2017年苏锡常镇一模
2017届苏锡常镇高三年级第一次模拟考试

5 20功和功率Ⅱ25功能关系Ⅱ
6 34万有引力定律及其应用Ⅱ32向心力Ⅱ
多
7 42电场线 电势能 等势面Ⅰ 43电场强度Ⅱ44电势差Ⅱ
选 题
8
60洛伦兹力Ⅱ29圆周运动 线速度 角速度Ⅰ50电源电动势与内 阻Ⅰ53闭合电路欧姆定律Ⅱ 40带电粒子在复合场中的运动Ⅱ
9
15牛顿第二定律及其应用Ⅱ30向心加速度Ⅰ32向心力Ⅱ 35曲线运动Ⅰ
较难题
题号
1 2 6 7 10 12-A 12-C 13 3 4 8 11 14 5 9 15
常见模型生活化 1
2飞镖 3水壶 4钳形电流测量仪
试 8自行车速度计
14抽夹纸
卷
3 实验选修基础化
针对主干知识,没有在冷 僻的地方下手,考的都是 学生平时重点复习的地方。
特点
似曾相识有变化 2
5计阻力竖直上抛
9弹簧挂小球回摆
15 “轨迹圆”动起来
4 知识覆盖合理化
一、苏南一模试卷分析
针对主干知识,没有在冷 僻的地方下手,考的都是 学生平时重点复习的地方。
特点
似曾相识有变化 2
5计阻力竖直上抛
9弹簧挂小球回摆
15 “轨迹圆”动起来
4 知识覆盖合理化
苏南一模的考点总数和种类数 均比高考卷多,体现了模考的 主要意义是帮助学生查漏补缺、 复习高考考试内容。
主要内容
苏南一模试卷分析 本校一模得失总结 二轮复习安排交流
题型小计 总分值 总得分率
61 71.6%
36 63.6% 23 25.7%
二、本校一模得失总结
优 势 ① B等级所达比例超过去年同期水平;
② 平均分在同类学校中略占优势; ③ 平时训练较多的常规题得分率比较高。
2017年苏锡常镇高考一模试题解析

2017年苏锡常镇高考一模试题解析这是个干干净净的平台,没有功利,只有奉献以及你我纯洁的友谊。
说明这是2017年苏锡常镇高考一模试题解析,内含PPT视频。
想用不同的方式对试卷进行讲评,希望能够节省高三老师的备课时间,让试卷讲评做得更有效、更细致,让学生从中收益更多。
一模英语昨天下午(3月15日)考完。
试卷我拍照附在本文后面,以备参考。
拿到一模试卷后,自己做了一遍,总体感觉试卷基调还是比较本份的,当然其中的亮点也是比较多的。
试卷科学性较强,各类话题涉及点颇多,离奇出格的题目没有。
试卷基本可以反应学生的真实的学习水平,区分度也应该是不错的。
这里提供给大家一份不成熟的试卷题目详解。
说不成熟是因为时间仓促。
如果有错敬请大家容忍吧!说是“详”也只是相对而言的。
对于现在教学时间紧张,需要快节奏、高效益复习的老师来讲,试卷不可能需要我这样面面俱到的。
对于学生来说,由于层次不同,需要不同程度的“详”与“简”。
而我这里却可以利用平台的优势,给之以详,取之以略。
不管你是学生还是老师,可以在这里找你需要的那些“略”。
第一部分:听力只给参考答案,不作分析。
听力原稿附后。
1~5 CBACC;6~10 BCCBA;11~15 BBABC;16~20 CCACB第二部分第一节:单项选择参考答案是:21~25 ABBAB;26~30 DBBCA;31~35 CCACC做了一个PPT课件,有很详细的解题过程,大家可以看一下。
第二部分第二节:完形填空参考答案是:36~40 DCDBB;41~45 BDAAD;46~50 BAACA;51~55 BCBAD完形填空是细活,需要反复读个两三遍才能确保答案的正确率。
核对答案时也不要纠结于某一小题与你思考的一致不一致的问题,那样会徒生烦恼,浪费时间。
如果把文章的每一句话都读通了,完形填空的正确率一定不会低。
这里就用拆细的方式帮大家讲一下吧!Truly happy and successful people get that way by becoming the best, most genuine (真实的) version of themselves. Not on the outside —on the inside. It’s not about a brand or a reputation. It’s about reality: who you really are.真正快乐成功的人会形成真正最好最真实的自己。
2017苏锡常镇一模考试,数学填空14题你蒙对了吗?

2017苏锡常镇一模考试,数学填空14题你蒙对了吗?
3月14号,是苏锡常镇一模考试的日子,你可能一辈子都在找不到这个镇,哈哈,因为他根本不存在,却成为了一个调侃的梗。
切入正题,作为一个2016年高考完的江苏人,很是清楚我大江苏的出题风格,没有最难只有更难,2016届的江苏毕业生已经把有史以来最简单的数学高考卷给做了,2017届高考的学弟学妹们要加油啊。
好了,来说说这次的一模吧,空间里被刷屏了,先是依旧摸不着头脑的作文题“删除我经历过的任何一个瞬间,我都不能成为今天的自己。
”依旧是江苏的风格呀,去年我还记得是桃李春风,想起来那时还写偏题了。
今年一模依旧如此内涵深厚啊。
接下了一门是很多江苏考生痛苦的根源:数学!今年一模卷的最后一个填空题也是瞬间就上了热搜啊!
小编也尝试这用死方法做了,结果做到怀疑人生!
牛人大神无处不在啊,还有探索新方法的,这解题方法我也是佩服!
我觉得大部分人还是换元死算,咋一眼看上去还挺简单,实际操作的时候发现并不是这样。
当然,你猜对“1”也是蛮不容易的!
不过也不要气馁,毕竟还只是一模,打好最后一仗才是最关键的。
2017年江苏省苏、锡、常、镇四市高考数学一模试卷

2017年江苏省苏、锡、常、镇四市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.(5分)已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M=.2.(5分)若复数z满足z+i=,其中i为虚数单位,则|z|=.3.(5分)函数f(x)=的定义域为.4.(5分)如图是给出的一种算法,则该算法输出的结果是5.(5分)某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.(5分)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.(5分)从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为.9.(5分)设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.(5分)在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为.11.(5分)在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.(5分)已知sinα=3sin(α+),则tan(α+)=.13.(5分)若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.(5分)若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.(14分)在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.16.(14分)如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C 交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.(14分)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.(16分)在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.19.(16分)已知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.20.(16分)已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,设数列{b n}满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.(10分)如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].2017年江苏省苏、锡、常、镇四市高考数学一模试卷参考答案与试题解析一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.(5分)已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M={6,7} .【分析】解不等式化简集合M,根据补集的定义写出运算结果即可.【解答】解:集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z}={1,2,3,4,5},则∁U M={6,7}.故答案为:{6,7}.【点评】本题考查了集合的运算与解不等式的应用问题,是基础题.2.(5分)若复数z满足z+i=,其中i为虚数单位,则|z|=.【分析】直接由复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由z+i=,得=,则|z|=.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(5分)函数f(x)=的定义域为{x|x>且x≠1} .【分析】根据对数函数的性质以及分母不是0,得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>且x≠1,故函数的定义域是{x|x>且x≠1},故答案为:{x|x>且x≠1}.【点评】本题考查了求函数的定义域以及对数函数的性质,是一道基础题.4.(5分)如图是给出的一种算法,则该算法输出的结果是24【分析】模拟程序代码的运行过程,可知程序的功能是利用循环结构计算并输出变量t的值,由于循环变量的初值为2,终值为4,步长为1,故循环体运行只有3次,由此得到答案.