【数学】2020苏锡常镇一模数学卷
【数学】江苏省苏锡常镇四市2020届高三第一次教学情况调研试题(解析版)

【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为 ;两个半球的半径都为1,则两个半球的体积为 ;则所求几何体的体积为
.
12.在△ABC中,( )⊥ ( >1),若角A的最大值为 ,则实数 的值是_______.
【答案】3
【解析】
,解得 =3.
故答案为:3.
13.若函数 (a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
【答案】(1, )
【解析】由题意知: 与 的图像在(1, )上恰有两个交点
考查临界情形: 与 切于 ,
.
故答案为: .
14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB= OC,则△ABC面积的最大值为_______.
(1)求A;
(2)已知a=2 ,B= ,求△ABC的面积.
解:(1)∵bcosA﹣ asinB=0.
∴由正弦定理可得:sinBcosA﹣ sinAsinB=0,
∵sinB>0,
∴cosA= sinA,
∴tanA= ,
∵A∈(0,π),
∴A= ;
(2)∵a=2 ,B= ,A= ,
∴C= ,根据正弦定理得到
【解析】由题意A B中有且只有一个元素,所以 ,即 .
故答案为: .
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.
【答案】0.08
【解析】首先求得 ,
.ቤተ መጻሕፍቲ ባይዱ
故答案为:0.08.
4.在平面直角坐标系xOy中,已知双曲线 (a>0)的一条渐近线方程为 ,则a=_______.
江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题(共14题;共14分)1.已知i为虚数单位,复数,则=________.2.已知集合A=,B=,若A B中有且只有一个元素,则实数a的值为________.3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是________.4.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=________.5.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是________.6.下图是一个算法的流程图,则输出的x的值为________.7.“直线l1:与直线l2:平行”是“a=2”的________条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.已知等差数列的前n项和为,,,则=________.9.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为________.10.已知,( ,),则=________.11.如图,在矩形ABCD中,E为边AD的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边BC所围成的平面图形绕直线AD旋转一周,则所形成的几何体的体积为________.12.在△ABC中,( )⊥( >1),若角A的最大值为,则实数的值是________.13.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是________.14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为________.二、解答题(共11题;共100分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.(1)求A;(2)已知a=2 ,B=,求△ABC的面积.16.如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.17.某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.已知函数(m R)的导函数为.(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意m R,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.20.已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.21.已知矩阵,且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sin q.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.23.已知正数x,y,z满足x+y+z=t(t为常数),且的最小值为,求实数t的值.24.某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k¹0)的直线交C于A,B 两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG 的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分一、填空题1.【答案】2.【答案】23.【答案】0.084.【答案】35.【答案】6.【答案】67.【答案】必要不充分8.【答案】-2n+19.【答案】y=x-310.【答案】11.【答案】12.【答案】313.【答案】(1,)14.【答案】二、解答题15.【答案】(1)解:∵b cos A﹣a sin B=0.∴由正弦定理可得:sin B cos A﹣sin A sin B=0,∵sin B>0,∴cos A=sin A,∴tan A=,∵A∈(0,π),∴A=(2)解:∵a=2 ,B=,A=,∴C=,根据正弦定理得到∴b=6,∴S△ABC=ab==616.【答案】(1)证明:连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD(2)证明:∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BD DE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC17.【答案】(1)解:以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1](2)解:设P( ,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P( ,)时视角∠EPF最大,答:P( ,)时,视角∠EPF最大18.【答案】(1)解:设焦距为2c,由题意知:;解得,所以椭圆的方程为(2)解:由(1)知:F(﹣1,0),设l:,D( ,),E( ,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为19.【答案】(1)解:因为,所以,所以,则,由题意可知,解得(2)解:由(1)可知,,所以因为整理得,设,则,所以单调递增,又因为,所以存在,使得,设,是关于开口向上的二次函数,则,设,则,令,则,所以单调递增,因为,所以存在,使得,即,当时,,当时,,所以在上单调递减,在上单调递增,所以,因为,所以,又由题意可知,所以,解得,所以正整数k的取值集合为{1,2}20.