第二章 刚体的基本运动

合集下载

15刚体的基本运动

15刚体的基本运动

于是得 a at an
例1 荡木用两条等长的钢索平行吊起,如图所示。 钢索长为l,单位为m。当荡木在图示平面内摆动 π j j 0 sin t t 为时间, 时, 钢索的摆动规律为 ,其中 4 单位为s;转角j0的单位为rad,试求当t=0和 t=2s 时,荡木的中点M的轨迹、速度和加速度。
v1 v2
a1 a2
O2 r2
v1 v2
a1 a2


由于 v1 r1w1
于是可得 即
r1 w 2 w1 r2
v2 r2w 2 a1 r11 a2 r2 2
w1 1 r2 w2 2 r1
r1 2 1 r2
通常称主动轮与从动轮角速度或角加速度之比 为传动比,记为i12,由上例可知
解:系统为匀变速转动,根据 v2 – v02 = 2as,得M点的速度
2 v 2as v0
2 4.9m/s 2 2m (4m/s) 2 5.96 m / s dv M点的切向加速度: at a 4.9m/s 2 dt M点的法向加速度:
2 2as v0 2 4.9m/s 2 2m (4m/s) 2 an R 0.2m
解:用n1, n2 , n3和n4分 别表示各齿轮的转速,且有 n2 n3 传动比i12,i34为 n1 z2 n3 z4 i12 , i34 n2 z1 n4 z3 n1n3 z2 z4 将两式相乘,得 n2 n4 z1 z3 因为n2= n3,于是从动轮Ⅰ到齿轮Ⅳ的传动比为
2
j =0.15 t3
代入 t =2 s, 得
w 1.8 rad / s , 1.8 rad / s 2

刚体的基本运动

刚体的基本运动

转速:刚体每分钟转过的圈数。单位:r / min。 转速 n 与角速度 2n n 60 30
的关系:
(7-6)
角加速度
d d 2 lim 2 t 0 t dt dt
(7-7)
刚体的角加速度(Angular acceleration)
等于其角速度对时间的一阶导数,也等于其转角对
v r 0.4 50 20 m / s
an r 0.4 50 1000 m /s
2 2
2
例7-4 定轴轮系如图7-9所示,主动轮I通过轮齿
与从动轮II轮齿啮合实现转动传递。主动轮I和从动轮 II的节圆半径分别为r1、r2,齿数分别为z1、z2。设I轮 的角速度为 1 (转数为n1),角加速度为 1 ;II轮的 角速度为 2(转数为n2),角加速度为 2 。试求上
2 a a2 an (r )2 (rω2 )2 r 2 ω4
tan
a an


ω
2
(7-13)
在给定瞬时,刚体的角速度和角加速度有确 定的值,对刚体上任何点都是一样。因而,在同一瞬 时,转动刚体上各点的速度 v 和加速度 a 的大小均与
该点的转动半径 r 成正比;各点速度 v 的方向都垂直
O轴作定轴转动,其转动方程为 t 2 4t (1)当t = 1 s时,试求轮缘上M点速度和加速度;
(2)若轮上绕一不可伸长的绳索,并在绳索下端
悬一物体A,求当t = 1 s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速 a M 度和角加速度为 d 2t 4 rad / s

t 1s,直杆AB上D点的速度和加速度。
解:由于O1A与O2B平行等

动力学(运动方程)