【解答】解:当i=2时,满足循环条件,执行循环t=1×2=2,i=3;当i=3时,满足循环条件,执行循环t=2×3=6,i=4;当i=4时,满足循环条件,执行循环t=6×4=24,i=5;当i=5时,不满足循环条件,退出循环,输出t=24.故答案为:24.【点评】本题考查了循环语句的应用问题,模拟程序的运行过程,是解答此类问题的常用方法.5.(5分)某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为300.【分析】用分层抽样的方法抽取一个容量为45的样本,根据高一年级抽20人,高三年级抽10人,得到高二年级要抽取的人数,根据该高级中学共有900名学生,算出高二年级学生人数.【解答】解:∵用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,∴高二年级要抽取45﹣20﹣10=15,∵高级中学共有900名学生,∴每个个体被抽到的概率是=∴该校高二年级学生人数为=300,故答案为:300.【点评】本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.6.(5分)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.【分析】正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,求出PO,由此能求出该正四棱锥的体积.【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,则AO=AC=.在直角三角形POA中,PO===1.所以VP﹣ABCD=•SABCD•PO=×4×1=.故答案为:.【点评】本题考查正四棱锥的体积的求法,考查数据处理能力、运算求解能力以及应用意识,考查数形结合思想等,是中档题.7.(5分)从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.【分析】先求出基本事件总数n==6,再利用列举法求出这两个数的和为3的倍数包含的基本事件个数,由此能求出这两个数的和为3的倍数的槪率.【解答】解:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n==6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,∴这两个数的和为3的倍数的槪率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为2.【分析】求得抛物线的焦点坐标,可得c=2,由双曲线的方程可得a=1,由离心率公式可得所求值.【解答】解:抛物线y2=8x的焦点为(2,0),则双曲线﹣=l的右焦点为(2,0),即有c==2,∴a=1,可得双曲线的离心率为e==2.故答案为:2.【点评】本题考查双曲线的离心率的求法,同时考查抛物线的焦点坐标,考查运算能力,属于基础题.9.(5分)设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为2.【分析】利用等比数列的前n项和公式和通项公式列出方程组,求出,由此能求出a8的值.【解答】解:∵等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,∴,解得,∴a8==(a1q)(q3)2=8×=2.故答案为:2.【点评】本题考查等比数列中第8项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.10.(5分)在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为x﹣y﹣1=0.【分析】由题意,设直线x=my+1与圆x2+y2=5联立,利用韦达定理,结合向量知识,即可得出结论.【解答】解:由题意,设直线x=my+1与圆x2+y2=5联立,可得(m2+1)y2+2my﹣4=0,设A(x1,y1),B(x2,y2),则y1=﹣2y2,y1+y2=﹣,y1y2=﹣联立解得m=1,∴直线l的方程为x﹣y﹣1=0,故答案为:x﹣y﹣1=0.【点评】本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.11.(5分)在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为﹣或1.【分析】【方法一】根据题意,利用平面向量的线性运算,把、用、与λ表示出来,再求•即可.【方法二】建立平面直角坐标系解答更好做些.【解答】解:【方法一】△ABC中,AB=1,AC=2,∠A=60°,点P满足=+,∴﹣=λ,∴=λ;又=﹣=(+λ)﹣=+(λ﹣1),∴•=λ•[+(λ﹣1)]=λ•+λ(λ﹣1)=λ×2×1×cos60°+λ(λ﹣1)×22=1,整理得4λ2﹣3λ﹣1=0,解得λ=﹣或λ=1,∴实数λ的值为﹣或1.【方法二】建立平面直角坐标系如图所示A(0,0),B(,),C(2,0),设P(x,y)=(x,y),=(,),=(2,0),=(x﹣,y﹣)=(x﹣2,y),∴(x,y)=(,)+λ(2,0)=(+2λ,),∴x=+2λ①,y=②;又(x﹣)(x﹣2)+y(y﹣)=1③;由①②③解得λ=﹣或λ=1.故答案为:﹣或1.【点评】本题考查了平面向量的数量积运算与线性表示的应用问题,也考查了运算推理能力,是基础题.12.(5分)已知sinα=3sin(α+),则tan(α+)=2﹣4.【分析】利用角三角的基本关系、两角和差的三角公式求得tanα、tan的值,可得tan(α+)的值.【解答】解:∵sinα=3sin(α+)=3sinα•+3cosα•,∴tanα=,∴tan=tan(﹣)===2﹣,∴tan(α+)====2﹣4,故答案为:2﹣4.【点评】本题主要考查两角和差的三角公式的应用,同角三角的基本关系,属于基础题.13.(5分)若函数f(x)=,则函数y=|f(x)|﹣的零点个数为4.【分析】利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.【解答】解:当x≥1时,=,即lnx=,令g(x)=lnx﹣,x≥1时函数是连续函数,g(1)=﹣<0,g(2)=ln2﹣=ln>0,g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣,有2个零点.(结合函数y=与y=可知函数的图象由2个交点.)当x<1时,y=,函数的图象与y=的图象如图,考查两个函数有2个交点,综上函数y=|f(x)|﹣的零点个数为:4个.故答案为:4.【点评】本题考查分段函数的应用,函数的零点个数的求法,考查数形结合以及转化思想的应用,考查计算能力.14.(5分)若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为1.【分析】由题意可得x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),求出y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,求出导数和单调区间、极值和最值,即可得到所求最小值.【解答】解:由正数x,y满足15x﹣y=22,可得y=15x﹣22>0,则x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),其中y3﹣y2+y=y(y2﹣y+)=y(y﹣)2≥0,即y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,f(x)的导数为f′(x)=3x2﹣2x=x(3x﹣2),当x=时,f(x)的导数为×(﹣2)=,可得f(x)在x=处的切线方程为y=x﹣.由x3﹣x2≥x﹣⇔(x﹣)2(x+2)≥0,当x=时,取得等号.则x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2)≥x﹣﹣y≥﹣=1.当且仅当x=,y=时,取得最小值1.故答案为:1.【点评】本题考查最值的求法,注意运用变形和导数,求得单调区间、极值和最值,考查化简整理的运算能力,属于难题.二.解答题:本大题共6小题,共计90分15.(14分)在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.【分析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,可得A=B+,C=,可得sinC=sin.代入可得﹣16sin2B=,化简即可得出.【解答】解:(1)∵acosB=3,bcosA=l,∴a×=3,b×=1,化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加可得:2c2=8c,解得c=4.另解:∵在△ABC中,A+B+C=π,则sinAcosB+sinBcosA=sin(A+B)=sin(π﹣C)=sinC,由正弦定理得,c=acosB+bcosA=3+1=4.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,∴A=B+,C=π﹣(A+B)=,可得sinC=sin.∴a=,b=.∴﹣16sin2B=,∴1﹣﹣(1﹣cos2B)=,即cos2B﹣=,∴﹣2═,∴=0或=1,B∈.解得:B=.另解:由正弦定理得===3,又tan(A﹣B)===,解得tanB=,B∈(0,π),B=.【点评】本题考查了正弦定理余弦定理、倍角公式、诱导公式、和差公式、三角函数求值,考查了推理能力与计算能力,属于中档题.16.(14分)如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C 交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.【分析】(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.