2014苏锡常镇一模数学(试题含答案)

合集下载

数学_2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷(含答案)

数学_2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷(含答案)

2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合A ={1, 2, 3, 4},B ={m, 4, 7},若A ∩B ={1, 4},则A ∪B =________.2. 若复数z =1+3i 1−i (i 为虚数单位),则|z|=________.3. 已知双曲线x 2m−y 28=1的离心率为√3,则实数m 的值为________.4. 一容量为20的样本数据,分组后,组距与频数如下:[10, 20],2;(20, 30],3;(30, 40],4;(40, 50],5;(50, 60],4;(60, 70],2.则样本在(10, 50]上的频率是________.5. 执行如图所示的算法流程图,则最后输出的y 等于________.6. 设函数f(x)=αsinx +x 2,若f(1)=0,则f(−1)的值为________.7. 四棱锥P −ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA =4,则PC 与底面ABCD 所成角的正切值为________.8. 从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为________.9. 已知tan(α+β)=25,tanβ=13,则tan(α+π4)的值为________.10. 设等差数列{a n }的前n 项和为S n ,若a 1=−3,a k+1=32,S k =−12,则正整数k =________.11. 已知正数x ,y 满足x +2y =2,则x+8y xy的最小值为________.12. 如图,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD → // AG →,若AD →=15AB →+λAC →(λ∈R),则λ的值为________.13. 已知函数f(x)={(2x−x2)e x,x≤0,−x2+4x+3,x>0,g(x)=f(x)+2k,若函数g(x)恰有两个不同的零点,则实数k的取值范围为________.14. 在平面直角坐标系xOy中,已知点P(3, 0)在圆C:x2+y2−2mx−4y+m2−28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 设函数f(x)=6cos2x−2√3sinxcosx.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(B)=0且b=2,cosA=45,求a和sinC.16. 如图,在三棱柱ABC−A1B1C1中,侧面AA1B1B为菱形,且∠A1AB=60∘,AC=BC,D是AB的中点.(1)求证:平面A1DC⊥平面ABC;(2)求证:BC1 // 平面A1DC.17. 一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求θ的值,使体积V最大.18.如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A(3√2, 3√22),B(−3, −3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM →⋅ON →为定值并求出该定值.19. 设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n+1+λ)a n =(S n +1)a n+1对一切n ∈N ∗都成立.(1)若λ=1,求数列{a n }的通项公式; (2)求λ的值,使数列{a n }是等差数列. 20. 已知函数f(x)=mx −αlnx −m ,g(x)=ex e x,其中m ,α均为实数.(1)求g(x)的极值;(2)设m =1,α<0,若对任意的x 1,x 2∈[3, 4](x 1≠x 2),|f(x 2)−f(x 1)|<|1g(x 2)−1g(x 1)|恒成立,求a 的最小值;(3)设α=2,若对任意给定的x 0∈(0, e],在区间(0, e]上总存在t 1、t 2(t 1≠t 2),使得f(t 1)=f(t 2)=g(x 0)成立,求m 的取值范围.选修4-1:几何证明选讲 三、附加题【选做题】在21-24四小题中只能选做两题,每小题10分,第25题、第26题必做题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.21. 如图,⊙O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CDAB =ABBE .选修4-2:矩阵与变换22. 已知M =|1221|,β=|17|,计算M 5β.选修4-4:坐标系与参数方程23. 在平面直角坐标系xOy 中,圆的参数方程为{x =2+2cosαy =2sinα(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的直角坐标方程; (2)圆的极坐标方程.选修4-5:不等式选讲24. 已知函数f(x)=|x +1|+|x −2|−|α2−2α|,若函数f(x)的图象恒在x 轴上方,求实数α的取值范围.[必做题]第25、26题,每题10分,共计20分。