动力学(运动方程)
附录 A 变矢量及矢量 附录 B 物体的质量几何 附录 C 若干均质刚体的转动惯量及
回转半径 习题参考答案
绪论
一、动力学的研究对象 二、学习动力学的目的 三、动力学的研究方法
返回总目录
-1-
绪论
一、动力学的研究对象
动力学是研究物体机械运动一般规律的一门学科。 按照辩证唯物主义的观点,运动是物质存在的形式,是物质的固有属性,它包括宇宙中 发的一切现象和过程——从简单的位置变化直到人的思维活动。机械运动则是所有运动形式 最简单的一种,指的是物体在空间的位置随时间的变化。例如,车辆的行驶,机器的运转 水 的流动,人造卫星和宇宙飞船的运行,建筑物的振动,等等,都是机械运动。 平衡(例如物体相对于地球处于静止的状态)是机械运动的特殊情形 ,自然可由动力 学的理论得出解答。但由于平衡问题的研究有广泛的独立应用,现已成为一门单独的学科— —静力学,故本书不作论述。 动力学研究的内容是远小于光速的宏观物体的机械运动,它以伽利略和牛顿总结的基本 定律为基础,属于古典力学的范畴。至于速度接近于光速的物体和基本粒子的运动,则必须 用相对论和量子力学的观点才能完善地予以解释。这固然说明古典力学有局限性,但是,经 过长期的实践证明,不仅在一般工程中,就是在一些尖端科学技术(如火箭、宇宙航行等) 中所考察的物体都是宏观物体,运动速度也都远远小于光速,用古典力学来解决,不仅方便 而且能够保证足够的精确性,所以古典力学至今仍有很大的实用意义,并且还在不断地发展。 研究物体机械运动的普遍规律涉及到物体运动的变化,作用于物体的力以及物体的质量 等,因此,动力学问题比静力学问题更为复杂。为便于“循序渐进,由浅入深”地学习,本 第一章至第五章介绍了运动学的知识,具体内容包括点和刚体在空间的位置的确定以及位 随时间变化的规律;点的运动轨迹;点和刚体运动的速度、加速度等。从第六章起再进一步 研究物体的运动的变化与作用在物体上的力之间的关系,从而建立物体机械运动的普遍规 律。

刚体的定轴转动定律

刚体的定轴转动定律
物体2这边的张力为
T2、 T2’(T2’= T2)
T1
T2
T1
T2
am
a
1
a
m
m1
m1g 2
m2
m2g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以
顺时针方向旋转,Mr的指向如图所示。可列出下列方

T1 G1 m1a
G2 T2 m2a
T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮
t 0
方向:
t dt
右手螺旋方向
z (t)
x
参考平面
参考轴
刚体定轴转动(一
维转动)的转动方向可
以用角速度的正负来表
示.
角加速度
d
dt
定轴转动的特点
z
>0
z
<0
1) 2)
每一质点均作圆周运动,圆面为转动平面;
任一质点运动
,
,
均相同,但
v,
a不同;
3) 运动描述仅需一个坐标 .
三、 匀变速转动公式
轴的力矩 Mzk
r
F
z
F
k
O rFz
F
M z rF sin
z
Байду номын сангаас
F
M
O
r P
d
五. 定轴转动刚体的转动定律:
Fit
Fi
fit

ri
fi
mi• fin
Fin
O

j
d
fij
fji
i
Fit ri (miri2 )
I miri2
i

理论力学 第二章 刚体的基本运动

理论力学 第二章 刚体的基本运动

0
nπ 式中n为转速 单位:转/ 分(r/min) 。 山东大学 土建与水利学院工程力学系 THEORETICAL MECHANICS 30
§ 2.2 刚体绕定轴的转动
3.角加速度
描述角速度变化的快慢程度
2
d d lim 2 t 0 t dt dt
单位:弧度/秒2 (rad/s2 ) α与同号,刚体加速转动;
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
§2.4 轮系的传动比
1 n1 r2 Z2 i1,2 2 n2 r1 Z1
此结论对于锥齿轮传动和带 轮传动同样适用。 在一些复杂轮系(如变速器) 中包含有几对齿轮。可将每一对 齿轮的传动算出后,将它们连乘 起来,变为可得总的传动比。
392.8 62.5 转 2π
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
例2- 3 轮子绕O点作定轴转动,其加速度方向和轮的半径
成60度角,求轮的转动方程,以及角速度和转角之间的关系。
00, 0.
M

O
a
60
THEORETICAL MECHANICS
解 : AB 杆 为 平 移 , O1A 为 定 轴 转 动 。 根 据 平移的特点,在同一瞬 时,M、A两点具有相同 的速度和加速度。
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
A点作圆周运动,其运动方程为
s O1 A 3π t
ds dv vA 3π (m/s) a A t 0 dt dt
§ 2.1 刚体的平行移动