【答案】(1)解:因为,,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以(2)解:①证明:设数列的公差为,数列的公差为,当n为奇数时,,若,则当时,,即,与题意不符,所以,当n为偶数时,,,若,则当时,,即,与题意不符,所以,综上,,原命题得证;②假设可以为等比数列,设公比为q,因为,所以,所以,,因为当时,,所以当n为偶数,且时,,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列21.【答案】解:设矩阵M=,则AM=,所以,解得,所以M=,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x=0,所以属于特征值的的一个特征向量为22.【答案】(1)解:∵曲线C的极坐标方程为,∴,则,即(2)解:,∴,联立可得,(舍)或,公共点( ,3),化为极坐标(2 ,)23.【答案】解:因为即,当且仅当,,时,上述等号成立,所以,即,又x,y,z>0,所以x+y+z=t=424.【答案】(1)解:由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X10 20 40P所以随机变量X的数学期望(2)解:由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以25.【答案】(1)解:设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为(2)解:设点G( ,),由(1)可知,直线AB的方程为,即,将直线AB的方程与抛物线联立,,整理得,所以,,解得,因为直线AB的斜率,所以,且,线段AB的中点为M ,所以直线EM的方程为:,所以E点坐标为(0,),直线AB的方程整理得,则G到AB的距离,则E到AB的距离,所以,设,因为p是质数,且为整数,所以或,当时,,是无理数,不符题意,当时,,因为当时,,即是无理数,所以不符题意,当时,是无理数,不符题意,综上,当G点横坐标为整数时,S不是整数.11 / 11。
【附15套精选模拟试卷】江苏省无锡市2020届高三第一次模拟考试数学试卷含解析

江苏省无锡市2020届高三第一次模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示,则该几何体的体积为()A .12B .18C .24D .302.设命题2:,420p x R x x m ∀∈-+≥ (其中m 为常数),则“1m ≥”是“命题p 为真命题”( ) A .充分不必要 B .必要不充分C .充分且必要D .既不充分也不必要3.已知定义在R 上的函数()f x ,()g x 满足()()1g x f x =-,则函数()y g x =的图象关于( )A .直线1x =-对称B .直线1x =对称C .原点对称D .y 轴对称4.记双曲线()2222:10,0x y C a b a b -=>>的左焦点为F ,双曲线C 上的点,M N 关于原点对称,且3904MFN MOF ︒∠=∠=,则22b a=( )A .323+B .423+C .33D .435.为得到函数sin 33y x x =-的图象,只需要将函数2cos3y x =的图象( ) A .向左平行移动6π个单位 B .向右平行移动6π个单位 C .向左平行移动518π个单位 D .向右平行移动518π个单位6.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .7.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .2y x -= B .1y x -= C .2y x = D .13y x = 8.在V ABC 中,sin 32B A =,2BC =4C π=,则AB =( )A 26.5C .33.69.设正数,x y 满足,23x y x y >+=,则195x y x y+-+的最小值为( ) A .83B .3C .32 D .2310.已知双曲线2222:1(0,0)x y C a b a b-=>>的一个焦点为F ,点,A B 是C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过F 且交C 的左支于,M N 两点,若|MN|=2,ABF ∆的面积为8,则C 的渐近线方程为( ) A .3y x =B .33y x =±C .2y x =±D .12y x=± 11.某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A .18B .20C .24D .2612.设,x y 满足约束条件010x y a x y ++≥⎧⎨-+≤⎩,且2z x y =+的最小值为2,则a =( )A .-1B .-1C .53-D .53二、填空题:本题共4小题,每小题5分,共20分。
2020届江苏省苏锡常镇四市高三第一次教学情况调研数学试题(带答案解析)

(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.
25.已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.
评卷人
得分
二、解答题
15.在ቤተ መጻሕፍቲ ባይዱABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣ asinB=0.
(1)求A;
(2)已知a=2 ,B= ,求△ABC的面积.
16.如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.
2020届江苏省苏锡常镇四市高三第一次教学情况调研
数学试题
第II卷(非选择题)
评卷人
得分
一、填空题
1.已知i为虚数单位,复数 ,则 =_______.
2.已知集合A= ,B= ,若A B中有且只有一个元素,则实数a的值为_______.
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.
(1)求椭圆C的标准方程;
(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.
19.已知函数 (m R)的导函数为 .
(1)若函数 存在极值,求m的取值范围;
(2)设函数 (其中e为自然对数的底数),对任意m R,若关于x的不等式 在(0, )上恒成立,求正整数k的取值集合.
20.已知数列 , ,数列 满足 ,n .
(1)若 , ,求数列 的前2n项和 ;
江苏省无锡市2020年中考数学一模试卷解析版

题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. -4 的相反数是( )
A. 4
B.
C. -
D. -4
2. 下列图形中,是轴对称图形但不是中心对称图形的是( )
A.
B.
C.
D.
3. 下列各式中,计算正确的是( )
A. 8a-3b=5ab
B. (a2)3=a5
25. 如图,△ABC 的顶点 A,C 在⊙O 上,⊙O 与 AB 相交于点 D,连接 CD,∠A=30°,DC= . (1)求圆心 O 到弦 DC 的距离; (2)若∠ACB+∠ADC=180°,求证:BC 是⊙O 的切线.
