高中数学排列组合
高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.
高中数学知识点:排列组合

排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。
2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
高中数学排列组合公式[高中数学排列组合公式大全_高中数学排列组合重点知识]
![高中数学排列组合公式[高中数学排列组合公式大全_高中数学排列组合重点知识]](https://img.taocdn.com/s3/m/eab15470a517866fb84ae45c3b3567ec102ddcf0.png)
高中数学排列组合公式[高中数学排列组合公式大全_高中数学排列组合重点知识]两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
高中数学排列组合重点知识1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0a某+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+…+Cnn-1abn-1+Cnnbn特别地:(1+某)n=1+Cn1某+Cn2某2+…+Cnr某r+…+Cnn某n②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中数学解题技巧之排列组合问题

高中数学解题技巧之排列组合问题在高中数学中,排列组合是一个重要的概念和考点。
它不仅在数学中有广泛的应用,而且在生活中也有很多实际的应用场景。
掌握排列组合的解题技巧对于高中学生来说非常重要。
本文将介绍一些常见的排列组合问题,并提供解题技巧和实例,帮助读者更好地理解和应用。
一、排列问题排列是指从给定的元素中选取若干个元素按照一定的顺序排列的方式。
在排列中,元素的顺序是重要的。
例题1:某班有5名男生和3名女生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的排列问题,要求选出3名学生组成一个小组。
由于男生和女生是区分开的,我们可以分别计算男生和女生的组合方式,然后再将两者相乘得到最终的结果。
男生的组合方式为从5名男生中选出3名,即C(5,3) = 5! / (3! * (5-3)!) = 10种。
女生的组合方式为从3名女生中选出0名,即C(3,0) = 1种。
最终的结果为男生的组合方式乘以女生的组合方式,即10 * 1 = 10种。
例题2:某班有6名学生,要从中选出3名学生组成一个小组,其中2名学生是男生,3名学生是女生,问有多少种不同的组合方式?解析:这个问题相比例题1稍微复杂一些,因为要考虑到男生和女生的区分。
我们可以分别计算男生和女生的组合方式,然后将两者相乘得到最终的结果。
男生的组合方式为从2名男生中选出2名,即C(2,2) = 1种。
女生的组合方式为从3名女生中选出1名,即C(3,1) = 3种。
最终的结果为男生的组合方式乘以女生的组合方式,即1 * 3 = 3种。
二、组合问题组合是指从给定的元素中选取若干个元素,不考虑元素的顺序。
例题3:某班有5名学生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的组合问题,要求选出3名学生组成一个小组。
由于不考虑元素的顺序,我们可以直接计算组合的方式。
组合的计算公式为C(5,3) = 5! / (3! * (5-3)!) = 10种。
高中数学排列组合相关公式3篇

高中数学排列组合相关公式第一篇:排列组合基本概念和公式排列和组合是数学中的重要概念,属于初中和高中数学中的基础知识。
这两个概念通常用于处理有关选择或安排事物的问题。
排列:从n个不同的元素中任选r个元素排成一列,称为从n个不同元素中选r个元素的排列。
排列的基本公式如下:An^r = n(n-1)(n-2) …… (n-r+1)其中An^r表示从n个不同的元素中任选r个元素排成一列的方案数。
例如,从5个不同的元素中任选3个元素排成一列,即为5选3的排列。
根据排列的基本公式,5选3的排列数为An^r=5×4×3=60。
组合:从n个不同的元素中任选r个元素,不考虑元素之间的顺序,称为从n个不同元素中选r个元素的组合。
组合的基本公式如下:Cn^r = n!/r!(n-r)!其中Cn^r表示从n个不同的元素中任选r个元素的组合方案数。
n!表示n的阶乘,即n×(n-1)×(n-2)×……×2×1。
例如,从5个不同的元素中任选3个元素的组合数,即为5选3的组合。
根据组合的基本公式,5选3的组合数为C5^3=5!/(3!2!)=10。
排列和组合的关系:排列和组合有很多类似的性质,但是也有不同点。
其中最重要的一点是:一个排列中,每个元素的位置不同,导致不同的排列。
而在一个组合中,元素之间是不考虑顺序的,所以如果元素相同,不同的顺序算作同一种组合。
第二篇:排列组合的应用排列组合在数学中有着广泛的应用,下面将介绍几个常见的例子。
1. 生日问题如果有23个人在一起,那么至少有两个人生日相同的概率是多少?将每一个人的生日当做一个元素,一共有365个不同的生日(不考虑闰年的情况)。
这时我们要求的其实是在这23个人中选取2个或2个以上有相同生日的概率,也就是不出现任何两个人生日相同的概率。
按照组合的计算方法,我们可以得到不出现任何两个人生日相同的概率为:P = C365^23/365^23 ≈ 0.493所以至少有两个人生日相同的概率为:1-P ≈ 0.5072. 球队比赛现在有5个球队进行比赛,每个球队需要和其他球队各打一场比赛,问总共需要打几场?我们可以将这个问题看作是5个不同的元素进行排列组合。
高中数学排列组合3篇

