目减少 (由于约束) 例子:绕固定点的转动——3个自由度; 定轴转动——1个自由度。
在有约束的情况下:关心刚体本身的运动+约束反力 但:由拉格朗日方程中不容易得到约束反力 (以前仅讨论理想约束) 办法:回到牛顿表述
一、动量定理 定点转动角动量定理
N
= 0 + ∑ R a × Fa 外 = ∑ R a × Fa 外
a =1 a =1
N
N
⇒ 其中:
N d N & ∑ (R a × ma R a ) = ∑ R a × Fa 外 dt a =1 a =1
∑ (R
a =1
N
N
a
& × m a R a ) = L ——对固定点o的总角动量
∑R
a=1
oN ⊥ α 平面 从 oZ 上一点作oM '的垂线a,显然 a在 α 上,则
oN ⊥ a oM ' ⊥ a
因此 a ⊥ oN , oM '组成的平面,即 ox1 , ox2 平面。 由此 oZ 在 x1 x2 平面的投足落在 oM '上,得到
& 又 oM ' 与 x2 的夹角为ψ ,这样ϕ 在 x1 , x2 的分量为
v 1 :质点在 K1 系中的速度;
v:质点在K系中的速度; V:K1 系对 K 0 系的速度。 则:
v 0 = v1 + V
dr d ' r v1 = = +ω× r = v +ω× r dt dt
⇒
v0 = V + v +ω× r
上式右边各项再对时间求导,有
& dV = w V= dt ( K1、K 系坐标原点对K 0系的加速度)
d 'L + ω× L = M dt
对运动坐标系:
L = I 1ω 1e1 + I 2ω 2 e 2 + I 3ω 3 e 3
⇒ ⇒
而
d'L & & & = I 1ω 1e1 + I 2ω 2 e 2 + I 3ω 3 e 3 dt
L1 = I 1ω 1
L 2 = I 2ω 2
L3 = I 3ω 3
(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0
& 于是有: ω 1 = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ
又
rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a
⇒
d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a
令
& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ω = ω自转 + ω 进动
L在 ox1 x3 平面内,L与 x3 的夹角: θ ⇒ L与 ox3 的夹角:π 2 − θ L在 ox1 轴的投影: L1 = I 1ω1
ω 由图:ω, 进动 在 ox1 上的分量相等
则:
ω进动 cos( − θ ) = ω1