【解答】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′∥BC1;∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,∴OE′∥平面BCC1B1,∵OE∥平面BCC1B1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.【点评】本题考查的知识要点:线面平行的判定定理,线面垂直的判定定理和性质定理,属于中档题.17.(14分)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.【分析】(1)求出上底,即可将l表示成关于α的函数l=f(α);(2)求导数,取得函数的单调性,即可解决当α为何值时l最小?并求最小值.【解答】解:(1)设上底长为a,则S=,∴a=﹣,(tanα>)∴l=﹣+(arctan<α<);(2)l′=h,∴0<α<,l′<0,<α<,l′>0,∴时,l取得最小值+hm.【点评】本题考查利用数学知识解决实际问题,考查导数知识的运用,取得函数的模型是关键.18.(16分)在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【分析】(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣)﹣,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.【解答】解:(1)由题意可知:椭圆+=l (a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2﹣c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x﹣)﹣,则,整理得:(2k2+1)x2﹣(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)﹣2k﹣2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1﹣)﹣]x2+[k(x2﹣)﹣]x1=2kx1x2﹣(k+)(x1+x2)=﹣,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.【点评】本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.19.(16分)已知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.【分析】(1)求出函数f(x)的导数,问题转化为a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.【解答】解:(1)f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx++1﹣a,若f(x)在(0,+∞)上单调递增,则a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),g′(x)=,令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,故g(x)在(0,1)递减,在(1,+∞)递增,故g(x)min=g(1)=2,故0<a≤2;(2)若不等式(x﹣1)f(x)≥0恒成立,即(x﹣1)[(x+1)lnx﹣ax+a]≥0恒成立,当0<a≤2时,由(1)知,当x∈(0,﹢∞)时,f(x)单调递增.又f(1)=0,当x∈(0,1),f(x)<0;当x∈(1,﹢∞)时,f(x)>0,故不等式(x﹣1)f(x)≥0恒成立.若a>2,对f(x)二次求导,令二次导函数=0,得到x0>1,当x∈(1,x0)时,f(x)单调递减,∴当x∈(1,x0)时,f(x)<f(1)=0,此时(x﹣1)f(x)<0,矛盾,综上所述,0<a≤2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题.20.(16分)已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,设数列{b n}满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.2=0,化为:=2×,【分析】(1)数列{a n}满足a n>0,4(n+1)a n2﹣na n+1即可证明.(2)由(1)可得:=,可得=n•4n﹣1.数列{b n}满足b n=,可得b1,b2,b3,利用数列{b n}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12S n﹣a14n2=16b m,即可得出a1.2=0,【解答】(1)证明:数列{a n}满足a n>0,4(n+1)a n2﹣na n+1∴=a n,即=2,+1∴数列{}是以a1为首项,以2为公比的等比数列.(2)解:由(1)可得:=,∴=n•4n﹣1.∵b n=,∴b1=,b2=,b3=,∵数列{b n}是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{b n}是等差数列,由(2)可得:t=12或4.①t=12时,b n==,S n=,∵对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,b n==,S n=,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.【点评】本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.(10分)如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.【分析】连接OC,先证得三角形OBC是等边三角形,从而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大小;考虑到直角三角形ABE中,利用角的关系即可求得边AE的长.【解答】解:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是.(10分)【点评】本题主要考查了弦切角、解三角形知识等,属于基础题.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.【分析】(1)先设矩阵A=,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=8及对应的一个特征向量e1及矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,从而求得另一个特征值为2.【解答】解:(1)设矩阵A=,这里a,b,c,d∈R,则=8=,故,由于矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).则=,故联立以上两方程组解得a=6,b=2,c=4,d=4,故M=.(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,故矩阵M的另一个特征值为2.【点评】本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.【分析】(1)先利用三角函数的差角公式展开圆O2的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆O2的直角坐标方程及圆O1直角坐标方程.(2)先在直角坐标系中算出经过两圆交点的直线方程,再利用直角坐标与极坐标间的关系求出其极坐标方程即可.【解答】解:(1)ρ=2⇒ρ2=4,所以x2+y2=4;因为,所以,所以x2+y2﹣2x﹣2y﹣2=0.(5分)(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即.(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.【分析】利用柯西不等式,结合a+b+c=3,即可求得++的最大值.【解答】解:由柯西不等式可得(++)2≤[12+12+12][()2+()2+()2]=3×12∴++≤3,当且仅当==时取等号.∴++的最大值是6,故最大值为6.【点评】本题考查最值问题,考查柯西不等式的运用,考查学生的计算能力,属于基础题.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.【分析】(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出异面直线MN与PC所成角.(2)求出平面PBC的法向量和平面PNC的法向量,利用向量法能求出二面角N ﹣PC﹣B的余弦值.【解答】解:(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.则A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),…(2分)设P(0,0,p),则=(﹣1,1,p),又AP=2,∴1+1+p2=4,∴p=,∵===(),=(),设异面直线MN与PC所成角为θ,则cosθ===.θ=30°,∴异面直线MN与PC所成角为30°.(2)=(﹣1,1,﹣),=(1,1,﹣),=(,﹣),设平面PBC的法向量=(x,y,z),则,取z=1,得=(0,,1),设平面PNC的法向量=(a,b,c),则,取c=1,得=(,2,1),设二面角N﹣PC﹣B的平面角为θ,则cosθ===.∴二面角N﹣PC﹣B的余弦值为.【点评】本题考查异面直线所成角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].【分析】(1)利用sin=,即可得出.(2)a2k+a2k=(﹣1)tan nθ.利用等比数列的求和公式即可得出.﹣1【解答】证明:(1)a n=sin tan nθ,当n=2k(k∈N*)为偶数时,a n=sinkπ•tan nθ=0;当n=2k﹣1为奇函数时,a n=•tan nθ=(﹣1)k﹣1tan nθ=(﹣1)tan nθ.+a2k=(﹣1)tan nθ.∴奇数项成等比数列,首项为tanθ,公比为(2)a2k﹣1﹣tan2θ.∴S2n==sin2θ•[1+(﹣1)n+1tan2nθ].【点评】本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.。
