ICP-MS原理部分

合集下载

icpms半定量全谱原理

icpms半定量全谱原理

icpms半定量全谱原理
ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一
种利用电感耦合等离子体和质谱仪相结合的技术,用于元素分析和半定量分析。

ICP-MS半定量全谱原理的基本步骤如下:
1. 横场ICP装置:ICP-MS使用电感耦合等离子体(ICP)作
为样品的离子源。

样品溶解在适当的溶剂中,并通过雾化器将样品转化为气溶胶形式。

这些样品气溶胶进一步在高温下被分解为离子,然后进入等离子体。

2. 离子分离:样品中的离子在等离子体中被加速、分离和过滤。

ICP-MS使用磁扇区和偏转电压来分离和选择不同质荷比
(m/z)的离子。

3. 质谱分析:分离后的离子进入质谱仪部分,通常是四极杆质谱仪。

在四极杆中,离子会根据其质荷比进行一次聚焦和分辨。

4. 检测和数据处理:经过质谱仪分析后,离子到达检测器,最常见的是离子计(例如,购买Ion是一种常用的离子计)。


过计时离子到达的时间和能量,可以确定离子的种类和数量。

ICP-MS半定量全谱原理的优势在于其高灵敏度、宽线性动态
范围和良好的检测限。

它广泛应用于环境监测、食品安全、药物分析、地质矿产等领域。

电感耦合等离子体质谱仪工作原理及上机技术

电感耦合等离子体质谱仪工作原理及上机技术

电感耦合等离子体质谱仪(ICP-MS)是一种高灵敏度、高分辨率的质谱分析技术,广泛应用于环境监测、地质勘探、生物医药等领域。

它通过电感耦合等离子体将样品中的离子化元素分离并进行质谱分析,具有快速、准确、灵敏度高的特点。

下面就来详细介绍电感耦合等离子体质谱仪的工作原理及上机技术。

一、电感耦合等离子体质谱仪工作原理1. 电感耦合等离子体的产生电感耦合等离子体是通过高频电磁场作用下的高温等离子体来产生的。

它的产生过程主要包括气体离子化和激发元素原子等两个阶段。

在气体离子化阶段,气体中的原子或分子被电离形成离子,然后通过高频电磁场的作用,这些离子被激发形成高温等离子体。

2. 样品进样及分离样品首先通过进样系统进入等离子体炉中,经过加热和气体离子化后,形成离子状态的样品。

然后通过分离系统,将不同离子化状态的元素分离出来,为后续的质谱分析做准备。

3. 质谱分析将分离的元素离子引入质子源中,利用质子源将其离子化,然后进入质谱仪进行分析。

在质谱仪中,根据离子的质量电荷比进行质谱分析,确定其质量及含量。

二、电感耦合等离子体质谱仪上机技术1. 样品预处理在进行ICP-MS分析之前,对样品进行预处理非常重要。

包括样品的采集、前处理、溶解、稀释等过程。

只有经过严格的样品预处理,才能保证ICP-MS分析的准确性和可靠性。

2. 仪器操作操作ICP-MS仪器需要严格按照操作规程进行。

包括启动设备、设定分析参数、进样、质谱分析等步骤。

操作人员需要经过系统的培训和考核,熟练掌握仪器操作技术。

3. 数据处理对于ICP-MS分析而言,数据处理是非常重要的一环。

包括质谱图的解释、信噪比的计算、数据校正、质量控制等步骤。

只有对数据进行严密的处理和分析,才能得到可靠的结果。

4. 故障排除在ICP-MS分析过程中,仪器可能出现各种故障,如气体泄漏、电离源失效等。

操作人员需要具备一定的故障排除能力,及时发现并解决故障,确保实验顺利进行。

通过以上对电感耦合等离子体质谱仪的工作原理和上机技术的介绍,相信读者们对该技术有了更深入的了解。

ICP-MS的原理和使用

ICP-MS的原理和使用
(2)开启水冷机(温度:20℃;压力:65Mpa 左右)
