新编基础物理学课后答案

合集下载

新编基础物理学上册1-2单元课后答案

新编基础物理学上册1-2单元课后答案

新编物理基础学(上、下册)课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++r r r r其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。

分析:由速度、加速度的定义,将运动方程()r t r对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。

解:/sin()cos()==-++r r r r rv dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦r r r r1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。

其中0v 是发动机关闭时的速度。

分析:要求()v v x =可通过积分变量替换dxdvvdt dv a ==,积分即可求得。

证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kx v v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。

写出质点的运动学方程)(t r ρ表达式。

对运动学方程求一阶导、二阶导得()v t r 和()a t r ,把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

新编物理学基础课后习题答案

新编物理学基础课后习题答案

i AB CD
0 I vl 1 1 ( ) 2 a vt a b vt
I
aA b D l
方向为顺时针方向。 (2) 选面积元dS = ldr a b 0 I 0 l I a b Φ a l dr ln 2 r 2 a
r v
B
C
dr
I aA b D l B C
v
解:(1) 任意时刻 t,AB、CD边到导线的距离分别 为 a +v t 和 a +b + v t 0 I 0 I BAB BCD 2 (a vt ) 2 (a b vt )
AB l vBAB (A B)
CD l vBCD (D C)
0 0 0
3-7 如图所示,长直导线AB中的电流 I沿导线向上, 并以 dI/dt=2A/s的变化率均匀增长。导线附近放一个 与之共面的直角三角形线框,其一边与导线平行,位 置及线框尺寸如图(设a =10cm, b=20cm, c = 5.0cm) 所示。求此线框中产生的感应电动势的大小和方向。 A Y 0 I 解: dx 处 的B 2 x I 0.15 0 I Φ s B dS 0.05 y dx b 2 x y 0.15 x y y 2(0.15 x ) O x dx X 0.1 0.2 a B c

k
R rk 2eR (2k 1) 2 rk2 1 12 1 k 50.5 50 (条) 4 R 2 0.5 10 400 2
2
4-15 波长范围在450~650nm之间的复色平行光垂直 照射在每厘米有5000条刻线的光栅上,屏幕放在透镜 的焦平面处,屏上第二级光谱各色光在屏上所占范围 的宽度为35.1cm,求透镜的焦距f 。 1 cm 解: a b (a b)sin k 2 5000 21 2 450 0 sin 1 0.45 26.74 1 a b 2 103

新编基础物理学(王少杰、顾牡)版本)答案

新编基础物理学(王少杰、顾牡)版本)答案

1.已知质点的运动方程为; a = 4i j -+。

2.说明质点做何种运动时; 变速率曲线运动;变速率直线运动 3.一质点运动方程为26x t t =-; 8m;10m 4.飞轮作加速转动时; 26m s ; 24m s ;5.一个力F 作用在质量为kg 0.1的质点上;16N S ; 176J ;6.如图为一圆锥摆; 0 ;2m g πω ;2m gπω;7.一质量为m 的物体;0m v ;竖直向下; 8.一质量为m 小球;竖直向上;mgt;9.一颗子弹在枪筒里前进时; 0.003s; 0.6N*S; 2g ; 10.一质点在几个力同时作用下; 38J ; 11.一人把质量为10kg 的物体; 196 ; 216; 12.二质点的质量各为; 1211()G m m ab--;13.狭义相对论是建立在; 伽利略 ; 14.一光子以速度c 运动; c; 15.在测量物体长度中; 最长 ; 最短 ; 16.一观察者测量得沿尺长;32c ;17.静止时边长为a 的立方体;3221a u c -;18.一点电荷q 位于一立方体中心;6Oq ε; 0 ;24Oq ε;19.描述静电场性质的两个物理量是;E ;u ;F E q=;0u Pu E dl ==⎰;20.如图,真空中两个点电荷;O Q ε;0;201094QR πε;21.如图示,两个平行的无限大;2Oσε;32O σε;2Oσε; 方向向右; 方向向右; 方向向左;22.图中曲线表示一种球对称性静电场;均匀带电实心球; 23.真空中有一半径为R 的半圆细环;4O Q Rπε;4O qQ Rπε-;24.如图示,在带电量为q 的点电荷;11()4O abqq r r πε-;25.如图所示,负电荷Q 的电场中有b a ,两点;b; a ; 增加; 26.在点电荷q 的电场中;7210C --⨯;27一带电量为Q 的导体环;Q - ; Q ;28.一孤立金属球带电量Q +;径向方向向外;0;电荷均匀分布于金属球的外表面;29.在带电量为Q +的金属球外面;24Q rπ; Q ;204r Q rπεε;0rQεε;30.一平行板电容器,充电后与电源保持连接;r ε; 1; r ε; 31.半径为0.5cm 的无限长的直圆柱形导体上; 0 ;32.在安培环路定理;_环路所包围的所有稳恒电流的代数和;环路上的磁感应强度;环路内外全部电流所产生的磁场的叠加;33.在均匀磁场中放置两个面积相等;相等;34.一平面实验线圈的磁矩大小为;0.5T ;沿y 轴正向;35.如右图,无限长直导线中流有的电流分别为;不相等;0123()I I I μ--;01()I μ-;36.无限长直圆筒入在相对磁导率为;2Irπ;02r Irμμπ;37.三根无限长载流直导线;5I; 38.一自感线圈中;0.4H;39.产生动生电动势的非静电场力;洛伦兹 ; 涡旋电场;。