2017届苏锡常镇高三语文一模作文题审题及标杆作文

2017届苏锡常镇高三语文一模作文题审题及标杆作文2017届苏锡常镇高三语文一模作文题审题及标杆作文整理编辑/无锡市北高中法拉查一、真题回放根据以下材料,选取角度,自拟题目,写一篇不少于800字的文章,文体不限,诗歌除外。
删除我经历过的任何一个瞬间,我都不能成为今天的自己。
二、审题建议本题目指向探讨过去的经历对于自己成长的意义,引导学生关注自我成长,具有很强的人文气息。
语段中的“删除”,可以理解为“回避”“不敢正视”“掩饰”等等,如果纠结于这个理解,审题有点难度。
实际批阅中,只要能揭示“过去的经历”和“自身发展”之间的关系,就视为合题。
进而探讨国家、民族、文化的“历史”对于“当下”的意义,或者“当下”的状态对于“未来”的意义,都是符合题旨的。
以下三种情况视为不切合题意:1、只谈经历,不提对于自身成长的意义;2、重点谈经历,在结尾贴标签式地说一下对于自身成长的意义;或者经历跟成长发展油水分离,也视为不太切合题旨,最高不超过48;3、有三分之二以上的篇幅另起炉灶,改换话题,这种情况视为不切题。
如标杆作文8号卷。
三、标杆作文01 二手时间当我写作的时候,我一天常常要花三至四个小时与人交流,我不用笔记录,我用录音带。
26岁的阿列克谢耶维奇,站在讲台前,与中国读者分享她创作《二手时间》的经历,讲至此处,她稍稍停顿了一下。
一个作家与一支笔,那是会产生化学反应的。
在文字的排布与词语的筛选中,倾向性便出现了。
而录音带不同,那沉默的长方形匣子,一言不发地记录下所有发生的瞬间,细小至一次咳嗽,一声叹息。
于是,完整的,不加任何人为篡改的原始情感,便呈现出来。
一个人站在时间里,时间带动空间,夹杂着这世间所有好的坏的快乐的痛苦的万千种事物经过他。
任何一次经过,都或多或少的留下一些痕迹,只是有些显露无疑,有些擅长潜伏,有些刻骨铭心,有些只像蝴蝶扇了扇翅膀,一会儿,便被埋进记忆的深处,所以物才得以成物,人才得以成人,携带着所有过去的痕迹,才是那个,完整的个体。
2017届苏锡常镇高三一模化学试卷和答案

2016-2017学年度苏锡常镇四市高三教学情况调研(一)化 学注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分。
考试时间100分钟。
2.请把答案写在答题卡的指定栏目内。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 S 32 Cl 35.5选择题(40分)单项选择题:本题包括10小题,每小题2分,共计20分。
每小题只有一个....选项符合题意。
1.2016年世界环境日我国确定的主题是“改善环境质量,推动绿色发展”。
下列做法不应该...提倡的是 A .发展清洁能源 B .增加植被面积 C .燃烧煤炭供热 D .选择绿色出行 2.下列有关化学用语表示正确的是A .中子数为20的氯原子:2017Cl B .硫离子的结构示意图:C .N 2H 4的电子式:D .丙烯的结构简式:CH 2CHCH 33.下列有关物质的性质与用途具有对应关系的是A .NH 3极易溶于水,可用于工业制冷剂B .木炭具有还原性,可用于冰箱和居室除臭剂C .Al 2O 3是两性氧化物,可用于制造高温材料D .Na 、K 合金熔点低且导热,可用于快中子反应堆的导热剂4.短周期主族元素X 、Y 、Z 、W 的原子序数依次增大,X 的原子半径比Y 的小,Y 原子最外层电子数是其内层电子总数的3倍,W 原子的核电荷数等于X 、Z 原子的核电荷数之和,X 和Z 同主族。
下列说法正确的是A .原子半径:r (W)>r (Z) >r (Y)B .Z 的最高价氧化物对应水化物的碱性比W 的强C .化合物X 2Y 2和Z 2Y 2所含化学键类型完全相同D .工业上用电解熔融W 的氧化物制备W 的单质 5.下列指定反应的离子方程式正确的是A .向Al 2(SO 4)3溶液中加入过量氨水:Al 3++3OH -= Al(OH)3↓B .向Fe(OH)3胶体中加入氢碘酸溶液:Fe(OH)3+3H + = Fe 3++3H 2OC .将NaClO 溶液与亚硫酸钠溶液混合:ClO -+SO 2-3 = SO 2-4+Cl -D .用石墨作电极电解氯化镁溶液:2Cl -+2H 2O H 2↑+Cl 2↑+2OH -6.下列装置应用于实验室制备氨气并配制银氨溶液的实验,不能达到实验目的的是H N N H H H+16 2 8 8 电解NH 4ClA .检查气密性B .制备氨气C . 吸收氨尾气D .配制银氨溶液 7.在探究Ba 2ClO(OH)3·H 2O 性质的实验中,取该物质溶解后,分别和下列溶液充分混合搅 拌,反应后溶液中主要存在的一组离子正确的是 A .加入过量浓盐酸:H +、Ba 2+、Cl -、ClO -B .加入过量NaHCO 3稀溶液:Na +、HCO -3、CO 2-3、ClO -C .加入过量Fe(NO 3)2溶液:Ba 2+、NO -3、Fe 2+、ClO -D .加入过量Na 2SO 4溶液:Ba 2+、ClO -、Na +、SO 2-48.在给定的条件下,下列选项所示的物质间转化均能实现的是A .B .C .D . 9.化学中常用图像直观地描述化学反应的进程或结果。
2017年江苏省苏锡常镇四市高三一模数学试卷

2017年江苏省苏锡常镇四市高三一模数学试卷一、填空题(共14小题;共70分) 1. 已知集合 U ={1,2,3,4,5,6,7},M ={x∣ x 2−6x +5≤0,x ∈Z },则 ∁U M = ______. 2. 若复数 z 满足 z +i =2+i i,其中 i 为虚数单位,则 ∣z∣= ______.3. 函数 f (x )=1ln (4x−3) 的定义域为______.4. 下面是给出的一种算法,则该算法输出的结果是______. t←1 i←2While i≤4 t←t×i i←i+1 End WhilePrint t5. 某高级中学共有 900 名学生,现用分层抽样的方法从该校学生中抽取 1 个容量为 45 的样本,其中高一年级抽 20 人,高三年级抽 10 人,则该校高二年级学生人数为______. 6. 已知正四棱锥的底面边长是 2,侧棱长是 √3,则该正四棱锥的体积为______. 7. 从集合 {1,2,3,4} 中任取两个不同的数,则这两个数的和为 3 的倍数的概率为______.8. 在平面直角坐标系 xOy 中,已知抛物线 y 2=8x 的焦点恰好是双曲线 x 2a 2−y 23=1 的右焦点,则双曲线的离心率为______.9. 设等比数列 {a n } 的前 n 项和为 S n ,若 S 3,S 9,S 6 成等差数列.且 a 2+a 5=4,则 a 8 的值为 ______.10. 在平面直角坐标系 xOy 中,过点 M (1,0) 的直线 l 与圆 x 2+y 2=5 交于 A ,B 两点,其中 A 点在第一象限,且 BM ⃗⃗⃗⃗⃗⃗ =2MA⃗⃗⃗⃗⃗⃗ ,则直线 l 的方程为______. 11. 在 △ABC 中,已知 AB =1,AC =2,∠A =60∘,若点 P 满足 AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,且 BP ⃗⃗⃗⃗⃗ ⋅CP⃗⃗⃗⃗⃗ =1,则实数 λ 的值为______.12. 已知 sinα=3sin (α+π6),则 tan (α+π12)= ______.13. 若函数 f (x )={12x−1,x <1lnxx 2,x ≥1,则函数 y =∣f (x )∣−18的零点个数为______.14. 若正数 x ,y 满足 15x −y =22,则 x 3+y 3−x 2−y 2 的最小值为______.二、解答题(共12小题;共156分)15. 在 △ABC 中,a ,b ,c 分别为角 A ,B ,C 的对边.若 acosB =3,bcosA =1,且 A −B =π6.(1)求边 c 的长; (2)求角 B 的大小.16. 如图,在斜三梭柱 ABC −A 1B 1C 1 中,侧面 AA 1C 1C 是菱形,AC 1 与 A 1C 交于点 O ,E 是棱 AB上一点,且 OE ∥平面BCC 1B 1.(1)求证:E 是 AB 中点;(2)若 AC 1⊥A 1B ,求证:AC 1⊥BC .17. 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门 BADC (如图),设计要求彩门的面积为 S (单位:m 2),高为 ℎ(单位:m )(S ,ℎ 为常数),彩门的下底 BC 固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为 α,不锈钢支架的长度和记为 l .(1)请将 l 表示成关于 α 的函数 l =f (α); (2)问当 α 为何值时 l 最小?并求最小值.18. 在平面直角坐标系 xOy 中,已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的焦距为 2,离心率为 √22,椭圆的右顶点为 A .(1)求该椭圆的方程:(2)过点 D(√2,−√2) 直线 PQ 交椭圆于两个不同点 P ,Q ,求证:直线 AP ,AQ 的斜率之和为定值.19. 已知函数 f (x )=(x +1)lnx −ax +a (a 为正实数,且为常数).(1)若 f (x ) 在 (0,+∞) 上单调递增,求 a 的取值范围; (2)若不等式 (x −1)f (x )≥0 恒成立,求 a 的取值范围.20. 