26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为 30 元 件,每天 销售 件 与销售单价 元 之间存在一次函数关系,如图所示.
15. 一次函数 y1=mx+n 与 y2=-x+a 的图象如图所示,则 0<mx+n <-x+a 的解集为______.
第 2 页,共 23 页
16. 如图,在矩形 ABCD 中,AB=2DA,以点 A 为圆心,AB 为半 径的圆弧交 DC 于点 E,交 AD 的延长线于点 F,设 DA=2, 图中阴影部分的面积为______ .
D. 或 5
10. 已知直线 y=-x+7a+1 与直线 y=2x-2a+4 同时经过点 P,点 Q 是以 M(0,-1)为圆 心,MO 为半径的圆上的一个动点,则线段 PQ 的最小值为( )
A.
B.
C.
D.
二、填空题(本大题共 8 小题,共 16.0 分) 11. 分解因式:a3-4a=______.
2020年江苏省苏锡常镇四市高考数学模拟试卷(3月份)教学教材

2020年江苏省苏锡常镇四市高考数学模拟试卷(3月份)2020年江苏省苏锡常镇四市高考数学模拟试卷(3月份)一、填空题(共14题,共70分)1.已知i为虚数单位,复数,则|z|=.2.已知集合A={x|0≤x≤1},B={x|a﹣1≤x≤3},若A∩B中有且只有一个元素,则实数a的值为2.3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是0.08.4.在平面直角坐标系xOy中,已知双曲线的一条渐近线方程为,则a=3.5.甲乙两人下棋比赛,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是.6.如图是一个算法的流程图,则输出的x的值为6.7.“直线l1:ax+y+1=0与直线l2:4x+ay+3=0平行”是“a=2”的必要不充分条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n}的前n项和为S n,a1=9,=﹣4,则a n=﹣2n+11.9.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为y=x﹣3.10.已知3cos2α=4sin(﹣α),α∈(,π),则sin2α=﹣11.如图,在矩形ABCD中,E为边AD的中点,AB=1,BC=2,分别以A、D为圆心,1为半径作圆弧、(E在线段AD上).由两圆弧、及边BC所围成的平面图形绕直线AD旋转一周,则所形成的几何体的体积为.12.在△ABC中,(﹣λ)⊥(λ>1),若角A的最大值为,则实数λ的值是3.13.若函数f(x)=a x(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是(1,)14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O.若OB=OC,则△ABC面积的最大值是8二、解答题(共6题,共计90分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b cos A﹣a sin B=0.(1)求A;(2)已知a=2,B=,求△ABC的面积.16.如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.17.某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M 的距离为1(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.如图,在平面直角坐标系xoy中,已知椭圆C:的离心率为,且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积比为1:7,求直线l的方程.19.已知函数f(x)=x3﹣mx2+m2x(m∈R)的导函数f'(x).(1)若函数g(x)=f(x)﹣f'(x)存在极值,求m的取值范围;(2)设函数h(x)=f'(e x)+f'(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式h(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.20.已知数列{a n},{b n},数列{c n}满足c n=n∈N*.(1)若a n=n,b n=2n,求数列{c n}的前2n项和T2n;(2)若数列{a n}为等差数列,且对任意n∈N*,c n+1>c n恒成立.①当数列{b n}为等差数列,求证:数列{a n},{b n}的公差相等;②数列{b n}能否为等比数列?若能,请写出所有满足条件的数列{b n};若不能,请说明理由.三、附加题21.已知矩阵A=,B=,且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.在平面直角坐标系xOy中,曲线l的参数方程为(θ为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.23.已知正数x,y,z满足x+y+z=t(t为常数),且的最小值为,求实数t 的值.24.某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依此类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,交AB于点M,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.。
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
江苏省苏锡常镇四市2020~2021学年度第二学期高三一模数学试卷(含答案)

A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
1/15
【答案】A 【考点】文化题:等差数列的应用 【解析】由题意天干是公差为 10 的等差数列,地支为公差为 12 的等差数列,则 100 年前可 得到为辛酉年,故答案选 A. 4.(3-2x)(x+1)5 式中 x3 的系数为 A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15 【答案】C 【考点】二项式定理展开式的应用
9.函数 f (x) = sin 2x + π ,则
4
A.函数 y=f(x)的图象可由函数 y=sin2x 的图象向右平移 π4个单位得到 B.函数 y=f(x)的图象关于直线 x=π8轴对称
2/6
C.函数 y=f(x)的图象关于点 (-π8,0)中心对称
D.函数 y=x2+f(x)在 0,π 上为增函数 8
A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
4.(3-2x)(x+1)5 式中 x3 的系数为
A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15
( ) 5.函数 f (x) = sin x ln x2 +1 − x 的图象大致是
1/6
6.过抛物线 y2=2x上一点 P 作圆 C:x2 + (y − 6)2 = 1的切线,切点为 A,B,则当四边形
(2)设数列{an}的前 n 项和为 Sn ,证明:数列{sn}中的任意连续三项按适当顺序排列后,可
以成等差数列.
