江苏省扬州市2016届高三数学上学期期末考试试题
高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

2015-2016学年某某省某某市正定中学高三(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.805.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.226.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.87.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.129.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.5010.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ=.14.若x,y满足约束条件,则z=x﹣2y的最大值为.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.2015-2016学年某某省某某市正定中学高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}【考点】交、并、补集的混合运算.【分析】先求出M∩N,从而求出M∩N的补集即可.【解答】解:集合M={x|x<3},N={x|x>﹣1},全集U=R,则M∩N={x|﹣1<x<3},则∁U(M∩N)={x|x≤﹣1或x≥3},故选:D.2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解: =1+i,∴=(3+i)(1+i)=2+4i,∴z=2﹣4i,则复数z在复平面上对应点(2,﹣4)位于第四象限.故选:D.3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】用二倍角公式把二倍角变为一倍角,然后同底数幂相乘公式逆用,变为二倍角正弦的平方,再次逆用二倍角公式,得到能求周期和判断奇偶性的表示式,得到结论.【解答】解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=sin22x==,故选D.4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.80【考点】等比数列的通项公式.【分析】由题意可得等比数列的公比q,而7+a8=(a1+a2)q6,代值计算可得.【解答】解:设等比数列{a n}的公比为q,∴q2===,∴a7+a8=(a1+a2)q6=40×=135,故选:C.5.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.22【考点】函数的值.【分析】利用分段函数的性质及对数函数性质、运算法则和换底公式求解.【解答】解:∵函数f(x)=,∴f(﹣98)=1+lg100=3,f(lg30)=10lg30﹣1==3,∴f(﹣98)+f(lg30)=3+3=6.故选:B.6.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.8【考点】由三视图求面积、体积.【分析】几何体为四棱锥,底面为直角梯形,高为侧视图三角形的高.【解答】解:由三视图可知几何体为四棱锥,棱锥底面为俯视图中的直角梯形,棱锥的高为侧视图中等腰三角形的高.∴四棱锥的高h==2,∴棱锥的体积V==4.故选A.7.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.【考点】圆的一般方程.【分析】设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),求出b,r,利用勾股定理求出|MN|.【解答】解:设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),可得,解得:b=2,r=5,所以|MN|=2=2,故选:D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,r=12,m=30,n=12,不满足退出循环的条件;第二次执行循环体后,r=6,m=12,n=6,不满足退出循环的条件;第三次执行循环体后,r=0,m=6,n=0,满足退出循环的条件;故输出的m值为6,故选:C;9.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.50【考点】球内接多面体.【分析】求出△ABC的外接圆的半径,可得O到平面ABC的距离,计算△ABC的面积,即可求出四面体OABC的体积.【解答】解:∵AB=12,AC=BC=12,∴cos∠ACB==﹣,∴∠ACB=120°,∴△ABC的外接圆的半径为=12,∴O到平面ABC的距离为5,∵S△ABC==36,∴四面体OABC的体积是=60.故选:A.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【考点】函数的图象与图象变化.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】根据△ABM是顶角θ满足cosθ=﹣的等腰三角形,得出|BM|=|AB|=2a,cos∠MBx=,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.【解答】解:不妨取点M在第一象限,如右图:∵△ABM是顶角θ满足cosθ=﹣的等腰三角形,∴|BM|=|AB|=2a,cos∠MBx=,∴点M的坐标为(a+,2a•),即(,),又∵点M在双曲线E上,∴将M坐标代入坐标得﹣=1,整理上式得,b2=2a2,而c2=a2+b2=3a2,∴e2==,因此e=,故选:C.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)【考点】利用导数研究函数的单调性;函数奇偶性的性质.【分析】令g(x)=xf(x),判断出g(x)是R上的奇函数,根据函数的单调性以及奇偶性求出f(x)<0的解集即可.【解答】解:令g(x)=xf(x),g′(x)=xf′(x)+f(x),当x∈(﹣1,1)时,xf′(x)+f(x)<0,∴g(x)在(﹣1,1)递减,而g(﹣x)=﹣xf(﹣x)=﹣xf(x)=﹣g(x),∴g(x)在R是奇函数,∵f(x)在区间(0,+∞)上的唯一零点为2,即g(x)在区间(0,+∞)上的唯一零点为2,∴g(x)在(﹣∞,﹣1)递增,在(﹣1,1)递减,在(1,+∞)递增,g(0)=0,g(2)=0,g(﹣2)=0,如图示:,x≥0时,f(x)<0,即xf(x)<0,由图象得:0≤x<2,x<0时,f(x)<0,即xf(x)>0,由图象得:﹣2<x<0,综上:x∈(﹣2,2),故选:D.