已知 n 为正整数,数列 {a n } 满足 a n >0,4(n +1)a n 2−na n+12=0,设数列 {b n } 满足 b n =a n2t n.(1)求证:数列 {n√n } 为等比数列;(2)若数列 {b n } 是等差数列,求实数 t 的值;(3)若数列 {b n } 是等差数列,前 n 项和为 S n ,对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n −a 14n 2=16b m 成立,求满足条件的所有整数 a 1 的值.21. 如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l,圆交于点D,E.求∠DAC的度数与线段AE的长.22. 已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1⃗⃗⃗ =[11],并且矩阵M对应的变换将点(−1,2)变换成(−2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.23. 已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2−2√2ρcos(θ−π4)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.24. 已知a,b,c为正数,且a+b+c=3,求√3a+1+√3b+1+√3c+1的最大值.25. 如图,已知正四棱锥P−ABCD中,PA=AB=2,点M,N分别在PA,BD上,且PMPA =BNBD=13.(1)求异面直线MN与PC所成角的大小;(2)求二面角N−PC−B的余弦值.26. 设∣θ∣<π2,n为正整数,数列{a n}的通项公式a n=sin nπ2tan nθ,其前n项和为S n.(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(−1)n−12tan nθ;(2)求证:对任何正整数n,S2n=12sin2θ⋅[1+(−1)n+1tan2nθ].答案第一部分1. {6,7}2. √103. {x∣∣ x>34且x≠1}4. 245. 3006. 437. 138. 29. 210. x−y−1=011. −14或112. 2√3−413. 414. 1第二部分15. (1)因为acosB=3,bcosA=1,所以a×a 2+c2−b22ac=3,b×b2+c2−a22bc=1,化为:a2+c2−b2=6c,b2+c2−a2=2c.相加可得:2c2=8c,解得c=4.(2)由(1)可得:a2−b2=8.由正弦定理可得:asinA =bsinB=4sinC,又A−B=π6,所以A=B+π6,C=π−(A+B)=π−(2B+π6),可得sinC=sin(2B+π6).所以a=4sin(B+π6)sin(2B+π6),b=4sinBsin(2B+π6).所以16sin2(B+π6)−16sin2B=8sin2(2B+π6),所以1−cos(2B+π3)−(1−cos2B)=sin2(2B+π6),即cos2B−cos(2B+π3)=sin2(2B+π6),所以−2sin(2B+π6)sin(−π6)=sin2(2B+π6),所以sin(2B+π6)=0或sin(2B+π6)=1,B∈(0,5π12).解得:B=π6.16. (1) 连接 BC 1,取 AB 中点 Eʹ, AA 1C 1C 是菱形,AC 1 与 A 1C 交于点 O , 所以 O 为 AC 1 的中点, 因为 Eʹ 是 AB 的中点, 所以 OEʹ∥BC 1;因为 OEʹ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1, 所以 OEʹ∥平面BCC 1B 1, 因为 OE ∥平面BCC 1B 1, 所以 E ,Eʹ 重合, 所以 E 是 AB 中点.(2) 因为侧面 AA 1C 1C 是菱形, 所以 AC 1⊥A 1C ,因为 AC 1⊥A 1B ,A 1C ∩A 1B =A 1,A 1C ⊂平面A 1BC ,A 1B ⊂平面A 1BC , 所以 AC 1⊥平面A 1BC , 因为 BC ⊂平面A 1BC , 所以 AC 1⊥BC .17. (1) 设上底长为 a ,则 S =(a+a+2ℎtanα)ℎ2,所以 a =Sℎ−ℎtanα, 所以 l =Sℎ−ℎtanα+2ℎsinα(0<α<π2). (2) lʹ=ℎ⋅1−2cosαsin 2α,所以 0<α<π3,lʹ<0,π3<α<π2,lʹ>0, 所以 α=π3 时,l 取得最小值 Sℎ+√3ℎ m .18. (1) 由题意可知:椭圆 x 2a 2+y 2b 2=1(a >b >0),焦点在 x 轴上,2c =1,c =1, 椭圆的离心率 e =c a=√22,则 a =√2,b 2=a 2−c 2=1,则椭圆的标准方程:x 22+y 2=1.(2) 设 P (x 1,y 1),Q (x 2,y 2),A(√2,0), 由题意 PQ 的方程:y =k(x −√2)−√2, 则 {y =k(x −√2)−√2,x 22+y 2=1,整理得:(2k 2+1)x 2−(4√2k 2+4√2k)x +4k 2+8k +2=0, 由韦达定理可知:x 1+x 2=4√2k 2+4√2k2k 2+1,x 1x 2=4k 2+8k+22k 2+1,则 y 1+y 2=k (x 1+x 2)−2√2k −2√2=−2√2−2√2k2k 2+1,则 k AP +k AQ =1x−√2+2x −√2=1221√2(12x x −√2(x +x )+2,由y 1x 2+y 2x 1=[k(x 1−√2)−√2]x 2+[k(x 2−√2)−√2]x 1=2kx 1x 2−(√2k +√2)(x 1+x 2)=−4k2k 2+1,k AP +k AQ =1221√2(12x x −√2(x +x )+2=−4k 2k 2+1−√2×−2√2−2√2k2k 2+14k 2+8k+22k 2+1−√2×4√2k 2+4√2k2k 2+1+2=1,所以直线 AP ,AQ 的斜率之和为定值 1.19. (1) f (x )=(x +1)lnx −ax +a ,fʹ(x )=lnx +1x +1−a ,若 f (x ) 在 (0,+∞) 上单调递增,则 a ≤lnx +1x +1 在 (0,+∞) 恒成立,(a >0), 令 g (x )=lnx +1x +1,(x >0),gʹ(x )=x−1x 2,令 gʹ(x )>0,解得:x >1,令 gʹ(x )<0,解得:0<x <1,故 g (x ) 在 (0,1) 递减,在 (1,+∞) 递增,故 g (x )min =g (1)=2,故 0<a ≤2. (2) 若不等式 (x −1)f (x )≥0 恒成立,即 (x −1)[(x +1)lnx −a ]≥0 恒成立,① x ≥1 时,只需 a ≤(x +1)lnx 恒成立,令 m (x )=(x +1)lnx ,(x ≥1),则 mʹ(x )=lnx +1x +1, 由(1)得:mʹ(x )≥2,故 m (x ) 在 [1,+∞) 递增,m (x )≥m (1)=0, 故 a ≤0,而 a 为正实数,故 a ≤0 不合题意; ② 0<x <1 时,只需 a ≥(x +1)lnx ,令 n (x )=(x +1)lnx ,(0<x <1),则 nʹ(x )=lnx +1x +1,由(1)nʹ(x ) 在 (0,1) 递减,故 nʹ(x )>n (1)=2,故 n (x ) 在 (0,1) 递增,故 n (x )<n (1)=0,故 a ≥0, 而 a 为正实数,故 a >0.20. (1) 数列 {a n } 满足 a n >0,4(n +1)a n 2−na n+12=0,所以 2√n +1a n =√na n+1n+1√n+1=n √n,所以数列 {n √n} 是以 a 1 为首项,以 2 为公比的等比数列. (2) 由(1)可得:n√n=a 1×2n−1, 所以 a n 2=na 12⋅4n−1.因为 b n =a n2t n,所以 b 1=a 12t,b 2=a 22t 2,b 3=a 32t 3,因为数列 {b n } 是等差数列, 所以 2×a 22t 2=a 12t+a 32t 3, 所以2×2a 12×4t=a 12+3a 12×42t 2,化为:16t =t 2+48,解得 t =12或4.(3) 数列 {b n } 是等差数列,由(2)可得:t =12或4. ① t =12 时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,因为对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n −a 14n 2=16b m 成立,所以 8a 12×n(a 1212+na 124×3n)2−a 14n 2=16×ma 124×3m,所以 a 12(n 3+n 23n −n 2)=4m3m ,n =1 时,化为:−13a 12=4m 3m>0,无解,舍去.② t =4 时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n−a 14n 2=16bm 成立,所以 8a 12×n(a 124+na 124)2−a 14n2=16×ma 124,所以 na 12=4m ,所以 a 1=2√mn . 因为 a 1 为正整数, 所以 √mn=12k ,k ∈N ∗.所以满足条件的所有整数 a 1 的值为 {a 1∣ a 1=2√m n ,n ∈N ∗,m ∈N ∗,且√m n =12k,k ∈N ∗}.21. 如图,连接 OC , BC =OB =OC =3, 因此 ∠CBO =60∘. 由于 ∠DCA =∠CBO ,所以 ∠DCA =60∘,又 AD ⊥DC 得 ∠DAC =30∘. 又因为 ∠ACB =90∘,得 ∠CAB =30∘,那么 ∠EAB =60∘,从而 ∠ABE =30∘, 于是 AE =12AB =3.22. (1) 设矩阵 A =[a bc d ],这里 a,b,c,d ∈R ,则 [a b c d ][11]=8[11]=[88],故 {a +b =8,c +d =8,由于矩阵 M 对应的变换将点 (−1,2) 换成 (−2,4). 