仪器的准备
(3)检查并确认进样系统(炬管、雾化室、雾化器、泵 管等)是否正确安装。 (4)上好样品管和废液管,检漏; (5)点击Instrument Control 左上角的“ON”点火; (6)点火后,先用娃哈哈的水冲洗5min,再用 2%HNO3冲洗5min,稳定仪器,同时注意观察进液和出 液是否顺畅。
2023最新整理收集 do something
ICP-MS的原理和使用
2017-2-9
主要内容
一、原理 二、结构 三、使用和注意事项
四、日常维护
ICP-MS仪器的原理
ICP-MS:
全称是电感耦合等离子体-质谱法 (Inductively coupled plasma-Mass Spectrometry) 它是一种将ICP技术和质谱结合在一起的分析仪器,它 能同时测定几十种痕量无机元素,可进行同位素分析、 单元素和多元素分析,以及有机物中金属元素的形态分 析。
素被有效地电离为单电荷离子
接口
接口是ICP-MS仪器的心脏,采样锥和截取锥是 其关键部件 (一个冷却的采样锥(大约1mm孔径) 和截取锥(大约0.4-0.8mm孔径)组成, 两孔相 距6-7mm。
接口的功能是将等离子体中的离子有效传输到质谱仪
质谱分析器(四级杆)
利用静电透镜系统将穿过截取锥的离子拉出来,输送到 四极杆滤质器。四极杆的工作是基于在四根电极之间的 空间产生一随时间变化的特殊电场,只有给定M/Z的离 子才能获得稳定的路径而通过极棒,从其另一端出射。 其它离子将被过分偏转,与极棒碰撞,并在极棒上被中 和而丢失。四极杆扫描速度很快,大约每100毫秒可扫描 整个元素覆盖的质量范围。
止机械泵过热自动保护熄火了。

ICP-MS原理介绍

ICP-MS原理介绍

ICP-MS中文培训资料1理论原理2硬件组成及功能讲解离子源接口离子镜分析器检测器图1 ICP-MS主要组成模块ICP-MS原理部分概述ICP-MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。

广泛应用于半导体、地质、环境以及生物制药等行业中。

ICP-MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。

ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。

质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。

ICP-MS的发展已经有20年的历史了,在长期的发展中,人们不断的将新的技术应用于ICP-MS的设计中,形成了各类ICP-MS。

ICP-MS主要分为以下几类:四极杆ICP-MS,高分辨ICP-MS(磁质谱),ICP-tof-MS。

本文主要介绍四极杆ICP-MS。

主要组成部分图1是ICP-MS的主要组成模块。

样品通过离子源离子化,形成离子流,通过接口进入真空系统,在离子镜中,负离子、中性粒子以及光子被拦截,而正离子正常通过,并且达到聚焦的效果。

在分析器中,仪器通过改变分析器参数的设置,仅使我们感兴趣的核质比的元素离子顺利通过并且进入检测器,在检测器中对进入的离子个数进行计数,得到了最终的元素的含量。

各部分功能和原理1.离子源离子源是产生等离子体并使样品离子化的部分,离子源结构如图2所示,主要包括RF图 2 离子源的组成工作线圈、等离子体、进样系统和气路控制四个组成部分。

样品通过进样系统导入,溶液样品通过雾化器等设备进入等离子体,气体样品直接导入等离子体,RF工作线圈为等离子体提供所需的能量,气路控制不断的产生新的等离子体,达到平衡状态,不断的电离新的离子。