2014年高考江苏数学试题及答案

2014年高考江苏数学试题及答案

2014 年一般高等学校招生全国一致考试(江苏卷)数学Ⅰ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第 14 题)、解答题(第15 题第20题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务势必自己的姓名、准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点.3.请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面洁净,不要折叠、损坏.一律禁止使用胶带纸、修正液、可擦洗的圆珠笔.参照公式:圆柱的体积公式:V圆柱sh ,此中 s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱 =cl ,此中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14 小题,每题 5 分,合计70 分.请把答案填写在答题卡相应地点上.........( 1)【 2014 年江苏, 1, 5 分】已知会合A{ 2 , 1,3,4} , B{1,2,3} ,则A I B _______ .【答案】 {1,3}【分析】由题意得 A I B {1,3} .( 2)【 2014 年江苏, 2, 5 分】已知复数z(52i)2( i 为虚数单位),则z的实部为_______.【答案】 21【分析】由题意z(52i) 225 2 52i(2i) 22120i,其实部为 21.( 3)【 2014 年江苏, 3, 5 分】右图是一个算法流程图,则输出的n 的值是 _______.【答案】 5【分析】此题本质上就是求不等式2n20的最小整数解.2n20整数解为 n5,所以输出的 n 5.( 4)【 2014 年江苏, 4, 5 分】从 1,2 ,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是 _______.【答案】132 个数共有 C42【分析】从1,2,3,6这 4 个数中任取6种取法,此中乘积为 6 的有1,6和2,3两种取法,所以所求概率为P2 1 .63( 5)【 2014年江苏, 5, 5 分】已知函数y cosx 与y sin(2 x)(0 ≤) ,它们的图象有一个横坐标为的交点,则的值是 _______ .3【答案】6【分析】由题意 cos sin(23) ,即 sin(2) 1 , 2k( 1)k, (k Z ) ,因为 0,所33236以.6( 6)【 2014 年江苏, 6, 5 分】为了认识一片经济林的生长状况,随机抽测了此中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频次散布直方图如下图,则在抽测的 60 株树木中,有株树木的底部周长小于 100 cm.【答案】 24【分析】由题意在抽测的60 株树木中,底部周长小于100cm 的株数为(0.0150.025) 10 6024 .( 7)【 2014 年江苏, 7,5 分】在各项均为正数的等比数列 { a n } 中,若 a 2 1 ,a 8 a 6 2a 4 ,则 a 6 的值是 ________.【答案】 4【分析】设公比为 q ,因为 a 21 ,则由 a 8a 6 2a 4 得 q 6 q 42a 2 , q 4 q 2 2 0 ,解得 q 22 ,所以a 6 a 2 q 4 4 .( 8)【 2014 年江苏, 8,5 分】设甲、乙两个圆柱的底面积分别为S 1 ,S 2 ,体积分别为 V 1 ,V 2 ,若它们的侧面积相等,且S 19,则V 1的值是 _______.S 24V 2【答案】32r2h r 2S9 【分析】设甲、乙两个圆柱的底面和高分别为r 1、h 1 , r 2、h 2 ,则 2 r 1 h 12 r 2 h 2 ,1,又11,所h 2r 1S 22r 24以r 1 3V 1r 12 h 1r 12 h 1 r 12 r 2r 1 3r 22 ,则r 22 h 2 r 22 h 2 r 22 r 1 r 2 .V 2 2( 9)【 2014 年江苏, 9,5 分】在平面直角坐标系 xOy 中,直线 x 2 y 3 0 被圆 ( x 2)2 ( y 1)2 4 截得的弦长为 ________.【答案】 2 555【分析】圆 (x2) 2 ( y 1)2 4 的圆心为 C (2, 1) ,半径为 r 2 ,点 C 到直线 x 2y 3 0 的距离为2 2 ( 1)3 3 ,所求弦长为 l 2 r 2 d 2 24 9 2 55 . d12 2255 5 ( 10)【 2014 年江苏, 10, 5 分】已知函数 f ( x)x 2 mx 1 ,若对随意 x [ m ,m 1] ,都有 f (x) 0 成立,则实数 m 的取值范围是 ________.【答案】2 ,2【分析】据题意 f (m)m 2 m 2 1 0,解得2 m 0 .f (m 1) (m1)2 m(m 1) 1 0 2( 11)【 2014 年江苏, 11, 5 分】在平面直角坐标系 xOy 中,若曲线 y ax 2bx ( a ,b 为常数 ) 过点 P(2 , 5) ,且该曲线在点 P 处的切线与直线 7 x 2 y 3 0 平行,则 a b 的值是 ________. 【答案】3【分析】曲线y ax 2b过点 P(2, 5) ,则 4ab 5 ①,又 y ' 2ax b 2 ,所以 4a b 7②,由①②解得x2x42a1,所以 ab2 .b 1( 12)【 2014 年江苏, 12, 5 分】如图,在平行四边形 ABCD 中,已知, AB 8,AD 5 ,uuur uuur uuur uuur uuur uuurCP 3PD , BP 2 ,则 AB AD 的值是 ________.AP【答案】 22 uuur uuur uuur uuur 1 uuur uuur uuur uuur uuur 3 uuur uuur 3 uuur【分析】由题意, AP AD DP AD AB ,BP BC CP BC 4 CD AD AB ,4 3 uuur 1 uuur 4uuur uuur uuur 1 uuur uuur uuur 2 uuur 3 uuur 2所以 AP BP ( AD AB) (AD AB) AD AD AB AB ,4 4 2 16即 2 1 uuur uuur 3 uuur uuur25 AD AB 16 64 ,解得 AD AB 22.21( 13)【 2014 年江苏, 13,5 分】已知 f ( x) 是定义在 R 上且周期为 3 的函数, 当 x [0 ,3) 时,2.2f ( x) x 2x若函数 y f ( x)a 在区间 [ 3 ,4] 上有 10 个零点 ( 互不同样 ) ,则实数 a 的取值范围是 ________.【答案】 10 ,2【分析】作出函数f ( x)x22x 1 , x [0,3) 的图象,可见 f (0)1,当 x 1时, f ( x)极大1 ,222f (3)7,方程 f (x) a 0 在 x [ 3,4] 上有 10 个零点,即函数y f ( x) 和图象与直线2ya 与函数ya 在 [ 3,4] 上有 10 个交点,因为函数f ( x) 的周期为 3,所以直线f ( x)x 2 2 x 1 , x [0,3) 的应当是4 个交点,则有 a (0, 1 ) .22( 14)【 2014 年江苏, 14, 5 分】若 ABC 的内角知足 sin A 2 sin B 2sin C ,则 cosC 的最小值是 _______ .【答案】6 24a 2b 22a 2b 2( a2b )2【分析】由已知 sin A2sin B 2sin C 及正弦定理可得 a2b 2c , cosCc 22ab2ab3a22b 22 2ab2 6ab 22ab6 2,当且仅当 3a 22b2,即 a2时等号成立, 所以 cosC8ab8ab4b3的最小值为6 2 .4二、解答题:本大题共6 小题,合计 90 分.请在答题卡指定地区内 作答,解答时应写出必需的文字说明、证明........过程或演算步骤.( 15)【 2014 年江苏, 15, 14 分】已知, , sin 5 .25( 1)求 sin4的值;( 2)求 cos62的值.