则 [a b c d ][−12]=[−24],故 {−a +2b =−2,−c +2d =4,联立以上两方程组解得 a =6,b =2,c =4,d =4,故 M =[6244].(2) 由(1)知,矩阵 M 的特征多项式为 f (λ)=(λ−6)(λ−4)−8=λ2−10λ+16,故矩阵 M 的另一个特征值为 2. 23. (1) 由 ρ=2 知 ρ2=4,故圆 O 1 的直角坐标方程为 x 2+y 2=4. 因为 ρ2−2√2ρcos (θ−π4)=2,所以 ρ2−2√2ρ(cosθcos π4+sinθsin π4)=2,故圆 O 2 的直角坐标方程为 x 2+y 2−2x −2y −2=0. (2) 将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为 x +y =1. 化为极坐标方程为 ρcosθ−ρsinθ=1, 即 ρsin (θ+π4)=√22. 24. 由柯西不等式可得(√3a +1+√3b +1+√3c +1)2≤[12+12+12][(√3a +1)2+(√3b +1)2+(√(3c +1))2]=3×12,所以 √3a +1+√3b +1+√3c +1≤6,当且仅当 √3a +1=√3b +1=√3c +1 时取等号. 所以 √3a +1+√3b +1+√3c +1 的最大值为 6. 25. (1) 设 AC 与 BD 的交点为 O ,AB =PA =2.以点 O 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 方向分别是 x 轴,y 轴,z 轴正方向,建立空间直角坐标系 O −xyz .A (1,−1,0),B (1,1,0),C (−1,1,0),D (−1,−1,0), 设 P (0,0,p ),则 AP ⃗⃗⃗⃗⃗ =(−1,1,p ), 又 AP =2,所以 1+1+p 2=4,所以 p =√2,因为 OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23AP ⃗⃗⃗⃗⃗ =(13,−13,2√23),ON ⃗⃗⃗⃗⃗⃗ =13OB ⃗⃗⃗⃗⃗ =(13,13,0),所以 PC ⃗⃗⃗⃗⃗ =(−1,1,−√2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,23,−2√23), 设异面直线 MN 与 PC 所成角为 θ, 则 cosθ=∣MN⃗⃗⃗⃗⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ ∣∣MN⃗⃗⃗⃗⃗⃗⃗ ∣⋅∣PC ⃗⃗⃗⃗⃗ ∣=23+432√49+89=√32. θ=30∘,所以异面直线 MN 与 PC 所成角为 30∘.(2) PC ⃗⃗⃗⃗⃗ =(−1,1,−√2),PB ⃗⃗⃗⃗⃗ =(1,1,−√2),PN ⃗⃗⃗⃗⃗⃗ =(13,13,−√2), 设平面 PBC 的法向量 n ⃗ =(x,y,z ), 则 {n ⃗ ⋅PB⃗⃗⃗⃗⃗ =x +y −√2z =0,n ⃗ ⋅PC ⃗⃗⃗⃗⃗ =−x +y −√2z =0,取 z =1,得 n ⃗ =(0,√2,1), 设平面 PNC 的法向量 m ⃗⃗ =(a,b,c ), 则 {m ⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ =13a +13b −√2c =0,m ⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =−a +b −√2c =0, 取 c =1,得 m ⃗⃗ =(√2,2√2,1), 设二面角 N −PC −B 的平面角为 θ,则cosθ=∣m⃗⃗⃗ ⋅n⃗ ∣∣m⃗⃗⃗ ∣⋅∣n⃗ ∣=√3⋅√11=5√3333.所以二面角N−PC−B的余弦值为5√3333.26. (1)a n=sin nπ2tan nθ,当n=2k(k∈N∗)为偶数时,a n=sinkπ⋅tan nθ=0;当n=2k−1为奇函数时,a n=sin2k−12πtan nθ=(−1)k−1tan nθ=(−1)n−12tan nθ.(2)a2k−1+a2k=(−1)n−12tan nθ.所以奇数项成等比数列,首项为tanθ,公比为−tan2θ.所以S2n=tanθ[1−(−1)n tan2nθ]1−(−tan2θ)=12sin2θ⋅[1+(−1)n+1tan2nθ].。
2017-2018苏锡常数学一模试卷及答案

2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题一、填空题:本大题共14个小题,每小题5分,共70分.请把答案填写在答题..卡相应位置上....... 1.已知集合{1,1}A =-,{3,0,1}B =-,则集合A B = . 2.已知复数z 满足34z i i ⋅=-(i 为虚数单位),则z =.3.双曲线22143x y -=的渐近线方程为. 4.某中学共有1800人,其中高二年级的人数为600.现用分层抽样的方法在全校抽取n 人,其中高二年级被抽取的人数为21,则n =.5.将一颗质地均匀的正四面体骰子(每个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和等于6的概率为.6.如图是一个算法的流程图,则输出S 的值是.7.若正四棱锥的底面边长为2cm ,侧面积为28cm ,则它的体积为3cm . 8.设n S 是等差数列{}n a 的前n 项和,若242a a +=,241S S +=,则10a =.9.已知0a >,0b >,且23a b+=,则ab 的最小值是. 10.设三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知tan 3tan A c bB b-=,则cos A =.11.已知函数,1()4,1x a e x f x x x x ⎧-<⎪=⎨+≥⎪⎩(e 是自然对数的底).若函数()y f x =的最小值是4,则实数a 的取值范围为.12.在ABC ∆中,点P 是边AB的中点,已知CP = 4CA = ,23ACB π∠=,则CP CA ⋅=.13.已知直线l :20x y -+=与x 轴交于点A ,点P 在直线l 上,圆C :22(2)2x y -+=上有且仅有一个点B 满足AB BP ⊥,则点P 的横坐标的取值集合为.14.若二次函数2()f x ax bx c =++(0)a >在区间[1,2]上有两个不同的零点,则(1)f a的取值范围为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答应写出文字说明、证明过程或演算步骤.15.已知向量,1)a α= ,(1,sin())4b πα=+ .(1)若角α的终边过点(3,4),求a b ⋅的值; (2)若//a b ,求锐角α的大小.16.如图,正三棱柱111ABC A B C -,其底面边长为2.已知点M ,N 分别是棱11AC ,AC 的中点,点D 是棱1CC 上靠近C 的三等分点.求证:(1)1//B M 平面1A BN ; (2)AD ⊥平面1A BN.17.已知椭圆C :22221x y a b +=(0)a b >>经过点1)2,(1,)2,点A 是椭圆的下顶点.(1)求椭圆C 的标准方程;(2)过点A 且互相垂直的两直线1l ,2l 与直线y x =分别相交于E ,F 两点,已知OE OF =,求直线1l 的斜率.18.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC AB ⊥.在OC 上有一座观赏亭Q ,其中23AQC π∠=.计划在BC 上再建一座观赏亭P ,记(0)2POB πθθ∠=<<.(1)当3πθ=时,求OPQ ∠的大小;(2)当OPQ ∠越大,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.19.已知函数32()f x x ax bx c =+++,()ln g x x =.(1)若0a =,2b =-,且()()f x g x ≥恒成立,求实数c 的取值范围; (2)若3b =-,且函数()y f x =在区间(1,1)-上是单调递减函数. ①求实数a 的值;②当2c =时,求函数(),()()()(),()()f x f xg xh x g x f x g x ≥⎧=⎨<⎩的值域.20.已知n S 是数列{}n a 的前n 项和,13a =,且123n n S a +=-*()n N ∈. (1)求数列{}n a 的通项公式;(2)对于正整数i ,j ,()k i j k <<,已知j a λ,6i a ,k a μ成等差数列,求正整数λ,μ的值;(3)设数列{}n b 前n 项和是n T ,且满足:对任意的正整数n ,都有等式12132n n n a b a b a b --++113n n a b ++⋅⋅⋅+=33n --成立.求满足等式13n n T a =的所有正整数n . 2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.A. 选修4-1:几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,且满足DA DC =.(1)求证:2AB BC =; (2)若2AB =,求线段CD 的长. B. 选修4-2:矩阵与变换 已知矩阵4001A ⎡⎤=⎢⎥⎣⎦,1205B ⎡⎤=⎢⎥⎣⎦,列向量a X b ⎡⎤=⎢⎥⎣⎦. (1)求矩阵AB ;(2)若1151B A X --⎡⎤=⎢⎥⎣⎦,求a ,b 的值. C. 选修4-4:坐标系与参数方程 在极坐标系中,已知圆C经过点)4P π,圆心为直线sin()3πρθ-=点,求圆C 的极坐标方程. D. 