icp-ms 工作原理

icp-ms 工作原理

icp-ms 工作原理
ICP-MS(电感耦合等离子体质谱)是一种常用的质谱技术,用于元素的定性和定量分析。

其工作原理如下:
1. 样品进样:样品通常以液态形式进入ICP-MS系统。

样品通过进样器进入射频环境下的等离子体。

2. 等离子体产生:通过在射频线圈中通入高频电场,气体放电变成等离子体。

气体内的原子在高温高能的环境下被电离,形成正离子。

3. 离子聚焦:正离子在一系列的准直装置中被聚焦,以便将它们引导到质谱仪的质子源中。

4. 质子源:在质子源中,正离子进一步被电离,并且获得进一步加速。

电离的原子核或分子离子以高速被产生并通过透镜系统传输到质谱仪的分离装置。

5. 分离装置:分离装置通常为一段能够根据质量-电荷比将离子分离的时间飞行轴,例如飞行时间质谱。

该装置利用离子在电场中的不同迁移速度来分离它们。

6. 检测器:最后,离子在检测器上产生电信号。

根据信号的大小,可以定性和定量分析不同元素的存在。

ICP-MS具有高灵敏度、高选择性和广泛的元素覆盖范围等特
点,常用于环境监测、食品安全、地质学研究和医学诊断等领域。

icp-ms测定金属元素的原理

icp-ms测定金属元素的原理

ICP-MS(电感耦合等离子体质谱)是一种广泛应用于分析化学领域的高灵敏度、高分辨率的仪器,在测定金属元素方面具有独特的优势。

ICP-MS测定金属元素的原理主要包括样品的装载、等离子体的产生、离子的分析和数据解释等步骤。

1. 样品的装载ICP-MS测定金属元素的样品通常是经过前处理和稀释处理的,以保证样品中金属元素的浓度在仪器的线性范围内。

样品通过自动进样器装载进ICP-MS仪器中,然后经过快速破碎和分解处理,将固体样品转化为液体样品。

2. 等离子体的产生装载好的样品首先进入等离子体产生器,通过高频电感耦合产生高温等离子体。

在等离子体中,样品中的金属元素被电离,形成正离子。

等离子体的温度可以达到几千摄氏度,能够将样品完全分解,并使其转化为离子状态,便于进一步的分析。

3. 离子的分析经过等离子体产生后,正离子被引入质谱仪器,质谱仪器通过各种隔离、过滤等手段将不同质荷比的离子分离出来,然后通过离子探测器检测并计数。

这一过程能够对不同质荷比的离子进行快速、高效的分析,并能够通过测定不同质荷比的离子的数量,计算出样品中金属元素的含量。

4. 数据解释通过对离子计数的数据进行处理和解释,可以得出样品中不同金属元素的含量,并进行质量控制和标准曲线的绘制,以确保测定结果的准确性和可靠性。

ICP-MS测定金属元素的原理主要是通过将样品中的金属元素转化为离子状态,然后通过质谱仪器对离子进行快速、高效的分析,最终得出样品中金属元素的含量。

这一测定原理具有高灵敏度、高分辨率、高准确性的优点,广泛应用于环境监测、食品安全、地质矿产等领域。

ICP-MS测定金属元素的技术不断得到改进和完善,将会在更多领域发挥重要作用。

5. 应用领域ICP-MS测定金属元素的原理及其高灵敏度、高分辨率的特点使得它在许多领域有着广泛的应用。

在环境监测方面,ICP-MS可以用于地表水、地下水和海水中痕量金属元素的监测,包括重金属元素有害物质,如镉、铅、汞等,对环境质量进行准确评估。

icpms检测器工作原理

icpms检测器工作原理

icpms检测器工作原理
ICP-MS(电感耦合等离子体质谱)是一种高灵敏度、高分辨率的分析技术,用于元素分析。

其工作原理如下:
1. 产生等离子体,ICP-MS使用电感耦合等离子体发生器产生高温、高能量的等离子体。

这是通过将气体(通常是氩气)引入封闭的石英管中,然后通过高频电磁场产生的电磁感应来激发气体中的电子,形成等离子体。

2. 离子化,样品溶液经过适当的前处理后,被导入到等离子体中。

在高温等离子体中,样品中的分子被离子化成带电的离子。

3. 分离和聚焦,离子经过四极杆或扇形场,根据它们的质荷比(m/z)进行分离和聚焦。

只有符合特定质荷比的离子能通过,其他离子则被排除。

4. 检测,分离后的离子进入离子检测器,通常使用离子倍增器或通道电子增强器来增强电流信号。

离子的到达时间和电流信号被检测和记录。

5. 数据分析,通过对检测到的离子信号进行计数和分析,可以
确定样品中各种元素的存在和浓度。

总结起来,ICP-MS的工作原理包括产生等离子体、离子化样品、分离和聚焦离子、检测离子信号以及数据分析。

这种技术可以用于
快速、准确地分析样品中的各种元素,并广泛应用于环境监测、地
质学、生物医学、食品安全等领域。

ICP工作原理

ICP工作原理

ICP工作原理ICP(Inductively Coupled Plasma)是一种常用的离子化技术,广泛应用于原子发射光谱仪(ICP-AES)和质谱仪(ICP-MS)中。