新编物理基础学下册(9-17章)课后习题(每题都有)详细答案

新编物理基础学下册(9-17章)课后习题(每题都有)详细答案

题9-2解图新编物理基础学下册(9-17章)课后习题(每题都有)详细答案之阿布丰王创作王少杰,顾牡主编第九章9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的? 分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有q 1+q 2×10-5C ① 由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯===②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T R ε==︒①sin30mg T =︒②联立①②得:2o 024tan30mg R qπε=③ 3sin 6062r l =︒=⨯⨯其中代入③式,即: q ×10-7CF E q =,9-3 电场中某一点的场强定义为若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。

9-4直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =0.04m ,AC ,求C 点电场强度E的大小和方向(cos37°≈0.8,sin37°≈0.6). 分析:运用点电荷场强公式及场强叠加原理求解。

《新编基础物理学》下册习题解答和分析

《新编基础物理学》下册习题解答和分析

《新编基础物理学》下册习题解答和分析第九章习题解答9-1 两个小球都带正电,总共带有电荷?10?5C,如果当两小球相距时,任一球受另一球的斥力为试求总电荷在两球上是如何分配的?分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q1,q2则有q1+q2= ①题意,库仑定律得:q1q29?109?q1?q2F1 4π?0r24题9-1解图②5q110C①②联立得:? ?5??q2??10C 9-2 两根长的丝线一点挂下,每根丝线的下端都系着一个质量为的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q1=q2=q,小球受力如图所示q2F??Tcos30? 4π?0R2mg?Tsin30?①②联立①②得:mg4??0R2?tan30o 2q ③题9-2解图其R?2r中r?lsin60??3?6?10?2?33?10?2(m) 2代入③式,即: q= 9-3F电场中某一点的场强定义为E?q0,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷Fq0所受力与Fq0成正比,故E?q0是与q0无关的。

19-4 直角三角形ABC如题图9-4所示,AB为斜边,A 点上有一点荷q1??10?9C,B点上有一点电荷q210?9C,已知BC=,AC=,求C点电场强度E的大小和方向(cos37°≈, sin37°≈). 分析:运用点电荷场强公式及场强叠加原理求解。

解:如题图9-4所示C点的电场强度为E?E1?E210991094E110(N/C) 224π?0(AC)()?10?9?9?109E2104(N/C) 224π?0(BC)()2E?E12?E2104??104(N/C)或(V/m)4C方向为:10o ?arctan??10题9-4解图即方向与BC边成°。

新编基础物理学第二版习题解答

新编基础物理学第二版习题解答

习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。

若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小MmmFF m M=+发生变化。

2-2.在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m与M 2之间的作用力是否发生变化?解:受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=又12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mg F =,发生变化。

2-3.质量为M 的气球以加速度a v匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。

若气球仍能向上加速,求气球的加速度减少了多少?题图2-2题图2-1解图2-1解图2-2解:设f r为空气对气球的浮力,取向上为正。

分别由解图2-3(a )、(b)可得 由此解得2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。

人若想站在底板上静止不动,则必须以多大的力拉住绳子? 解:设底板和人的质量分别为M ,m ,以向上为正方向,受力图如解图2-4(a )、(b)所示,分别以底板、人为研究对象,则有3'0T F mg +-=F 为人对底板的压力,'F 为底板对人的弹力。

新编基础物理学下册习题解答和分析

新编基础物理学下册习题解答和分析

题9-2解图第九章习题解答9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距时,任一球受另一球的斥力为.试求总电荷在两球上是如何分配的?分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有q 1+q 2=×10-5C ① 由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯=== ②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T R ε==︒ ①sin30mg T =︒②联立①②得:2o 024tan30mg R qπε= ③223sin 606103310(m)2r l --=︒=⨯⨯=⨯ 其中2R r =代入③式,即: q =×10-7C 9-3 电场中某一点的场强定义为0F E q =,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,题9-1解图与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。