选修4-5:不等式选讲已知x ,y 都是正数,且1xy =,求证:22(1)(1)9x y y x ++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PD 垂直于底面ABCD ,2PD AD AB ==,点Q 为线段PA (不含端点)上一点.(1)当Q 是线段PA 的中点时,求CQ 与平面PBD 所成角的正弦值; (2)已知二面角Q BD P --的正弦值为23,求PQPA的值. 23.在含有n 个元素的集合{1,2,,}n A n =⋅⋅⋅中,若这n 个元素的一个排列(1a ,2a ,…,n a )满足(1,2,,)i a i i n ≠=⋅⋅⋅,则称这个排列为集合n A 的一个错位排列(例如:对于集合3{1,2,3}A =,排列(2,3,1)是3A 的一个错位排列;排列(1,3,2)不是3A 的一个错位排列).记集合n A 的所有错位排列的个数为n D . (1)直接写出1D ,2D ,3D ,4D 的值;(2)当3n ≥时,试用2n D -,1n D -表示n D ,并说明理由; (3)试用数学归纳法证明:*2()n D n N ∈为奇数.2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题参考答案一、填空题1. {1}2. 53. y x =4. 635. 3166. 258 9. 10. 1311. 4a e ≥+ 12. 6 13. 1,53⎧⎫⎨⎬⎩⎭14. [0,1)二、解答题15.解:(1)由题意4sin 5α=,3cos 5α=,所以sin()4a b a πα⋅=++sin cos 4παα=+cos sin 4πα+45=+35+=(2)因为//a b ,sin()14a πα+=,α(s i nc o s c o s s i n )144ππαα+=,所以2sin sin cos 1ααα+=,则2sin cos 1sin ααα=-2cos α=,对锐角α有cos 0α≠,所以tan 1α=,所以锐角4πα=.16.证明:(1)连结MN ,正三棱柱111ABC A B C -中,11//AA CC 且11AA CC =,则四边形11AAC C 是平行四边形,因为点M 、N 分别是棱11AC ,AC 的中点,所以1//MN AA 且1MN AA =,又正三棱柱111ABC A B C -中11//AA BB 且11AA BB =,所以1//MN BB 且1MN BB =,所以四边形1MNBB 是平行四边形,所以1//B M BN ,又1B M ⊄平面1A BN ,BN ⊂平面1A BN ,所以1//B M 平面1A BN ;(2)正三棱柱111ABC A B C -中,1AA ⊥平面ABC ,BN ⊂平面ABC ,所以1BN AA ⊥,正ABC ∆中,N 是AB 的中点,所以BN AC ⊥,又1AA 、AC ⊂平面11AAC C ,1AA AC A = ,所以BN ⊥平面11AAC C ,又AD ⊂平面11AAC C ,所以AD BN ⊥,由题意,1AA =,2AC =,1AN =,CD =,所以1AA AN AC CD == 又12A AN ACD π∠=∠=,所以1A AN ∆与ACD ∆相似,则1AA N CAD ∠=∠,所以1ANA CAD ∠+∠112ANAAA N π=∠+∠=,则1AD A N ⊥,又1BN A N N = ,BN ,1A N ⊂平面1A BN , 所以AD ⊥平面1A BN .17.解:(1)由题意得222231141314a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2211411a b ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为2214x y +=; (2)由题意知(0,1)A -,直线1l ,2l 的斜率存在且不为零,设直线1l :11y k x =-,与直线y x =联立方程有11y k x y x=-⎧⎨=⎩,得1111(,)11E k k --,设直线2l :111y x k =--,同理1111(,)1111F k k ----, 因为OE OF =,所以1111||||111k k =---,①1111111k k =---,1110k k +=无实数解;②1111111k k =---,1112k k -=,211210k k --=,解得11k = 综上可得,直线1l的斜率为118.解:(1)设OPQ α∠=,由题,Rt OAQ ∆中,3OA =,AQO AQCπ∠=-∠233πππ=-=,所以OQ =,在OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=,由正弦定理得sin sin OQ OPOPQ OQP=∠∠,3sin()6ππα=--sin()6παπα=--5sin()6πα=-,则5sincos 6παα=5cos sin 6πα-1cos 2αα=,所以cos αα=, 因为α为锐角,所以cos 0α≠,所以tan α=,得6πα=;(2)设OPQ α∠=,在OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=,由正弦定理得sin sin OQ OPOPQ OQP=∠∠3sin(())2ππαθ=---,sin(())2παπαθ=---sin(())2παθ=--cos()αθ=-cos cos sin sin αθαθ=+,从而sin )sin θαcos cos αθ=sin 0θ≠,cos 0α≠, 所以tanα=,记()f θ=,'()f θ=(0,)2πθ∈;令'()0f θ=,sin θ=0(0,)2πθ∈使得0sin θ=,当0(0,)θθ∈时'()0f θ>,()f θ单调增,当0(,)2πθθ∈时'()0f θ<,()f θ单调减,所以当0θθ=时,()f θ最大,即tan OPQ ∠最大,又OPQ ∠为锐角,从而OPQ ∠最大,此时sin θ=答:观赏效果达到最佳时,θ19.解:(1)函数()y g x =的定义域为(0,)+∞.当0a =,2b =-,3()2f x x x c =-+,∵()()f x g x ≥恒成立,∴32ln x x c x -+≥恒成立,即3ln 2c x x x ≥-+.令3()ln 2x x x x ϕ=-+,则21'()32x x x ϕ=-+3123x x x +-=2(1)(133)x x x x-++=,令'()0x ϕ≥,得1x ≤,∴()x ϕ在(0,1]上单调递增, 令'()0x ϕ≤,得1x ≥,∴()x ϕ在[1,)+∞上单调递减, ∴当1x =时,max [()](1)1x ϕϕ==. ∴1c ≥.(2)①当3b =-时,32()3f x x ax x c =+-+,2'()323f x x ax =+-.由题意,2'()3230f x x ax =+-≤对(1,1)x ∈-恒成立, ∴'(1)3230'(1)3230f a f a =+-≤⎧⎨-=--≤⎩,∴0a =,即实数a 的值为0.②函数()y h x =的定义域为(0,)+∞.当0a =,3b =-,2c =时,3()32f x x x =-+.2'()33f x x =-,令2'()330f x x =-=,得1x =.∴当(0,1)x ∈时,()0f x >,当1x =时,()0f x =,当(1,)x ∈+∞时,()0f x >. 对于()ln g x x =,当(0,1)x ∈时,()0g x <,当1x =时,()0g x =,当(1,)x ∈+∞时,()0g x >.∴当(0,1)x ∈时,()()0h x f x =>,当1x =时,()0h x =,当(1,)x ∈+∞时,()0h x >. 故函数()y h x =的值域为[0,)+∞.20.解:(1)由123n n S a +=-*()n N ∈得1223n n S a ++=-,两式作差得1212n n n a a a +++=-,即213n n a a ++=*()n N ∈.13a =,21239a S =+=,所以13n n a a +=*()n N ∈,0n a ≠,则13n na a +=*()n N ∈,所以数列{}n a 是首项为3公比为3的等比数列, 所以3n n a =*()n N ∈;(2)由题意26j k i a a a λϕ+=⋅,即33263jkiλμ+=⋅⋅, 所以3312j ik i λμ--+=,其中1j i -≥,2k i -≥,所以333j iλλ-≥≥,399k i μμ-≥≥,123312j i k i λμ--=+≥,所以1j i -=,2k i -=,1λμ==;(3)由12132n n n a b a b a b --++113n n a b ++⋅⋅⋅+=33n --得,11231n n n a b a b a b +-++211n n a b a b ++⋅⋅⋅++233(1)3n n +=-+-,111213(n n n a b a b a b +-++121)n n a b a b -+⋅⋅⋅++233(1)3n n +=-+-,1113(333)n n a b n +++--233(1)3n n +=-+-,所以21333(1)n n b n ++=-+133(333)n n +----,即1363n b n +=+,所以121n b n +=+*()n N ∈,又因为111133133a b +=-⋅-=,得11b =,所以21n b n =-*()n N ∈, 从而135(21)n T n =+++⋅⋅⋅+-21212n n n +-==*()n N ∈,2*()3n n n T n n N a =∈, 当1n =时1113T a =;当2n =时2249T a =;当3n =时3313T a =; 下面证明:对任意正整数3n >都有13n n T a <, 11n n n n T T a a ++-121(1)3n n +⎛⎫=+ ⎪⎝⎭121133n n n +⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭1221((1)3)3n n n +⎛⎫+-= ⎪⎝⎭2(221)n n -++,当3n ≥时,22221(1)n n n -++=-(2)0n n +-<,即110n n n nT T a a ++-<, 所以当3n ≥时,n nT a 递减,所以对任意正整数3n >都有3313n n T T a a <=; 综上可得,满足等式13n n T a =的正整数n 的值为1和3. 