解:( 1)∵2, ,sin 5,∴ cos1 sin 22 5 ,55sinsin coscos sin2(cos sin)10 .444210( 2)∵ sin 22sincos4,cos 2cos 2 sin 23 ,55∴cos62cos 6 cos2sinsin 233 14 3 3 4 .6 25 2 5 10( 16)【 2014 年江苏, 16, 14 分】如图,在三棱锥 PABC 中, D ,E ,F 分别为棱 PC ,AC ,AB 的中点.已知PA AC ,PA 6,BC 8,DF 5 .( 1)求证:直线 PA ∥平面 DEF ;( 2)平面 BDE ⊥平面 ABC .解:( 1)∵ D ,E 为 PC ,AC 中点∴ DE ∥ PA ∵ PA平面 DEF , DE 平面 DEF ∴PA ∥平面 DEF .( 2)∵ D ,E 为 PC ,AC 中点,∴ DE1PA3∵E ,F 为 AC ,AB 中点,∴EF1BC 4 ,2,∴ DE ⊥ EF ,∵2∴222,∴,,∴,DEEFDFDEF90°DE //PA PA ACDEAC∵ ACI EF E ,∴ DE ⊥平面 ABC ,∵ DE 平面 BDE ,∴平面 BDE ⊥平面 ABC .( 17)【 2014 年江苏, 17,14 分】如图,在平面直角坐标系 xOy 中, 1 2 y 21(a b 0)的左、2分别是椭圆 x22F ,Fab右焦点,极点 B 的坐标为 (0 ,b) ,连结2C ,BF 并延伸交椭圆于点 A ,过点 A 作 x 轴的垂线交椭圆于另一点连结 FC 1 .( 1)若点 C 的坐标为4 1,且 BF 22 ,求椭圆的方程;3 ,3( 2)若 FC 1AB ,求椭圆离心率 e 的值.4 1 16 1解:( 1)∵ C9922 2 2 2( 2)2 22,,∴ a 2b 22b c a ,∴a,∴ b 1 ,3 39,∵ BF∴椭圆方程为x 2y 2 1 .( 2)设焦点 212A Cx 轴对称,∴A(xy),∵ , ,, 对于∵2b b y ,即 bx cy bc 0 ①B ,F ,A 三点共线,∴cx∵ 1AB ,∴ x yb1 ,即xc byc20 ②ccFCx ca 2a 2 c 2bc 2 ①②联立方程组,解得b 2c 2∴ C2bc 2b 2 2 , 2 2yc b cb 2c 2a 2c22bc 22C 在椭圆上,∴b 2c 2b 2c 222c55a 2b 2 1 ,化简得 5c a ,∴ a 5 , 故离心率为 5 .( 18)【 2014 年江苏, 18,16 分】如图,为保护河上古桥 ,规划建一座新桥 ,同时建立一个圆形保护区.规OABC划要求:新桥 BC 与河岸 AB 垂直;保护区的界限为圆心M 在线段 OA 上并与 BC 相切的圆,且古桥两头 O和 A 到该圆上随意一点的距离均许多于 80m .经丈量,点 A 位于点 O 正北方向 60m 处,点 C 位于点 O 正东方向170m 处 ( OC 为河岸 ) , tan BCO 43 .( 1)求新桥 BC 的长;( 2)当 OM 多长时,圆形保护区的面积最大?.解:解法一:( 1)如图,以 O 为坐标原点, OC 所在直线为 x 轴,成立平面直角坐标系xOy .由条件知 A (0, 60) , C (170, 0) ,直线 BC 的斜率 k BC-tan BCO4 .3又因为⊥,所以直线 的斜率k AB3.设点 B 的坐标为 ( a , b ) ,AB BCAB4则 k BC = b 04, kAB =b603,解得 a =80, b=120.a 1703a 04所以 =22.所以新桥 的长是 .BC(17080)(0120) 150 150 mBC( 2)设保护区的界限圆M 的半径为 r m,OM =d m,(0 ≤ d ≤60) .由条件知,直线BC 的方程为 y4( x 170) ,即 4 x 3y680 0,3| 3d 680 |680 3d .因为圆 M 与直线 BC 相切,故点 M (0 ,d ) 到直线 BC 的距离是 r ,即 r因为 O 和 A 到圆 M 上随意一点的距离均许多于 80 m ,5 5rd ≥ 806803dd ≥ 805,解得 10≤ d ≤35.所以 ,即r (60 d ) ≥ 80 3d680 (60 d ) ≥ 805故当 d =10 时 , r 6803d最大,即圆面积最大. 所以当 OM = 10 m 时,圆形保护区的面积最大. 解法二: 5( 1)如图,延伸 OA , CB 交于点 F .因为 tan ∠ BCO = 4 .所以 sin ∠ FCO = 4 ,cos ∠ FCO = 3.3 5 5 因为 OA =60, OC =170,所以 OF =OC tan ∠ FCO = 680. CF = OC 850 ,3 cos FCO 3进而500 .因为 ⊥ ,所以 ∠ ∠4,又因为⊥ ,所以=AF OF OAcos AFB =sin AB BCBF AF3OA OC FCO = 5cos ∠ AFB ==400,进而 BC =CF -BF =150.所以新桥 BC 的长是 150 m .3( 2)设保护区的界限圆 M 与 BC 的切点为 D ,连结 MD ,则 MD ⊥BC ,且 MD 是圆 M 的半径,并设 MD =r m ,OM =d m(0≤ d ≤60) .因为 OA ⊥ OC ,所以 sin ∠ CFO =cos ∠ FCO ,故由( 1)知, sin ∠ CFO =MDMD r 3所以 r 680 3d .MFOF OM680 d 553因为 O 和 A 到圆 M 上随意一点的距离均许多于80 m ,rd ≥ 80680 3dd ≥ 80510≤ d ≤ 35所以,即,解得 ,r (60 d ) ≥ 80 680 3d(60 d ) ≥ 805故当 d =10 时, r6805 3d最大,即圆面积最大.所以当 OM = 10 m 时,圆形保护区的面积最大.f (x) e x e x 此中 e 是自然对数的底数.( 19)【 2014 年江苏, 19, 16 分】已知函数( 1)证明: f ( x) 是 R 上的偶函数;( 2)若对于 x 的不等式 mf x ≤ e x m1在 (0 ,)上恒成立,务实数m( )的取值范围;( 3)已知正数 a 知足:存在[1,a(x 3a 1 与a e 1的大小,并证明x) ,使得 f ( x )3x ) 成立.试比较 e你的结论.解:( 1)xR ,f (x ) e xe xf ( )x ,∴ f (x) 是 R 上的偶函数.( 2)由题意, xxxxxxxx(e e )≤e m 1,即m(ee 1)≤ e 1,∵x (0 ,) ,∴e e 1 0 ,m即 m ≤x e xx 1对 x(0 , ) 恒成立.令te x ( 1),则 m ≤21 t对随意 t (1,) 恒成立.ee1ttt 1∵t 21 t1 (t2t11) 1 11≥ 1,当且仅当 t 2 时等号成立,∴ m ≤ 1 .t1)(tt 1t 11 33'( ) e xe x( 3) f ,当时∴在 ,上单一增, 令 h( x)33x) ,,x 1f '( x)f (x)) a( x3ax( x 1)(1h'( x)∵ a0 ,x 1,∴ h '(x)0 ,即 h( x) 在 x (1,) 上单一减,∵存在 x 0e-1∵ lnaa 1ea1e2[1,ln a e 11e .当 ) ,使得f ( x 0 ) a( x 0 33x 0 ) ,∴ f (1) e 1 2a ,即 a1 e 1 . e2 eln e a 1 (e 1)ln a a 1 , 设 m(a) (e 1)ln a a1 , 则 m'(a)e1 1 e 1 a ,a a1 e 1a e1时, m'(a) 0 , m(a ) 单一增;当 a e1 时, m'(a ) 0 , m(a ) 单一2e减,所以 m(a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时, m(a) 0 , a e 1 e a 1 ;当1e 1 a e 时, m(a) 0 , a e 1 e a 1;当 a e 时, m(a) 0 , a e 1 e a 1 .2 e( 20)【 2014 年江苏,20,16 分】设数列 { n} 的前 n nn ,总存在正整数nm,a 项和为 S .若对随意的正整数m ,使得 Sa 则称 { a n } 是“ H 数列”.( 1)若数列 { n }nnN )na 的前 n 项和 S 2 (n ,证明: { a } 是“ H 数列”;( 2)设 a} 是等差数列,其首项 a1,公差 d.若 { a }是“ H 数列”,求 d 的值;{ n1n( 3)证明:对随意的等差数列{ a n}nn,使得 a nnnN)成立.