9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =,AC =,求C 点电场强度E的大小和方向(cos37°≈, sin37°≈. 分析:运用点电荷场强公式及场强叠加原理求解。

新编基础物理学上册5-6单元课后答案

新编基础物理学上册5-6单元课后答案

第五章5-1有一弹簧振子,振幅 A 2.0 10 2 m,周期T 1.0 s,初相 3 / 4.试写出它的振动位移、速度和加速度方程。

分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

、2解:振动方程为:x Acos[ t ] Acos[ t ]代入有关数据得:x 0.02 cos[2 t 3 ]( SI )4振子的速度和加速度分别是:v dx / dt0.04si n[2 t 34](SI) 4a d2x/dt20.082 cos[2 t3-](SI)45-2若简谐振动方程为x 0.1 cos[20 t / 4]m,求(1) 振幅、频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。

解: (1)可用比较法求解•根据x Acos[ t ] 0.1 cos[ 20 t / 4] 得:振幅A0.1 m,角频率20 rad / s,频率/210s 周期T 1/0.1 s,/ 4 rad(2)t 2s时,振动相位为:20 t / 4 (40/ 4) rad由x A cos , A sin2,a A cos2x得x0.0707m, 4.44 m/s, a279m/s25-3质量为2kg的质点,按方程x 0.2 sin[ 5t ( /6)]( SI )沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2 )作用于质点的力的最大值和此时质点的位置分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

2解:(1)跟据f ma m x,x 0.2 sin[ 5t ( /6)]将t 0代入上式中,得:f 5.0 N2(2)由f m x可知,当x A 0.2 m时,质点受力最大,为 f 10.0 N 5-4为了测得一物体的质量m将其挂到一弹簧上并让其自由振动,测得振动频率1 1.0Hz ;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为2 2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量分析根据简谐振动频率公式比较即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。

分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。

解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kxv v e-= 。

其中0v 是发动机关闭时的速度。

分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。

证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kxv v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。

写出质点的运动学方程)(t r表达式。

对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。

(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。

分析同1-3.解:(1)由题意可知:x ≥0,y ≥0,由2x t =,,可得t x =,代入2(1)y t =-整理得:1y x =-,即轨迹方程(2)质点的运动方程可表示为:22(1)r t i t j =+-则:/22(1)v dr dt ti t j ==+- /22a dv dt i j ==+因此, 当2t s =时,有242(/),22(/)v i j m s a i j m s =+=+ 1-5.一质点沿半径为R 的圆周运动,运动学方程为2012s v t bt =-,其中v 0,b 都是常量。

(1)求t 时刻质点的加速度大小及方向;(2)在何时加速度大小等于b ; (3)到加速度大小等于b 时质点沿圆周运行的圈数。

分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率dtds v =,因而,dt dv a =τ,2n v a ρ=,00n a a a n ττ=+,22n a a a +=τ,当b a =时,可求出t ,代入运动学方程()t s s =,可求得b a =时质点运动的路程,Rsπ2即为质点运动的圈数。

解:(1)速率:0dsv v bt dt ==-,且dvb dt=-加速度:2200000()v bt dv v a n b n dt Rττρ-=+=-+则大小:222220()nv bt a a a b R τ⎡⎤-=+=+⎢⎥⎣⎦……………………①方向:()bRbt v 20tan --=θ(2)当a=b 时,由①可得:0vt b=(3)当a=b 时,0v t b =,代入201,2s v t bt =-可得:202v s b =则运行的圈数 2024==v s N R bRππ 1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为-110m s ⋅,切向加速度的大小为-20.2m s ⋅。

求汽车的法向加速度和总加速度的大小和方向。

分析:由某一位置的ρ、v 求出法向加速度n a ,再根据已知切向加速度τa 求出a 的大小和方向。

解:法向加速度的大小222100.25(/),400===n v a m s ρ 方向指向圆心总加速度的大小222220.20.250.32(/)=+=+=n a a a m s τ如图1-9,tan 0.8,3840',naa ταα===︒则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度,法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力).已知法向加速度与轨迹曲率半径之间的关系为2/ n a v ρ=。