它通过高频电磁场的作用,将样品中的原子或者份子离子化,并进一步激发和分离,以便进行准确的分析和检测。

ICP工作原理的核心是感应耦合等离子体的产生和维持。

下面将详细介绍ICP的工作原理及其各个组成部份的功能。

1. 感应耦合器(ICP Torch):感应耦合器是ICP的核心部份,它由一个高频发生器、两个线圈和一个气体进样口组成。

高频发生器产生的高频电磁场通过线圈产生一个交变磁场,使得气体在耦合器内形成一个高温、高电离度的等离子体。

2. 气体进样口:气体进样口是将待分析的样品引入感应耦合器内的通道。

常用的气体有氩气、氮气等。

气体进样口的作用是将样品中的原子或者份子转化为离子。

3. 等离子体:通过感应耦合器产生的高温、高电离度的等离子体是ICP工作的关键。

等离子体中的高温和高电离度使得原子或者份子发生激发、电离和解离等反应,进而产生特征光谱信号。

4. 光谱仪(ICP-AES)或者质谱仪(ICP-MS):ICP工作原理中的最后一步是通过光谱仪或者质谱仪对等离子体中产生的特征光谱信号进行分析和检测。

在ICP-AES中,光谱仪通过分析样品中产生的特定波长的光谱线来确定样品中元素的含量。

而在ICP-MS中,质谱仪则通过分析样品中离子的质量和相对丰度来确定元素的含量。

总结:ICP工作原理是通过感应耦合器产生高温、高电离度的等离子体,将样品中的原子或者份子离子化,并进一步激发和分离,最终通过光谱仪或者质谱仪对样品进行分析和检测。