解:( 1)当 n ≥ 2 时,,总存在两个“ H 数列” { b } 和 { c }bc (na nnn 12n2 n 12n 1 ,当n 1 时,11,S Sa S 2∴n 1 时,11na n 1,∴n} 是“ H 数列”.S a ,当 n ≥ 2 时, S{ a( 2) n1n(n 1) d nn(n 1) dn N , m N nmn n(n1)d 1 (m 1)dS na,对,22使 Sa ,即21取 n 2 得 1 d( m 1)d , m 2 ,∵ d 0 ,∴ m 2 ,又 m N ,∴ m 1,∴ d1.d( 3)设 ad ,令 b a (n 1)a (2 n) a ,对 n N, b b a c (n 1)(a d),{ n} 的公差为 n111n 1n1, n1对 n N , c c a d ,则 b c na 1(n 1)d a ,且 { b } ,{c } 为等差数列.n 1n1nnnnn的前 n 项和 T nna 1 n( n 1) ( a 1 ) ,令n1,则 mn(n 3)2 .{ b }2T (2m)a2当 n 1时 m1;当 n 2 时 m 1;当 n ≥ 3 时,因为 n 与 n 3 奇偶性不一样, 即 n(n 3) 非负偶数, m N .所以对n ,都可找到 m N T b {b } 为“ H 数列”.,使 n m 成立,即 n{c n } 的前n项和 R nn(n1)(a 1d ) ,令 c n(m 1)(a 1 d ) R m ,则 m n(n 1) 1n22∵对N , n(n 1) 是非负偶数,∴ mN,即对n N,都可找到 mN,使得Rcnm成立,即 {c n } 为“ H 数列”,所以命题得证.数学Ⅱ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试,21 题有 A 、 B 、 C 、 D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了 3 题或 4 题,则按选做题中的前 2 题计分.第 22、 23 题为必答题.每题10 分,共 40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2. 答题前, 请您务势必自己的姓名、 准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点. 3. 请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚. 4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】此题包含A 、B 、C 、D 四小题,请选定此中两题,并在相应的答题地区内作答 ,若多做,则按作答...... ............的前两题评分.解答时应写出文字说明、证明过程或演算步骤.( 21-A )【 2014 年江苏, 21-A , 10 分】(选修 4-1 :几何证明选讲)如图,AB 是圆 O 的直径, C 、 D是圆 O 上位于 AB 异侧的两点.证明:∠ OCB =∠ D .解:因为 , 是圆 O 上的两点,所以 = .故∠ =∠ .又因为 ,是圆 O 上位于 AB 异侧B COB OCOCBBC D的两点,故∠ B ,∠ D 为同弧所对的两个圆周角,所以∠B =∠ D .所以∠ OCB =∠ D .( 21-B )【 2014 年江苏, 21-B ,10 分】(选修 4-2 :矩阵与变换) 已知矩阵 A1 2112 1, B2,向量,x1yx ,y 为实数,若 A α= B α,求 x ,y 的值.解: A 2 y 2 , B α 2 y ,由 A α= B α得2 y 2 2,1,y 4 .y解得 x2 xy 4 y2 xy 4 y , 2( 21-C )【 2014 年江苏, 21-C , 10 分】(选修 4-4 :坐标系与参数方程)在平面直角坐标系xOy 中,已知直线 lx1 2t , 的参数方程为2 ( t 为参数 ) ,直线 l 与抛物线 y 2 4x 交于 A ,B 两点,求线段 AB 的长. y22 t2解:直线 l :x y 3 代入抛物线方程 y 2 4x 并整理得 x 2 10x 9 0,∴交点 A(1,2) ,B(9, 6),故| AB | 8 2 .( 21-D )【 2014 年江苏,21-D ,10 分】(选修 4-5 :不等式选讲)已知 x 0 ,y 0 ,证明: 1 x y 21 x2 y 9 xy .解:因为 x >0, y >0, 所以 1+x +y 2≥ 3 3 xy 2 0 ,1+x 2+y ≥ 33 x 2 y0 ,所以 (1+ x +y 2)( 1+x 2+y ) ≥ 3 3 xy 2 33 x 2 y =9xy . 【必做】第 22、 23 题,每题 10 分,计 20 分.请把答案写在答题 卡的指定地区内 . .... ....... ( 22)【 2014 年江苏, 22,10 分】盒中共有 9 个球,此中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完整同样.( 1)从盒中一次随机拿出 2 个球,求拿出的 2 个球颜色同样的概率 ;P( 2)从盒中一次随机拿出 4 个球,此中红球、黄球、绿球的个数分别记为x 1 ,x 2 ,x 3 ,随机变量 X 表示 x 1 ,x 2 ,x 3中的最大数,求 X 的概率散布和数学希望 E ( X ) .解:( 1)一次取 2 个球共有 C 92 36 种可能状况, 2 个球颜色同样共有 C 42C 32 C 22 10种可能状况,∴拿出的 2 个球颜色同样的概率P10536 18 .43131( 2)X 的全部可能取值为 4 ,3,2 ,则 P( X4)C 4 1;P(X 3)C 4 C 5C 3C 613 ;43C 9126C 963P( X 2) 1 P( X3) P( X4)11 .∴ X 的概率散布列为: X142 3 4P11 13114 63126故X 的数学希望E(X )2 113 134 1 20 .14631269( 23)【 2014 年江苏, 23, 10 分】已知函数 f 0 ( x)sin x (x 0) ,设 f n (x) 为 f n 1 ( x) 的导数, n N .x( 1)求2 f 1 2 2 f 2 2的值;( 2)证明:对随意的 n N ,等式 nf n14f n 4 2成立.42解:( 1)由已知,得 f (x)f (x) sin xcos x sin x ,1x x x 2于是 f 2 ( x)f 1 (x)cos xsin x sin x 2cos x2sin x,所以 f 1 () 4) 216 xx 2xx 2x 32 2 , f 2 (3 ,2故 2 f 1 ( ) f 2 ( ) 1 .2 2 2 x 求导,得( 2)由已知,得 xf (x) sin x, 等式两边分别对 f 0(x) xf ( x) cosx ,即 f 0( x) xf ( x) cos x sin( x 2 ) ,近似可得 2 f 1(x) xf (x) sin x sin(x ) ,123 f 2 ( x) xf 3 ( x)cos x sin( x3 ) ,4 f 3 ( x) xf 4 (x) sinx sin(x 2 ) .2下边用数学概括法证明等式nf n 1 ( x) xf n ( x) sin( xn ) 对全部的 n N * 都成立. ( i )当 n =1 时,由上可知等式成立.2( ii )假定当 n =k 时等式成立 ,即 kf k 1 ( x) xf k (x) sin( x k ) .2因为 [kf k 1 ( x) xf k (x)] kf k 1 (x) f k ( x) xf k ( x)(k 1) f k ( x) f k 1 ( x),[sin( xk )]cos( x k ) ( xk ) sin[ x ( k 1) ],所以22( k 1) 22( k 1) f k( x) f k 1( x) sin[ x ] .2所以当 n=k +1时, 等式也成立.综合 (i),(ii)可知等式 nf n 1 ( x) xf n ( x) sin( x n ) 对全部的 n N * 都成立.2n *2*令 x 4 ,可得 nf n 1 ( 4 )4 f n ( 4 ) sin( 42 ) ( n N ) .所以 nf n 1 ( 4 )4 f n ( 4 )2 ( n N ) .。