大学物理之刚体的基本运动

大学物理之刚体的基本运动

五、刚体的定轴转动程英豪5-1 刚体运动的基本概念一、刚体模型刚体:在外力的作用下,大小和形状都不变的物体。

(物体内任意两点的距离不变)二、刚体的运动平动:刚体运动时,其内部任何一条直线,在运动中方向始终不变(各点位移、速度、加速度均相同,可视为质点,刚体质心的运动代表了刚体平动中每一质元的运动)转动:刚体的各个质点都绕同一直线(转动轴)作圆周运动。

质心轴:通过质心的转动轴。

定轴转动:转轴固定不动的转动。

旋进(进动):转轴上一点静止,转轴方向变化。

平面平行运动:刚体内所有运动点都平行于某一平面(参考平面)。

刚体的一般运动:可以视为平动以及转动的合成。

三、转动惯性的量度(转动惯量)1、转动惯量定义:∑∆=iiizrmI2——对z轴的转动惯量连续分布有:⎰=dmrIz2刚体的转动动能:221ωz kI E =转动惯量的物理意义:Iz 表示刚体转动时惯性的大小。

转动惯量Iz 的大小决定于:1)刚体的质量:同形状的刚体,ρ越大,Iz 就越大;(2)质量的分布:质量相同,dm 分布在 r 越大的地方,则Iz 越大; (3)刚体的转轴位置:同一刚体依不同的转轴而有不同的Iz 。

2、、平行轴定理2mdJ J C +=——平行轴定理3、薄板的垂直轴定理z 轴与x 轴、y 轴两两垂直。

4、常见刚体的转动惯量5-2 刚体定轴转动的运动学规律1、角量与线量之间的关系对刚体上的质元 Pi ,2、角速度矢量5-3 刚体定轴转动的动力学规律一、刚体定轴转动定律dtd I M zz ω=(Mz :总外力矩,各外力对转轴对z 轴的力矩代数和) Mz=0 时,刚体将保持静止或匀速(匀角速度)转动。

二、刚体定轴转动的动量矩定理 守恒定律 1.刚体定轴转动的动量矩 刚体对定轴 z 的动量矩:2.刚体定轴转动的动量矩定理I 可变化的质点系或非刚体的定轴转动⎰-=tt z z z I I dt M 00ωω3、刚体定轴转动动量矩守恒注意:(1)守恒条件为M=0;(2)内力矩不改变系统的动量矩;(3)动量矩守恒定律是自然界的一个基本定律。

08刚体的基本运动

08刚体的基本运动

结论:平移刚体的运动学问题可归结为

的运动学问题。
第二节
刚体绕定轴转动
一、绕定轴转动刚体的转动方程 转角:
t
说明:
(1)转角 为代数量,正负号表示 转向,一般按右手螺旋法则确定;
(2)转角 的单位:rad(弧度)
二、绕定轴转动刚体的角速度
d dt
说明(1)绕定轴转动刚体的角速度 为代数量,其正负号表示转向 ;角速 度 的正负号规定与转角 一致;
[例3] 如图,鼓轮绕轴 O 转动,已知鼓轮的半径 R = 0.2 m,转
动方程 = -t2+4t (t 以 s 计, 以 rad 计);不可伸长的绳索
缠绕在鼓轮上,绳索的另一端悬挂重物 A。试求当 t = 1 s 时, 轮缘上的点 M 和重物 A 的速度和加速度。
[例4] 半径 R = 0.5 m 的飞轮由静止开始转动,角加速度按 = b/(5 + t) rad/s2(b 为常数)的规律变化。已知 t = 5 s 时,轮缘 上点的速度 v = 20 m/s,试求当 t = 10 s 时,轮缘上点的速度和 加速度。 解:1)求飞轮的角速度、角加速度
时木梁中点 M 的速度和加速度
解: 木梁整体做曲线平移运动,因此
其上各点的运动轨迹相同t
v r
at r
an r
2
d d 2 2 dt dt
a r 2 4
tan 2
[例2] 杆OA套在套筒 B 中绕轴 O 转动,套筒 B 在竖直滑道中运 动。已知套筒 B 以匀速 v = 1 m/s 向上运动,滑道与轴 O 的水平 距离 l = 400 mm,运动初始时 = 0°。试求 = 30°时,杆OA的 角速度和角加速度。