这种技术在环境监测、食品安全、地质矿产等领域具有广泛的应用。

通过ICP工作原理,可以实现对元素含量的准确测量,为科学研究和工业生产提供了重要的分析手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从图5可以看到溶液气溶胶在中心管中随着接近火焰在形态上的改变。气溶胶->干化(固体颗粒)->气化(气体)->原子化(化合物离解)->离子化(电离成1价离子)。图6也说明了炬管的结构和等离子体工作原理,等离子体工作时,首先提供强大的射频电压到RF工作线圈,然后利用高压使气体放电产生火化,少量离子在电磁场作用下聚集并相互碰撞,很快就使更多的原子电离,最终形成了稳定的火焰。
各部分功能和原理
1.离子源
离子源是产生等离子体并使样品离子化的部分,离子源结构如图2所示,主要包括RF工作线圈、等离子体、进样系统和气路控制四个组成部分。样品通过进样系统导入,溶液样品通过雾化器等设备进入等离子体,气体样品直接导入等离子体,RF工作线圈为等离子体提供所需的能量,气路控制不断的产生新的等离子体,达到平衡状态,不断的电离新的离子。下面对X-7ICP-MS的具体部件进行介绍。
表1仪器的三级真空系统的气压
接口部分
分析室1
分析室2
气压(mbar)
2
10-5
6×10-7
表2仪器的三个状态与阀门的关系表
状态
Backing vlove
Expansion valve
Slide valve
Off
Off
off
off
Vacuum ready
ON
Off
Off
Ready->operate
Off
检测器通过对一定时间内的脉冲信号的计数可以得到离子强度的相对值,检测器工作在数字检测方式。当离子强度较大时,达到产生的电子脉冲互相重叠时,脉冲数目便无法计算了,即达到了饱和,此时检测器可以切换到模拟检测方式(累计信号),如下图所示。
由于等离子体对直径较大的微粒的放电效率较差,因此要求进入炬管的气溶胶状的样品液滴有均匀和细小的几何尺寸。为了达到这个目的,仪器中采用了雾室,雾室是一个气体流过的通道,当气溶胶通过时,直径大于10um的液滴将被冷凝下来,从废液管排出。雾室的另一个目的是柔化雾化器喷出的气溶胶,最终使其均匀的进入等离子体。目前主要的雾室设计是圆柱型雾室,在X-7ICP-MS中采用的是一种独特的锥型雾室,雾化气溶胶在雾室中撞击到一个玻璃球上,大直径的液滴将被沉积下来,从玻璃球上流下,并被到处雾室,较小的液滴绕过玻璃球,从雾室尖端的小孔中流出。这种雾室的设计很好的避免了死体积的影响。
2)等离子体炬管
炬管是产生等离子体装置,炬管的主要结构如下图5所示:
炬管主要有三层结构,外层的叫做外管,其次是内管,中间的是中心管。外管中通的是大流量的氩气,叫做冷却气,冷却气提供给等离子体气体源源不断的Ar原子,在等离子体中不断的电离放热,产生的Ar离子在射频线圈中振荡碰撞,从而维持了很高的温度,伴随着大量离子留出等离子体,又有很多Ar原子流入,从而达到了一种平衡。冷却气的流量大概为13~15L/min。在内管中流动的气体叫做辅助气,也是氩气,它的作用是给等离子体火焰向前的推力,实现不断的电离,也很好的了中心管,以免过高的温度使其熔化。辅助气的流量为0.5~1L/min。中心管中流出的是从雾室排出的样品溶液的气溶胶。
3)冷却和气体控制
由于等离子的高温(高达8000~10000度),足以熔化任何物质,所以在仪器中多处采用水冷,RF工作线圈是中空的,用来作为冷却水的通道。在雾室中采用半导体冷却器,对一般无机溶液,温度为4度左右(这个温度下,直径较大的液滴可以更好的冷凝下来),对有机溶液,可以达到-10度。需要水冷的部分有:接口、工作线圈、RF工作线圈、半导体制冷器。在ICP-MS中,最基本的气体是氩气,它被作为冷却气(cool gas)、辅助气(aux gas)和雾化气(nebulizer gas),其它可能使用的气体包括氢气,氨气,氦气(用于cct)和氧气(用于消除有机物中的C)。
4.离子镜
在ICP-MS中,产生的1000,000个离子中,只有1个能够最终到达检测器,这是由于每级的效率决定的,在这样低效率的传输下,去除各种干扰就变得更加重要了,离子镜的主要目的是去除电子和中性微粒的影响,并对正电子实现聚焦。离子镜的结构如图9所示。当离子从截取锥喷出时,在进入离子镜之前,能量较小的离子会更多的被真空抽走。
质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。
ICP-MS的发展已经有20年的历史了,在长期的发展中,人们不断的将新的技术应用于ICP-MS的设计中,形成了各类ICP-MSБайду номын сангаасICP-MS主要分为以下几类:四极杆ICP-MS,高分辨ICP-MS(磁质谱),ICP-tof-MS。本文主要介绍四极杆ICP-MS。