苏锡常镇高三数学一模试卷及参考答案纯word版

苏锡常镇高三数学一模试卷及参考答案纯word版

▲.
,若函数
C1
B1
A
O
(第 12 题)
C (第 16 题)
B
G D
D
A1
C
A
17.(本小题满分 14 分) 一个圆柱形圆木的底面半径为 1m,长为 10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中 一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形 ABCD (如图所示,其中 O 为圆心, C, D 在半圆上),设 BOC q ,木梁的体积为 V(单位:m3),表面积为 S(单位:m2). (1)求 V 关于 θ 的函数表达式; (2)求 q 的值,使体积 V 最大; (3)问当木梁的体积 V 最大时,其表面积 S 是否也最大?请说明理由.
且 PA = 4,则 PC 与底面 ABCD 所成角的正切值为 ▲ .
8.从甲,乙,丙,丁 4 个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 ▲ .
9.已知
tan(a

b)
10.设等差数列an的前 n 项和为 Sn

2 5

tan
b

1 3
,则
tan
,若 a1

a
+

p 4

AG
13.已知函数
,若
AD
f
(

x)
1
5

AB
(2x x 2

AC

(
x2 )ex , x ≤ 4x 3, x

g(x) 恰有两个不同的零点,则实数 k 的取值范围为 ▲ .
14.在平面直角坐标系 xOy 中,已知点 P(3, 0) 在圆

2014年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2014年普通高等学校招生全国统一考试(某某卷)圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则(第3题)100 80 90 110 120 底部周长/cm(第6题)21V V 的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值X 围是▲ .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值X 围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第12题)PDCA17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程; (2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,某某数m 的取值X 围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB= ∠D .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵 1 2 1 1,1 x 2 -1A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,向量 2a y ⎡⎤=⎢⎥⎣⎦,x ,y 为实数. 若Aa =Ba ,求x+y 的值.C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线 l 的参数方程为 212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与抛物线24y x =相交于A ,B 两点,求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分10分)已知x>0,y>0,证明: 22(1)(1)9x y x y xy ++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出 4个球,其中红球、黄球、绿球的个数分别记为 123,,x x x ,随机 变量X 表示123,,x x x 中的最大数,求X 的概率分布和数学期望E(X). 23.(本小题满分10分) 已知函数 0sin ()(0)xf x x x=>,设 ()n f x 为 1()n f x -的导数,n N *∈. (1)求 122222f f πππ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值; (2)证明:对任意的 n N *∈,等式 124442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.。

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

属于根底题,难度系数较小。

2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。

【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。

属于根底题,难度系数较小。

〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。

此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。

属于根底题,难度系数较小。

4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。

【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。

2014年苏锡常镇高三数学一模试卷及参考答案(纯word版)

2014年苏锡常镇高三数学一模试卷及参考答案(纯word版)