高中数学排列组合第一篇:排列组合的基础排列组合是高中数学中非常重要的一部分,它是研究对象的排列组合方式的数学分支。
在实际生活和工作中,常常需要用到排列组合的知识,因此,掌握排列组合的基本概念和问题的解法具有重要的意义。
一、排列排列是对一组不同的对象进行有序安排的方式。
设有n 个不同的对象,从中取出m个不同的对象进行排列。
根据排列定义可知,首先有n种选择,选定第一个对象后再从剩下的n-1个对象中选定第二个对象,接着从剩下的n-2个对象中选定第三个对象,以此类推,直到选定第m个对象,于是,选取m个对象的所有排列数为Pm^n,即Pm^n=n×(n-1)×(n-2)×…×(n-m+1)。
如果从n个不同的对象中选取n个进行排列,那么所有的排列就是n个对象的全排列,其个数为n!,即n!=n×(n-1)×(n-2)×…×3×2×1。
二、组合组合是对一组不同的对象进行无序选择的方式。
设有n 个不同的对象,从中取出m个对象进行组合。
从 n 个对象中选取 m 个对象进行组合的所有方案数为:Cm^n。
可以用排列数来计算组合数,根据排列数的定义,设A=n(n-1)(n-2)…(n-m+1),在这些对象中,每个由m个元素组成的排列,可以对应到一个由m个等同元素组成的无序组合,既有m!个排列与同一组合对应,因此有:Cm^n=1/m!×n(n-1)(n-2)…(n-m+1),Cm^n也常用记号表示为nCm,即nCm=1/m!×n(n-1)(n-2)…(n-m+1)。
三、问题的应用1.求解排列组合问题可以利用以上公式进行计算,但最重要的是要掌握排列组合的概念及其本质区别,了解问题的实际背景,并进行相应的数学模型构建。
在实际生活和工作中,有很多涉及排列组合的问题,如:从一个班级里面选出一些人组成A、B、C三个小组,有多少种选法?从26个字母中取出4个字母,有多少种不同的排列方式?等等。
排列组合公式排列组合计算公式高中数学

排列组合公式排列组合计算公式高中数学Company number【1089WT-1898YT-1W8CB-9UUT-92108】排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个个个个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 38×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6在(x- )10的展开式中,x 6的系数是()解设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410 故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x 2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为 在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0. (五)综合例题赏析例8若(2x+ )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有() 种种种种解分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。
高中数学排列组合相关公式

排列组合公式排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
定义及公式排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号 C(n,m) 表示。
C(n,m)=A(n,m)∧2/m!=A(n,m)/m!;C(n,m)=C(m-n,m)。
(其中m≥n) 其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
符号 C-Combination 组合数 A-Arrangement 排列数(在旧教材为P-Permutation) N-元素的总个数 M-参与选择的元素个数!-阶乘基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合:1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r 个的无重排列。
排列的全体组成的集合用P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
概率统计【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1335C 33.54C102P===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20提示:51.10020P ==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204=点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )454 (B )361 (C )154 (D )158[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A=种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A=种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中釳多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题信号的能力,以及推理与运算能力.[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=-于是20.961p=-.解得120.20.2p p ==-,(舍去). (2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =. 若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C495P B==.00316179()()1()1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 (结果用分数表示).[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.[标准解答](错误!未找到引用源。
)记“取到的4个球全是红球”为事件A .22222245111().61060C C P A CC=⋅=⋅=(错误!未找到引用源。
)记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C CCC++⋅⋅=⋅+⋅22;3(2)(1)nn n =++22222242()n n C C P B CC+=⋅(1);6(2)(1)n n n n -=++所以,12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)nn n n n n n -=+++++14=,化简,得271160,n n --=解得2n =,或37n =-(舍去),故2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01BB B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C , 则P (A )=a ,P (B )=b ,P (C )=c. (Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C ) =a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c=ab+bc+ca-2abc. 应聘者用方案二考试通过的概率 p 2=31P (A ·B )+31P (B ·C )+31P (A ·C )=31×(a ×b+b ×c+c ×a)=31 (ab+bc+ca)(Ⅱ) p 1- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)=23( ab+bc+ca-3abc)≥232[3()3]3abc abc -=2332()(1)0abc abc -≥.∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P PA A A AP A P A P A P P===⨯⨯⨯=. (Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=.考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (ix =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥iP ,=i 1,2,...;(2)++21P P (1)②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n kqp C k P P -===)(ξ,其中nk≤≤0,pq-=1,随机变量ξ的分布列如下:ξ0 1 …k…nξ1x 2x… i x… P P 1 P 2…i P…Pnn qp C 0111-n n qp C…kn k k n qp C -qp C n n n称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p为参数,并记:),;(p n k b qp C kn kkn =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“kξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:ξ1 2 3… k… Ppqp2q p…1k qp-…例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P Cξ===, ()11317220511190C C P Cξ===,()2322032190C P C ξ===ξ0 1 2136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++ 142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=.P136190511903190ξ∴的分布列为ξ123P1582512251812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.(Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 npE =ξ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:ε 01 2 η 012P610110103P510103210则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ1 2 3 4 5 P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为η200 250 300 P0.40.40.22000.42500.43000.2E η=⨯+⨯+⨯240=(元). 小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力. 例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解答过程:易得x 没有改变,x =70, 而s 2=481[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=481[(x 12+x 22+…+802+702+…+x 482)-48x 2]=481[(75×48+48x 2-12500+11300)-48x 2]=75-481200=75-25=50.答案:B考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样). 3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .解答过程:A种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k+的个位数字相同,若6m=,则在第7组中抽取的号码是.解答过程:第K组的号码为(1)10k-,(1)101k-+,…,(1)109k-+,当m=6时,第k组抽取的号的个位数字为m+k的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161⑴作出频率分布表;⑵画出频率分布直方图.思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。