在采样锥处,由于电子速度快,所以大量电子很快打到锥上,因此采样锥表面为负电性,所以空间电荷区是正电性的。由于气体压力的突然下降,所以在两锥之间,产生了离子的超声射流,所以两锥之间成为扩张室。在通过采样锥的离子中,只有大约1%的离子可以通过截取锥。进入离子镜的正离子都具有相同的速度,因此动能和质量成正比。
off
off
Off
On
off
On
On
off
Operate
On
On
On
->ready
on
on
off
on
off
off
3.接口
接口部分由两个锥体组成,前面的是采样锥(sample cone),后面的是截取锥(skimmer)。如下图所示:
取样锥的孔径大概是0.8~1.2mm(在X-7中为1.1mm),截取锥的孔径为0.4~0.8mm(为0.7mm)左右。经过两个锥体,只有非常小的一部分离子进入离子透镜。
ICP-MS
概述
ICP-MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。广泛应用于半导体、地质、环境以及生物制药等行业中。
ICP-MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。
雾化器和雾化室:雾化器的作用是使样品从溶液状态变成气溶胶状态,因为只有气状的样品才可以直接进入炬管的等离子体中。常用的雾化器按照结构的不同分为几类,常用的雾化器有同心圆雾化器和直角雾化器。如图4所示:
在X-7ICP-MS中,使用的是同心圆雾化器,同心圆雾化器与直角雾化器相比,可以提供极佳的稳定性和灵敏度,尤其适合检测浓度较低的溶液,缺点是容易堵塞,耐盐性较差。其它的一些公司(如VG)采用的雾化器可以提供最大高达20%的耐盐性,但是由于在等离子产生后通过的采样锥和截取锥的孔径非常的小,样品中溶质量必须小于0.2%,最好小于0.1%因此,雾化器的耐盐性并不能提高ICP-MS的耐盐性,所以同心圆雾化器是一种比较理想的雾化器。
在x-7ICP-MS中,透镜组如下图:
5.质量分析器
质量分析器是不同种类的质谱仪的主要区别之处,四极杆分析器是一种成熟的质量分析仪器,利用了四极杆对不同核质比的元素离子的筛选作用,达到顺序分析离子质量的目的。
四极杆的主要原理如下图所示:
四极杆的两对电极,分别加上了正负直流电压和相位差为180度的射频信号,离子在四极杆中旋转、振荡,当合理设置直流电压的大小和射频电压的幅度后,只有特定核质比范围的离子才能通过四极杆,而其它离子将偏转,最终打在四极杆上损失掉,从而实现了质量选择。
X-7ICP-MS有一个机械泵和一个分子涡流泵,机械泵用于抽低真空,分子泵用于抽高真空。机械泵直接与expansion chamber(扩张室,因为离子超声速射流)相连接,分子泵工作端与分析室2(主要是四极杆和检测器)相连结,出口端和机械泵相连。在扩张室和分析室1中间有一个slide valve,扩张室和机械泵中间连有expansion valve,分子泵和机械泵工作端连有backing valve。三级真空系统保证了仪器从大气到低真空再到高真空的过渡,而三个阀门保证了仪器在工作状态和待机状态的稳定和两个状态之间的过渡。
四极杆对低动能离子更为有效,如果离子能量太高,则离子通过四极杆的速度将加快,最终导致峰将展宽。在四极杆的入口和出口处,仅施加射频可以使全谱离子通过,但可以使离子向中心聚焦。
四极杆有两个工作模式,即顺序扫描方式和跳峰方式,如下图所示:
当四极杆工作在扫描方式,直流电压和射频电压幅度成比例连续变化,每个时刻都选择对应的连续变化的核质比的离子通过。当工作在跳峰模式,两个电压也不连续的跳变,每个时刻都选择感兴趣的某个核质比的离子通过。
1)进样系统
进样系统组成框图如图3所示。
蠕动泵:蠕动泵把溶液样品比较均匀的送入雾化器,并同时排除雾化室中的废液。通过控制蠕动泵的转速,可以得到理想的进样速度,样品提升速度一般为0.7~1ml/min.如果不采用蠕动泵,由于雾化器中雾化气体的流动,也可以提取样品,样品的自然提取速度为0.6ml/min左右,随着雾化气流速的变化而改变。
等离子体首先进入的是截取透镜(extraction lens),截取透镜具有很强的负电势,所以电子无法通过,被真空抽走。在后面是几级离子聚焦透镜,离子聚焦透镜的原理是:安装两个电极板或圆筒,在两个电极之间形成了透镜状的等场强线,当边缘离子入射到电场时,受电场影响,向中心移动,随后出射运动方向又恢复到了向前,实现了位置上的聚焦。ICP-MS在产生离子的同时,也产生大量光子,由于光子也可以被检测器检测和计数,所以在离子透镜的末端,是一个偏转透镜,用于去除光子干扰。(一般来讲,采样锥离子流为0.1A,截取锥电流为1mA)
6.检测器
每个时刻,通过四极杆的离子流可以认为具有单一的核质比,检测器的目的是对这些离子计数,来得到离子的相对的强度。
通常使用的检测器是一种电子倍增器,如下图所示:
相关文档
最新文档