2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题命题单位:常州市教育科学研究院 2014.3参考公式:柱体的体积公式:V 柱体=Sh ,其中S 是柱体的底面积,h 是高.直棱柱的侧面积公式:S 直棱柱侧=ch ,其中c 是直棱柱的底面周长,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B =,则AB = .2.若复数z =13i1i+-(i 为虚数单位),则 | z | = . 3.已知双曲线2218x y m -=m 的值为 .4.一个容量为20的样本数据分组后,分组与频数分别如下:(]10,20,2; (]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 .5.执行如图所示的算法流程图,则最后输出的y 等于 . 6.设函数2()sin f x a x x =+,若(1)0f =,则(1)f -的值为 .7.四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,P A ⊥底面ABCD 且P A = 4, 则PC 与底面ABCD 所成角的正切值为 .8.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 .9.已知2tan()5+=,1tan 3=,则)4tan(π+a 的值为 . 10.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=,12k S =-,则正整数k = .11.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .12.如图,在△ABC 中,BO 为边AC 上的中线,2BG GO =,设CD ∥AG ,若15AD AB AC =+λ()∈R λ,则λ的值为 .13.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不(第5题)(第12题)ABCDOG同的零点,则实数k 的取值范围为 .14.在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)设函数2()6cos cos f x x x x =-. (1)求()f x 的最小正周期和值域;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若()0f B =且2b =,4cos 5A =,求a 和sin C .16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点.(1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .17.(本小题满分14分)一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分.现要把其中111DC B AC BA (第16题)一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,,C D 在半圆上),设BOC∠=,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy中,已知A,B,C是椭圆22221(0)x ya ba b+=>>上不同的三点,θD CB A O(第17题)2A,(3,3)B--,C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明OM ON⋅为定值并求出该定值.19.(本小题满分16分)设各项均为正数的数列{}n a的前n项和为S n,已知11a=,且11()(1)n n n nS a S aλ+++=+对一切*n∈N 都成立.(第18题)(1)若λ = 1,求数列{}n a的通项公式;(2)求λ的值,使数列{}n a是等差数列.20.(本小题满分16分)已知函数e()ln,()e xxf x mx a x mg x=--=,其中m,a均为实数.(1)求()g x的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立, 求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区......域.内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,⊙O为四边形ABCD的外接圆,且AB AD=,E是CB延长线上一点,直线EA与圆O相切.求证:CD AB AB BE=.B.选修4—2:矩阵与变换已知矩阵1221⎡⎤=⎢⎥⎣⎦M,17⎡⎤=⎢⎥⎣⎦β,计算6Mβ.C.选修4—4:坐标系与参数方程在平面直角坐标系xOy中,圆的参数方程为22cos,()2sinxy=+⎧⎨=⎩为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.D.选修4—5:不等式选讲已知函数2()122f x x x a a=++---,若函数()f x的图象恒在x轴上方,求实数a的取值范围.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影E (第21-A题)响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次. (1)求甲同学至少有4次投中的概率; (2)求乙同学投篮次数的分布列和数学期望.23.(本小题满分10分)设01212(1)m m n n n n n m S C C C C ---=-+-+-,*,m n ∈N 且m n <,其中当n 为偶数时,2nm =; 当n 为奇数时,12n m -=. (1)证明:当*n ∈N ,2n ≥时,11n n n S S S +-=-; (2)记01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,求S 的值.2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.{}1,2,3,4,7 2 3. 4 4.710 5.63 6.2 7 8. 23 9. 9810.13 11.9 12.6513.27321,{0,22e+⎛⎫--⎪⎝⎭14. [3(327,3++--二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. 解:(1)1+cos2()622xf x x=⨯=3cos223x x+=)36x++.…………………3分所以()f x的最小正周期为22T==,…………………4分值域为[3-+.…………………6分(2)由()0f B=,得πcos(2)6B+=.B为锐角,∴ππ7π2666B<+<,π5π266B+=,∴π3B=. (9)分∵4cos5A=,(0,)A∈,∴3sin5A==.…………………10分在△ABC中,由正弦定理得32sinsinb AaB⨯===.…………………12分∴21sin sin()=sin()sin322C A B A A A=---=+=.…………………14分16.(1)证明:∵11ABB A为菱形,且160A AB∠=︒,∴△1A AB为正三角形.…………………2分D是AB的中点,∴1AB A D⊥.∵AC BC=,D是AB的中点,∴AB CD⊥.…………………4分1A D CD D=,∴AB⊥平面1A DC.…………………6分∵AB⊂平面ABC,∴平面1A DC⊥平面ABC.…………………8分(2)证明:连结1C A,设11AC AC E=,连结DE.∵三棱柱的侧面11AA C C是平行四边形,∴E为1AC中点.…………………10分在△1ABC中,又∵D是AB的中点,∴DE∥1BC.…………………12分∵DE⊂平面1A DC,1BC⊄平面1A DC,∴1BC∥平面1A DC.…………………14分17.解:(1)梯形ABCD的面积2cos 2sin 2ABCD S +=⋅=sin cos sin +,(0,)2∈. …………………2分 体积()10(sin cos sin ),(0,)2V =+∈. …………………3分(2)2()10(2cos cos 1)10(2cos 1)(cos 1)V '=+-=-+. 令()0V '=,得1cos 2=,或cos 1=-(舍). ∵(0,)2∈,∴3=. …………………5分当(0,)3∈时,1cos 12<<,()0,()V V '>为增函数;当(,)32∈时,10cos 2<<,()0,()V V '<为减函数. …………………7分∴当3=时,体积V 最大. …………………8分(3)木梁的侧面积210S AB BC CD =++⋅侧()=20(cos 2sin 1)2++,(0,)2∈. 2ABCD S S S =+侧=2(sin cos sin )20(cos 2sin 1)2++++,(0,)2∈.…………………10分设()cos 2sin 12g =++,(0,)2∈.∵2()2sin 2sin 222g =-++,∴当1sin22=,即3=时,()g 最大. …………………12分 又由(2)知3=时,sin cos sin +取得最大值,所以3=时,木梁的表面积S 最大. …………………13分综上,当木梁的体积V 最大时,其表面积S 也最大. …………………14分 18.解:(1)由已知,得222291821,991,a b a b ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2227,27.2a b ⎧=⎪⎨=⎪⎩ …………………2分所以椭圆的标准方程为22127272x y +=. …………………3分 (2)设点(,)C m n (0,0)m n <<,则BC 中点为33(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而23m n =-.