刚体的基本运动

刚体的基本运动

三、刚体平面运动的运动方程 刚 体 平 面 运 动 建立如图的静坐标系, 建立如图的静坐标系, 基点。 点称为基点 将 O′点称为基点。 当刚体作平面运动时, 当刚体作平面运动时, xO′,yO′ 和 均随时间连续变 化,它们均为时间的单值连 续函数, 续函数,即 x = f (t ) (t
1 O′ yO′ = f 2 (t ) = f 3 (t )
O
vO
O
ω
A B
O
ω
O1
二、刚体平面运动的简化 刚 体 平 面 运 动 如图所示, 如图所示,刚体作平面 运动时, 运动时,刚体上所有与空间 某固定平面距离相等的点所 构成的平面图形就保持在它 自身所在的平面内运动。 自身所在的平面内运动。
A1
π
A
S
经分析可得如下结 论:
π0
A2
刚体的平面运动可以简化为平面图形S 刚体的平面运动可以简化为平面图形 在其自身所在的平面内运动。 在其自身所在的平面内运动。
静 平 面 动
z
= (t )
平 面
这就是刚体的转动方程。 开门 这就是刚体的转动方程。(开门 转动方程 开门)
刚体上任意一点的轨迹都为圆。
O
二、角速度、角加速度 角速度、
刚体绕定轴转动的角速度等于其位置角对时 8.2 间的一阶导数,用ω 表示,即 间的一阶导数, 表示,
刚 体 的 定
d ω= = dt
绝对运动中,动点的速度与加速度称为绝对速度 va 与绝对加速度
aa
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度 ar 牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 牵连点 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。 四.动点的选择原则: 动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有 运动的点。 五.动系的选择原则: 动系的选择原则 动点对动系有相对运动,且相对运动的轨迹是已知的, 或者能直接看出的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 刚体的基本运动
一、目的要求
1.明确刚体平行移动(平动)和刚体绕定轴转动的特征,能正确地判断作平动的刚体和定轴转动的刚体。

2.对刚体定轴转动时的转动方程、角速度和角加速度及它们之间的关系要清晰的理解,熟知匀速和匀变速转动的定义与公式。

3.能熟练地计算定轴转动刚体上任一点的速度和加速度。

4.掌握传动比的概念及其公式的应用。

5.对角速度矢、角加速度矢以及用矢积表示定轴转动刚体上任一点的速度和加速度有初步了解。

二、基本内容
刚体的平动;刚体绕定轴转动;转动刚体内各点的速度和加速度;轮系的转动比;以矢量表示角速度和角加速度,以矢积表示点的速度和加速度。

(1)基本概念
刚体平动与定轴转动的定义,刚体在作这两种运动时刚体上各点速度、加速度的分布规律。

(2)主要公式
平动刚体上,任意两点之间均有
B A v v =,B A a a =
定轴转动刚体上任一点的速度和加速度为
ωr v =,ατr a =,2ωr a n =,22n a a a +=τ,n a a tg τ
θ=
以矢积表示的刚体上一点的速度与加速度为
r v ⨯=ω
v r a ⨯+⨯=ωα
三、重点和难点
1.重点
(1)刚体平动及其运动特征。

(2)刚体的定轴转动,转动方程,角速度与角加速度。

(3)转动刚体内各点的速度与加速度。

2.难点:
用矢积表示刚体上任一点的速度与加速度。

四、学习建议
(1)对刚体平动强调“三相同”。

(2)对刚体绕定轴转动的特征及其上点的速度,加速度分布规律要讲透,让学生熟练掌握已知刚体转动规律会求其上一点的运动规律,反之,已知转动刚体上一点的运动规律要会求其上各点的运动规律及整体的转动规律。

(3)对轮系传动比作一般介绍。

(4)对ω ,α 方向的确定要介绍练习,对速度和加速度用矢积表示只作一
般介绍以供推导公式用。

相关文档
最新文档