2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题)参考答案21.【选做题】A. 选修4-1:几何证明选讲证明:(1)连接OD ,BD .因为AB 是圆O 的直径,所以90ADB ∠=,2AB OB =.因为CD 是圆O 的切线,所以90CDO ∠=,又因为DA DC =,所以A C ∠=∠,于是ADB CDO ∆≅∆,得到AB CO =,所以AO BC =,从而2AB BC =.(2)解:由2AB =及2AB BC =得到1CB =,3CA =.由切割线定理,2133CD CB CA =⋅=⨯=,所以CD =.B. 选修4-2:矩阵与变换解:(1)401248010505AB ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦; (2)由1151B A X --⎡⎤=⎢⎥⎣⎦,解得51X AB ⎡⎤=⎢⎥⎣⎦485280515⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,又因为a X b ⎡⎤=⎢⎥⎣⎦,所以28a =,5b =.C. 选修4-4:坐标系与参数方程解:在sin()3πρθ-=0θ=,得2ρ=,所以圆C 的圆心的极坐标为(2,0).因为圆C 的半径PC 2==,于是圆C 过极点,所以圆的极坐标方程为4cos ρθ=.D. 选修4-5:不等式选讲证明:因为x ,y 都是正数,所以210x y ++≥>,210y x ++≥>,22(1)(1)9x y y x xy ++++≥,又因为1xy =,所以22(1)(1)9x y y x ++++≥.【必做题】22.解:(1)以D 为原点,DA ,DC ,DP 为坐标轴,建立如图所示空间直角坐标系;设AB t =,则(0,0,0)D ,(2,0,0)A t ,(2,,0)B t t ,(0,,0)C t ,(0,0,2)P t ,(,0,)Q t t ;所以(,,)CQ t t t =- ,(2,,0)DB t t = ,(0,0,2)DP t = ,设平面PBD 的法向量1(,,)n x y z = ,则1100DB n DP n ⎧⋅=⎪⎨⋅=⎪⎩ , 即2020tx ty tz +=⎧⎨=⎩,解得200x y z +=⎧⎨=⎩,所以平面PBD 的一个法向量1(1,2,0)n =- , 111cos ,n CQ n CQ n CQ⋅<>==5=, 则CQ 与平面PBD所成角的正弦值为5. (2)由(1)知平面PBD 的一个法向量为1(1,2,0)n =- ,设(01)PQ PAλλ=<<,则PQ PA λ= ,DQ DP PQ =+ (0,0,2)(2,0,2)t t t λ=+-(2,0,2(1))t t λλ=-,(2,,0)DB t t = ,设平面QBD 的法向量2(,,)n x y z = ,则2200DQ n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,即22(1)020t x t z tx ty λλ+-=⎧⎨+=⎩,解得(1)020x z x y λλ+-=⎧⎨+=⎩,所以平面QBD 的一个法向量2(1,22,)n λλλ=--- ,12cos ,n n =<> 1212n n n n ⋅==, 所以2255(1)96105λλλ-=-+,即2(2)()03λλ--=, 因为01λ<<,所以23λ=,则23PQ PA =. 23. 解:(1)10D =,21D =,32D =,49D =,(2)12(1)()n n n D n D D --=-+,理由如下:对n A 的元素的一个错位排列(1a ,2a ,…,n a ),若1(1)a k k =≠,分以下两类: 若1k a =,这种排列是2n -个元素的错位排列,共有2n D -个;若1k a ≠,这种错位排列就是将1,2,…,1k -,1k +,…,n 排列到第2到第n 个位置上,1不在第k 个位置,其他元素也不在原先的位置,这种排列相当于1n -个元素的错位排列,共有1n D -个;根据k 的不同的取值,由加法原理得到12(1)()n n n D n D D --=-+;(3)根据(2)的递推关系及(1)的结论,n D 均为自然数;当3n ≥,且n 为奇数时,1n -为偶数,从而12(1)()n n n D n D D --=-+为偶数, 又10D =也是偶数,故对任意正奇数n ,有n D 均为偶数.下面用数学归纳法证明2n D (其中*n N ∈)为奇数.当1n =时,21D =为奇数;假设当n k =时,结论成立,即2k D 是奇数,则当1n k =+时,2(1)212(21)()k k k D k D D ++=++,注意到21k D +为偶数,又2k D 是奇数,所以212k k D D ++为奇数,又21k +为奇数,所以2(1)212(21)()k k k D k D D ++=++,即结论对1n k =+也成立;根据前面所述,对任意*n N ∈,都有2n D 为奇数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个案处理 • ①确认为抄袭,其中有三分之二以上篇幅与原作相同,最高不超 过20分;内容基本相同的,最高不超过10分。 • ②记叙文或议论文文体模糊不明,视为五类卷;文体不伦不类, 且语文素养较差者,视为六类卷。 • ③完篇而字数不足,正常评分之后,再扣字数不足分,每50字扣 1分,扣满3分为止;明显未完篇的文章,视篇幅和内容的实际情 况而定,但最高不能超过46分(不满100字,0~5分;200字左右, 6~10分;300字左右,11~20分;400字左右,21~30分;500字 左右,31~40分;600字左右41~46分);未完篇的文章不再扣 字数不足分。 • ④游戏高考、游戏人生、语言格调低下的“问题卷”,评分最高 不得超过40分;凡思想感情庸俗低下,即使是切题完篇,评分最 高不得超过20分;如果内容恶俗不堪,评分最高不超过10分。 • ⑤卷面、错别字扣分,每错(别)一字扣1分,扣满5分为止。 • ⑥不写作文题目的,扣2分。
• 3.特别说明 • (1)关于题中的“瞬间”。瞬间,意思是刹那间,须臾,一眨 眼的工夫。在作文评判中,不必拘泥于它的短暂性。学生只要是 写一段经历,或一个个经历,都视为符合材料中“经历过的任何 一个瞬间”的意思。 • (2)议论文重点判断是否对材料进行了分析和论证。如果能紧 扣概念内涵,围绕矛盾关系进行分析,观点及构思有独到处,判 为一类卷。虽无深刻、独到之见解,但能就中心论点展开分解与 剖析,并能在分析说理的基础上得出有一定意义的结论,判为二 类卷。如果观点比较正确,论证分析比较简单,形式上中规中矩, 判为三类卷。如果只是简单堆砌事例,基本不作分析,虽然切题, 也只判为四类卷。缺少对材料本身的分析,“整体打包”,论述 重心偏移的,判为四类卷。明显没有抓住材料的主要矛盾来写, 硬贴标签,四类卷以下。 • (3)记叙文重点判断所描写的人、事、物是否体现材料的内涵, 对暗扣材料的作文更要谨慎赋分。因文体的特殊性,记叙文要进 入一类卷,立意的深刻、独到不是必备条件。
作文题目?
• 词或者词组
• • • • • • • • • • • •
引用诗句、俗语或者典故为题
《面包的童话》(个人经历) 《圩上人》(个人经历) 《伤疤》(小说) 《生命的釉色》(八大山人、张爱玲) 《二手时间》(阿列克塞耶维奇) 《翻旧账》(巴金) 《至臻每一瞬》(辛德勒、罗宾、珂勒惠支、徐志摩) 《一瓣》(毛姆) 《往事知多少》(周国平、王羲之、苏轼) 《会开花的古树》(冯骥才) 《热爱生活,拥抱其所有》(汪国真、余秀华) 《让过去之光照耀今日之我》(聂鲁达、八大山人、钱钟书、 萨特、博尔赫斯)
•
•
• • • • • • • •
二、关于判分 1.判分原则 议论文重在评判其理性思辨和分析说理能力; 记叙文重在评价其构思、细节、文采、意蕴 等写作技巧和写作智慧。 2.判分等级 一类卷63分以上;二类卷56~62分; 三类卷49~55分; 四类卷42~48分; 五类卷28~41分;六类卷27分以下。
•
换言之,“我”过去之种种经历,无论大小, 无论成败得失,无论顺境逆境,无论主动迎接还是 被动应对,都成就了今天的“我”。没有那一个 (一些)经历,“我”成为不了“今天的自己”。
•
这段材料的主要矛盾是“经历过的瞬间”与“今 天的自己”。只要抓住这组矛盾关系来写,即视为符 合题意。 可以立足“经历”对人生之重要影响,指出要 “珍视过程”、“珍惜经历”、“走好人生的每一 步”。 如果对材料进行质疑,谈一个人不受经历、 遭遇的影响,不改初心,只要言之成理,亦符合题意。 如果只是浮泛地叙写某一次经历而未揭示对“我” 思想、人生等的深刻影响,或只是停留在对过去经历 的简单感动、感谢、难忘上,而未能揭示过去的经历 对现在之“我”的影响;或并未立足于过去的经历与 现在的“我”之间的关系而空泛立论的,均视为偏题, 赋分不宜超过42分。
修改习作要求
• 1.自拟题目 • 2.要求写记叙文。根据题意,要求写出过去 的经历对现在之“我”思想、人生等的深刻 影响,指出“珍视过程”、“珍惜经历”、 “走好人生的每一步”。 • 3. 力求文通句顺,订正错别字,修改病句。
• 4.邀请至少一位同学点评习作。
2017年苏锡常镇一模作文讲评
• 根据以下材料,选取角度,自拟题目, 写一篇不少于800字的文章,文体不限, 诗歌除外。 删除我经历过得任何一个瞬间,
我都不能成为今天的自己。
写一篇800字以上的记叙文。
• 一、关于审题立意 作文材料只有一个句子,这个句子以假设的口 吻阐述了“我”过去的经历对现在之“我”的影响。 这种影响是深刻的,而不是可有可无的。 • 说其深刻、影响深远,是指这些经历(或其中 之一)一定参与了“我”的生命构造,比如思想认 识的变化、人格的形成、人生价值的实现等。总之, 有了那样的过去,才有了现在这样的“我”。