① 又∵点C 在椭圆上,∴22227m n +=.②由①②,解得3n =(舍),1n =-,从而5m =-. …………………5分 所以点C 的坐标为(5,1)--. …………………6分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y .∵,,P B M 三点共线,∴011033233y y y x ++=++,整理,得001003()23y x y x y -=--.…………………8分 ∵,,P C N 三点共线,∴22011255y y y x ++=++,整理,得00200523y x y x y -=-+.…………………10分 ∵点C 在椭圆上,∴2200227x y +=,2200272x y =-.从而22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+. …………………14分 所以124552OM ON y y ⋅==. …………………15分 ∴OM ON ⋅为定值,定值为452. …………………16分 19.解:(1)若λ = 1,则11(1)(1)n n n n S a S a +++=+,111a S ==.又∵00n n a S >>,, ∴1111n n n nS a S a +++=+, ………………… 2分 ∴3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅=⋅⋅⋅+++, 化简,得1112n n S a +++=.① ………………… 4分 ∴当2n ≥时,12n n S a +=.②② - ①,得12n n a a +=, ∴12n na a +=(2n ≥). ………………… 6分 ∵当n = 1时, 22a =,∴n = 1时上式也成立,∴数列{a n }是首项为1,公比为2的等比数列, a n = 2n -1(*n ∈N ). …………………8分 (2)令n = 1,得21a λ=+.令n = 2,得23(1)a λ=+. ………………… 10分要使数列{}n a 是等差数列,必须有2132a a a =+,解得λ = 0. ………………… 11分 当λ = 0时,11(1)n n n n S a S a ++=+,且211a a ==. 当n ≥2时,111()(1)()n n n n n n S S S S S S +-+-=+-, 整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+, ………………… 13分 从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅=⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=. ……………… 15分 综上所述,1n a =(*n ∈N ),所以λ = 0时,数列{}n a 是等差数列. ………………… 16分20.解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. ………………… 1分 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. …………………3分 (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. …………………4分 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立, ∴()h x 在[3,4]上为增函数. …………………5分 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. …………………6分∴11e ex x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3. ………………… 8分∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. …………………9分(3)由(1)知()g x 在(0,e]上的值域为(0,1]. …………………10分 ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意. ………………… 11分当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m <<,即2em >.① …………………12分此时()f x 在2(0,)m 上递减,在2(,e)m上递增, ∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.② 由①②,得3e 1m -≥. …………………13分 ∵1(0,e]∈,∴2()(1)0f f m =≤成立. …………………14分下证存在2(0,]t m ∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③ 设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立. 再证()e m f -≥1. ∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. …………………16分21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲证明:连结AC .EA 是圆O 的切线,∴EAB ACB ∠=∠. …………………2分AB AD =,∴ACD ACB ∠=∠. ∴ACD EAB ∠=∠. …………………4分圆O 是四边形ABCD 的外接圆,∴D ABE ∠=∠. …………………6分∴CDA ∆∽ABE ∆. …………………8分 ∴CD DAAB BE=, AB AD =,∴CD ABAB BE=. …………………10分 B .选修4—2:矩阵与变换 解:矩阵M 的特征多项式为212()2321f λλλλλ--==----.令12()031f λλλ===-,解得,,对应的一个特征向量分别为111⎡⎤=⎢⎥⎣⎦α,211⎡⎤=⎢⎥-⎣⎦α. …5分令12m n =+βαα,得4,3m n ==-.6666661212112913(43)4()3()433(1)112919⎡⎤⎡⎤⎡⎤=-=-=⨯--=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M βM ααM αM α.……………10分 C .选修4—4:坐标系与参数方程解:(1)圆的直角坐标方程为22(2)4x y -+=. …………………5分 (2)把cos ,sin ,x y ρθρθ=⎧⎨=⎩代入上述方程,得圆的极坐标方程为4cos ρθ=.…………………10分D .选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)设甲同学在5次投篮中,有x 次投中,“至少有4次投中”的概率为P ,则(4)(5)P P x P x ==+= …………………2分=441550552222()(1)()(1)3333C C -+-=112243. …………………4分 (2)由题意1,2,3,4,5=.2(1)3P ==,122(2)339P ==⨯=,1122(3)33327P ==⨯⨯=,3122(4)3381P ⎛⎫==⨯= ⎪⎝⎭, 411(5)381P ⎛⎫=== ⎪⎝⎭.的分布表为…………………8分的数学期望22221121123453927818181E =⨯+⨯+⨯+⨯+⨯=. …………………10分23.解:(1)当n 为奇数时,1n +为偶数,1n -为偶数, ∵1101221112(1)n n n n nn S CC C+++++=-++-,110122112(1)n n n n n n S C C C---+=-++-,11012211212(1)n n n n n n S C CC------=-++-,∴1111110011222221111111222()()(1)()(1)n n n n n n n n n n n n n n S S C C C C CCC-+-++-++-++++-=---++--+-=11012212112((1))n n n n n n CCCS --------++-=-.∴当n 为奇数时,11n n n S S S +-=-成立. …………………5分 同理可证,当n 为偶数时, 11n n n S S S +-=-也成立. …………………6分 (2)由01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,得 0123100720142013201220111007201420142014201420142013201220111007S C C C C C =-+-+-=0112233100710072014201320132012201220112011100710071231007()()()()2013201220111007C C C C C C C C C -+++-++-+=0121007012100620142013201210072012201120101006()()C C C C C C C C -+----+-+=20142012S S -. …………………9分 又由11n n n S S S +-=-,得6n n S S +=, 所以20142012421S S S S -=-=-,12014S =-. …………………10分。