分析:运动过程中,质点的总加速度 a g =。

由于无阻力作用,所以回落到抛出点高度时 质点的速度大小0v v =,其方向与水平线夹角也是α。

可求出 n a ,如图1-10。

再根据关系2 / n a v ρ=求解。

解:切向加速度 a g a sin =τ 法向加速度 a g a n cos = 因 αρρcos 2022g a a n n v vv==∴=1-13.离水面高为h 的岸上有人用绳索拉船靠岸,人以恒定速率v 0拉绳子,求当船离岸的距离为s 时,船的速度和加速度的大小。

分析:收绳子速度和船速是两个不同的概念。

小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为0v 。

可以由0v 求出船速v 和垂直绳的分量1v 。

再根据21n v a ρ=关系,以及n a 与a 关系求解a 。

解:如图1-13,20v v = 船速2sec v v θ= 当船离岸的距离为s 时, 220012,tan v h s h v v v v s s θ+=== 则,22112222cos n v v s a a as hs hθρ====++即:2203=v h a s第二章2—13.一质量为m 的小球最初位于如图2-13所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑,试求小球到达C 点时的角速度和对圆轨道的作用力.分析:如图2—13,对小球做受力分析,合力提供向心力,由牛顿第二定律,机械能守恒定律求解。

解:221cos mv mgr =α…………① 又:,v r v r ωω=⨯=此时,………②由①、②可得: 2cos g rαω=2cos v N mg m rα-=……③由①、③可得,N=3mgcos α题图2-13图2-13gt avααna α0v图1-102—14.质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到最大速率是m v ⋅ 试计算从静止加速到/2mv 所需的时间以及所走过的路程。

分析:加速度等于零时,速度最大,阻力为变力,积分求时间、路程。

解:设阻力2(0)f kv k =>,则加速度F f a m-=,当a=0时,速度达到最大值m v ,则有:22220,,:m mmF kv FF k f v m v v -===从而 又F f dva m dt-==,即:22m F F v v dvm dt-=…………①22/22002/200(1)(1)1ln 21m m mtv mv t mm m Fdv dt v mv Fdv dt v m v v v v F t v m v =-=-⎡⎤-⎢⎥⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦+⎢⎥⎣⎦⎰⎰ln 32mmv t F=,即所求的时间 对①式两边同乘以dx ,可得:22m F F v v dvdx dx m dt-=2222/2220/22220022ln()24ln 0.14423m m m m xv m m v xmm mmv v Fdx dv m v v v v Fdx dv m v v v F x v v m mv mv x F F=-=-⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦=≈⎰⎰2-15.如图2-15所示,A 为定滑轮,B 为动滑轮,3个物体的质量分别为m 1=200g ,m 2=100g ,m 3=50g.(1)题图2-15求每个物体的加速度(2)求两根绳中的张力(滑轮和绳子质量不计,绳子的伸长和摩擦力可略)。

分析:相对运动。

1m 相对地运动,2m 、3m 相对B 运动,212T T =。

根据牛顿牛顿定律和相对运动加速度的关系求解。

解:如下图2-15,分别是m 1、m 2、m 3的受力图。

设a 1、a 2、a 3、a Β分别是m 1、m 2、m 3、B 对地的加速度;a 2B 、a 3B 分别是m 2、m 3对B 的加速度,以向上为正方向,可分别得出下列各式'1111m g T m a -+=……………① '2222m g T m a -+=…………②3233m g T m a -+=……………③又:2233B B B Ba a a a a a =+=+且:23B B a a =-则:2312,,B B a a a a a +==-且则:2312a a a +=-…………④ 又:''1122T T T T ==+…………⑤ '22T T =…………⑥则由①②③④⑤⑥,可得:22111222121221231243 1.96/3454 1.96/345543 5.88/345m m ga g m s m m m m ga g m s m m m m ga g m s m m ⎧-==-=-⎪+⎪⎪-=-=-=-⎨+⎪⎪-===⎪+⎩(2)将a 3的值代入③式,可得:1221280.78434m m gT N m m ==+。

122 1.57T T N == 2-34.设76()Fi j N =-。

(1)当一质点从原点运动到3416(m)ri j k =-++时,求F所作的功;(2)如果质点到r 处时需0.6s ,试求F 的平均功率; (3)如果质点的质量为1kg ,试求动能的变化。

分析:由功、平均功率的定义及动能定理求解,注意:外力作的功为F 所作的功与重力作的功之和。

解:(1)0F dr⋅⎰rA=(76)()i j dxi dyj dzk -⋅++⎰r=图2-1576dx dy -⎰⎰-34=45J =-,做负功 (2)45750.6A PW t === (3)0rkE A mgj dr∆=+-⋅⎰= -45+4mgdy -⎰= -85J2-37.求把水从面积为250m 的地下室中抽到街道上来所需作的功。

相关文档
最新文档