4/6
19.(12 分) 如图,在四棱锥 P-ABCD 中,△PAD 是以 AD 为斜边的等腰直角三角形,BC//AD,AB⊥ AD,AD=2AB=2BC=2,PC= 2,E 为 PD 的中点. (1)求直线 PB 与平面 PAC 所成角的正弦值; (2)设 F 是 BE 的中点,判断点 F 是否在平面 PAC 内,并请证明你的结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年~2020学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题1.已知i 为虚数单位,复数11z i=+,则z =#2.已知集合{}{}01,13A x x B x a x =≤≤=-≤≤,若A B ⋂中有且只有一个元素,则实数a 的值为#3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是#4.在平面直角坐标系xOy 中,已知双曲线2221(0)4x y a a -=>的一条渐近线方程为23y x =,则a =#5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是#6.右图是一个算法的流程图,则输出的x 的值为#7.“直线1:10l ax y ++=与直线2:430l x ay ++=平行”是“2a =”的#条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n a =#9.已知点M 是曲线22ln 3y x x x =+-上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为#10.已知3cos 24sin(),(,)44ππαααπ=-∈,则sin 2α=#11.如图在矩形ABCD 中,E 为边AD 的中点,.2,1==BC AB 分别以D A ,为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为#12.在ABC ∆中,()(1)AB AC BC λλ-⊥> ,若角A 的最大值为6π,则实数λ的值是#一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上。
13.若函数()(01)xf x a a a =>≠且在定义域[,]m n 上的值域是22[,](1)m n m n <<,则a 的取值范围是#14.如图,在ABC ∆中,4,AB D =是AB 的中点,E 在边AC 上,2,AE EC CD =与BE 交于点O ,若2,OB OC =则ABC ∆面积的最大值为#二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
15.(本小题满分14分)在ABC ∆中,角,,A B C 所对应的边分别是,,a b c ,且满足cos 3sin 0b A a B =(1)求A ;(2)已知23,3a B π==,求ABC ∆的面积.16.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,,BD BC PCD ⊥∆为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)证明:AP ∥平面EBD ;(2)证明:BE PC ⊥.某地为改善旅游环境进行景点改造.如图,将两条平行观光道21l l 和通过一段抛物线形状的栈道AB 连通(道路不计宽度),21l l 和所在直线的距离为0.5(百米),对岸堤岸线3l 平行于观光道且与2l 相距1.5(百米)(其中A 为抛物线的顶点,抛物线的对称轴垂直于3l ,且交3l 于M ),在堤岸线3l 上的F E ,两处建造建筑物,其中F E ,到M 的距离为1(百米),且F 恰在B 的正对岸(即3l BF ⊥).(1)在图②中建立适当的平面直角坐标系,并求栈道AB 的方程;(2)游客(视为点P )在栈道AB 的何处时,观测EF 的视角(EPF ∠)最大?请在(1)的坐标系中,写出观测点P 的坐标.如图,在平面直角坐标系xoy 中,已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为21且经过点B A ,231,,⎪⎭⎫⎝⎛分别为椭圆C 的左、右顶点,过左焦点F 的直线l 交椭圆C 于E D ,两点(其中x D 在轴上方).(1)求椭圆C 的标准方程;(2)若BDF AEF ∆∆与的面积比为1:7,求直线l 的方程.已知函数)(32)(223R m x m mx x x f ∈+-=的导函数).(x f '(1)若函数)()()(x f x f x g '-=存在极值,求m 的取值范围;(2)设函数)(ln )()(x f e f x h x'+'=(其中e 为自然对数的底数),对任意R m ∈,若关于x 的不等式22()0h x m k ≥++∞在(,)上恒成立,求正整数k 的取值集合.已知数列{}{},,n n b a 数列{}n c 满足*,,n n n a n c n N b n ⎧⎪=∈⎨⎪⎩为奇数,为偶数,.(1)若,2,nn n b n a ==求数列{}n c 的前n 2项和n T 2;(2)若数列{}n a 为等差数列,且对任意n n c c N n >∈+1*,恒成立.①当数列{}n b 为等差数列,求证:数列{}{}n n b a ,的公差相等;②数列{}n b 能否为等比数列?若能,请写出所有满足条件的数列{}n b ;若不能,请说明理由.2019年~2020学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题).A 选修2-4;矩阵与变换(本小题满分10分)已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=1132,1231B A ,且二阶矩阵M 满足B AM =,求M 的特征值及属于各特征值的一个特征向量。