江苏省苏州市2014届高三第一次调研数学试卷Word版含答案

江苏省苏州市2014届高三第一次调研数学试卷Word版含答案

苏州市2014届高三调研测试数学Ⅰ试题 2014.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 已知集合A = { x | x < 2 },B = { -1,0,2,3 },则A ∩B = ▲ .2. 已知i 为虚数单位,计算2(12i)(1i)+-= ▲ .3. 若函数()sin()f x x θ=+(π02θ<<)的图象关于直线π6x =对称,则θ = ▲ .4. 设S n 为等差数列{a n }的前n 项和,已知S 5 = 5,S 9 = 27,则S 7 = ▲ . 5. 若圆锥底面半径为1,高为2,则圆锥的侧面积为 ▲ . 6. 运行右图所示程序框图,若输入值x ∈[-2,2],则输出值y 的取值范围是 ▲ . (第6题)注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第1题 - 第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.7. 已知π3sin()45x +=,π4sin()45x -=,则tan x = ▲ . 8. 函数e ln y x x =-的值域为 ▲ .9. 已知两个单位向量a ,b 的夹角为60°,c = t a +(1 - t )b .若b ·c = 0,则实数t 的值为 ▲ .10. 已知m ∈{-1,0,1},n ∈{-1,1},若随机选取m ,n ,则直线10mx ny ++=恰好不经过第二象限的概率是 ▲ .11. 已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是 ▲ . 12. 在直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足224PA PB -=且在圆224x y +=上的点P 的个数为 ▲ .13. 已知正实数x ,y 满足24xy x y ++=,则x + y 的最小值为 ▲ .14. 若2101m x mx -<+(m ≠ 0)对一切x ≥4恒成立,则实数m 的取值范围是 ▲ .二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且1cos 2a C cb +=.(1)求角A 的大小; (2)若a =4b =,求边c 的大小.16. (本小题满分14分)如图,在四棱锥P - ABCD 中,四边形ABCD 是矩形,平面PCD ⊥平面ABCD ,M 为PC 中点.求证:(1)P A ∥平面MDB ; (2)PD ⊥BC .PMD C(第16题)甲、乙两地相距1000km ,货车从甲地匀速行驶到乙地,速度不得超过80km/h ,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的14倍,固定成本为a 元.(1)将全程运输成本y (元)表示为速度v (km/h )的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?18. (本小题满分16分)如图,已知椭圆22221(0)x y a b a b+=>>的右顶点为A (2,0),点P (2e ,12)在椭圆上(e 为椭圆的离心率).(1)求椭圆的方程;(2)若点B ,C (C 在第一象限)都在椭圆上,满足OC BA λ=,且0OC OB ⋅=,求实数λ的值.(第18题)设数列{a n }满足a n +1 = 2a n + n 2 - 4n + 1.(1)若a 1 = 3,求证:存在2()f n an bn c =++(a ,b ,c 为常数),使数列{ a n + f (n ) }是等比数列,并求出数列{a n }的通项公式;(2)若a n 是一个等差数列{b n }的前n 项和,求首项a 1的值与数列{b n }的通项公式.20. (本小题满分16分)已知a ,b 为常数,a ≠ 0,函数()()e x b f x a x=+. (1)若a = 2,b = 1,求()f x 在(0,+∞)内的极值;(2)① 若a > 0,b > 0,求证:()f x 在区间[1,2]上是增函数;② 若(2)0f <,2(2)e f --<,且()f x 在区间[1,2]上是增函数,求由所有点(,)a b 形成的平面区域的面积.苏州市2014届高三调研测试数学Ⅱ(附加题) 2014.121.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相...应的..答题区域....内.作答..,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4 1:几何证明选讲(本小题满分10分)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A ,B ,C ,D ,E , 求证:AB ·CD = BC ·DE .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. NME D C B AB.选修4 - 2:矩阵与变换(本小题满分10分)已知a,b∈R,若M=13ab-⎡⎤⎢⎥⎣⎦所对应的变换T M 把直线2x-y = 3变换成自身,试求实数a,b.(第21-A题)C .选修4 - 4:坐标系与参数方程(本小题满分10分)在极坐标系中,求点M π(2,)6关于直线π4θ=的对称点N 的极坐标,并求MN 的长.D .选修4 - 5:不等式选讲(本小题满分10分)已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在空间直角坐标系O - xyz 中,正四棱锥 P - ABCD的侧棱长与底边长都为,点M ,N 分别在P A ,BD 上,且13PM BN PA BD ==. (1)求证:MN ⊥AD ; (2)求MN 与平面P AD 所成角的正弦值.23.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体ABCD - A 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ= 0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1)求概率P (ξ= 0);(2)求ξ的分布列,并求其数学期望E (ξ).(第22题)。

2014江苏高考数学一模试卷

2014江苏高考数学一模试卷

a3 a4 4 ,则 a5 a6 a7 a8


6、已知| a |=3,| b |=4,( a + b )( a +3 b )=33,则 a 与 b 的夹角为 ▲ 7、在 ABC 的边 AB 上随机取一点 P , 记 CAP 和 CBP 的面积分别 为 S1 和 S2 ,则 S1 2S2 的概率是 ▲ 8、执行如右图所示的程序框图,则输出结果 S 的值为 ▲ 9、已知直线 l 平面 ,直线 m 平面 ,给出下列命题: ①若 / / ,则 l m ;②若 ,则 l / / m ; ③若 l / / m ,则 ; ④若 l m ,则 / / . 其中,正确命题的序号是 ▲ 2 x y 4 10、若动点 P(m, n) 是不等式组 x 0 表示的平面区域内的动点, y 0
6
1 南京清江花苑严老师
(1)若 x

4
,求函数 f x 的值域;
2 2
5 3 A 5 (2) 设 A, B, C 为 ABC 的三个内角,若 f ,求 cos C 的值; , cos A C 14
16、 (本题 14 分)如图,在三棱锥 P ABC 中, PAB 和 CAB 都是 以 AB 为斜边的等腰直角三角形,D、E、F 分别是 PC、AC、BC 的中点. (1) 证明:平面 DEF//平面 PAB; (2) 证明: AB PC ; (3) 若 AB 2PC 2 ,求三棱锥 P ABC 的体积.

13、在平面直角坐标系 xoy 中,已知点 A 是半圆 x2 y 2 2 y 0 (1≤y≤2) 上的一个动点,点 C 在线段 OA 的延长线上.当 OA OC 10 时,则点 C 的横坐标的取值范围是 ▲ 14、设 f ( x) etx (t 0) ,过点 P(t ,0) 且平行于 y 轴的直线与曲线 C : y f ( x) 的交点为 Q, 曲线 C 过点 Q 的切线交 x 轴于点 R,若 S (1, f (1)) ,则 PRS 的面积的最小值是 ▲ 二、解答题: (本大题共 6 小题,共 90 分.解答应写出文字说明,证明过程或演算步骤. ) 15、 (本题 14 分)设函数 f x sin 2 x cos 2 x 3 sin x cos x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档