.B 选修4-4;坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线l 的参数方程为⎪⎩⎪⎨⎧∂+=∂+=2cos 323cos 22y x (∂为参数),以原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 4=。
(1)求曲线C 的普通方程;(2)求曲线l 和曲线C 的公共点的极坐标。
C .选修4-5:不等式选讲(本小题满分10分)已知正数,,x y z 满足x y z t ++=(t 为常数),且22249x y z ++的最小值为87,求实数t 的值。
某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推)。
抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.已知抛物线py x C 4:2=(p 为大于2的质数)的焦点为,F 过点F 且斜率为)0(≠k k 的直线交B A C ,于两点,线段AB 的垂直平分线交y 轴于点E ,抛物线C 在点B A ,处的切线相交于点.G 记四边形AEBG 的面积为S .(1)求点G 的轨迹方程;(2)当点G 的横坐标为整数时,S 是否为整数?若是,请求出所有满足条件的S 的值;若不是,请说明理由.2019~2020学年度苏锡常镇高三教学情况调研(一)数学参考答案2020. 3数学I一、填空题:本大题共14小题,每小题5分,共计70分.1.豆2.23.0.084.35.ζJ-fAυ6.67.必要不充分8. -2月+119. x -y -3二。
10._!_91 I .生3二、解答题:本大题共6小题,共计90分.15.(本小题满分14分〉解:CI)因为bcosA-./3asinB = 0,所以由正弦定理可得si n B cos A -./3 s inA s inB = ,Q 12.313.(1, e e )14.gJ2... 2分因为O<B <ι所以sinB > 0,所以cos A= ./3s in A ,因为O<A <π,所以cos A= ./3sinA > 0,所以tanA=豆6分3π 大|诀1A E (0,叶,所以A=一.……………………………………………………..8分6 (2)因为α=2,'13, B =豆,A =豆,36 π 所以在D.A B C 中,C =一.………………………………………………………··四分2 2-J3 X 主。
b as in Bv J守由正弦定理二,可得b 二二二二6,…………………·12分sinA sinBsinAl2所以S A AU 「二_!_ab = _!_ X 2./3 X 6 = 6./3 . '' '''''……………………………………· 14封<-..>n u 」2 216.C本小题满分14分〕证:C I )连结A C 交BD 于0,因为ABCD 为平行四边形,所以0为AC 的中点.连结EO ,在L-.PAC 中,因为E是PC 的中点,所以EOI/AP. ………………·2分又因为AP cr.平面EBD,EOc 平面EBD,所以A P //平面E B D .………………………………………………………………·6分(2)因为L-.PDC 为正三角形,E 是PC 的中点,所以DE 1-PC.………………………………………………………………………8分又因为平面PCD .l_平面ABCD ,平面PCD 门平面ABCD =DC ,且BD 1-DC,BD c平面ABCD ,所以BD 土平面PCD.X y当且仅当1.二]_二三时取等号,此时,主二之二Z , x+ y +z 二4,解得X 二三,2 3 1 4 9., 18 2 x 2 v 2 "J y =一,z =一.所以+三一+z 2的最小值为,…………………….. 8分7 7 49 14 因为三+豆+z 2的最小值为一,所以=一,又因为t =x +y+z >O,8 t 2 8 49 7 14 7 所以解得t = 4. ……………………………………………………………………· 10分22.C 本小题满分10分〉解:C 1) X 的所有可能取值有10,20, 40. 按规则摸出三个小球的情况共有5×4×3=60种.………………………………. 1分其中“一次比一次大”和“一次比一次小”的情况都恰有可二10种,10 1 所以P(X = 40) =一=一,606 10 1P(X =20) =一=一,60 6 阳=10) = 1一阳=40)-P(X=20)=f,故获奖金额X的概率分布为X 1020 2 3 6 2 1 1 50其数学期望E(X )二10×一+20×一+40×一二一.3 6 6 3 40 ... 4分6 50一答:获奖金额X 的数学期望为兀·……………………………………………·6分3 (2)记“获得的奖金恰好为60元”为事件A .赵四购物恰好满600元,则他有3次抽奖机会,各次抽奖结果相互独立.事件A包含:三次都是二等奖:一次一等奖及两次三等奖.1 1。