二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ= 2 .【考点】平面向量数量积的运算.【分析】根据向量垂直,令数量积为零列方程解出.【解答】解:∵向量,是相互垂直的单位向量,∴=0,.∵λ+与﹣2垂直,∴(λ+)•(﹣2)=λ﹣2=0.解得λ=2.故答案为2.14.若x,y满足约束条件,则z=x﹣2y的最大值为 2 .【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=x可得.【解答】解:作出约束条件所对应的可行域(如图△ABC及内部),变形目标函数可得y=x﹣z,平移直线y=x可知,当直线经过点A(2,0)时,截距取最小值,z取最大值,代值计算可得z的最大值为2,故答案为:2.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m= 0 .【考点】二项式定理的应用.【分析】在所给的等式中,分别令x=1、x=﹣1,可得2个等式,再结合a1+a3+a5+a7=32,求得m的值.【解答】解:对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,令x=1,可得(m+1)(1+1)6=a0+a1+a2+…+a7①,再令x=﹣1,可得(m﹣1)(1﹣1)6=0=a0﹣a1+a2+…﹣a7②,由①﹣②可得 64(m+1)=2(a1+a3+a5+a7)=2×32,∴m=0,故答案为:0.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.【考点】数列的求和.【分析】通过对a n=(n≥2)变形可知2S n S n﹣1=S n﹣1﹣S n,进而可知数列{}是首项为1、公差为2的等差数列,计算即得结论.【解答】解:∵a n=(n≥2),∴2=2S n a n﹣a n,∴2﹣2S n a n=S n﹣1﹣S n,即2S n S n﹣1=S n﹣1﹣S n,∴2=﹣,又∵=1,∴数列{}是首项为1、公差为2的等差数列,∴S2016==,故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理化简已知等式,整理即可得解.(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.【解答】(本题满分为12分)解:(I)由正弦定理得,,…即,故.…(II)设b=5t(t>0),则a=3t,于是.即c=7t.…由余弦定理得.所以.…18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.【考点】点、线、面间的距离计算;空间中直线与直线之间的位置关系.【分析】(1)由题目条件结合勾股定理,即可证得结论;(2)建立空间直角坐标系,代入运用公式进行计算即可得出答案.【解答】(1)证明:由题设知,三棱柱的侧面为矩形.∵D为AA1的中点,∴DC=DC1.又,可得,∴DC1⊥DC.而DC1⊥BD,DC∩BD=D,∴DC1⊥平面BCD.∵BC⊂平面BCD,∴DC1⊥BC.…(2)解:由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,∴CA,CB,CC1两两垂直.以C为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系C﹣xyz.由题意知,,.则,,.设是平面BDC1的法向量,则,即,可取.设点P到平面BDC1的距离为d,则.…12分19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.【考点】线性回归方程.【分析】(I)根据分层抽样原理计算,使用组合数公式得出样本个数;(II)(i)使用乘法原理计算;(ii)根据回归方程计算回归系数,得出回归方程.【解答】解:(I)应选女生位,男生位,可以得到不同的样本个数是.(II)(i)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选3个与数学优秀分数对应,种数是(或),然后将剩下的5个数学分数和物理分数任意对应,种数是,根据乘法原理,满足条件的种数是.这8位同学的物理分数和数学分数分别对应的种数共有种.故所求的概率.(ii)变量y与x的相关系数.可以看出,物理与数学成绩高度正相关.也可以数学成绩x为横坐标,物理成绩y为纵坐标做散点图如下:从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩高度正相关.设y与x的线性回归方程是,根据所给数据,可以计算出,a=84.875﹣0.66×77.5≈33.73,所以y与x的线性回归方程是.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【考点】直线和圆的方程的应用.【分析】(Ⅰ)利用代入法,求曲线E的方程;(Ⅱ)分类讨论,设直线l:y=kx+2与椭圆方程联立,利用韦达定理,向量得出坐标关系,求出直线的斜率,即可求直线l的方程.【解答】解:(I)设M(x,y),则P(x,2y)在圆x2+4y2=4上,所以x2+4y2=4,即…..(II)经检验,当直线l⊥x轴时,题目条件不成立,所以直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则.…△=(16k)2﹣4(1+4k2)•12>0,得.….①,…②.…又由,得,将它代入①,②得k2=1,k=±1(满足).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2…21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(1)即可;(Ⅱ)问题转化为对x>0恒成立,根据函数的单调性求出h(x)的最小值,从而求出正整数k的最大值.【解答】解:(Ⅰ)∵f′(x)=﹣+,∴…(Ⅱ)当x>0时,恒成立,即对x>0恒成立.即h(x)(x>0)的最小值大于k.…,,记ϕ(x)=x﹣1﹣ln(x+1)(x>0)则,所以ϕ(x)在(0,+∞)上连续递增.…又ϕ(2)=1﹣ln3<0,ϕ(3)=2﹣2ln2>0,所以ϕ(x)存在唯一零点x0,且满足x0∈(2,3),x0=1+ln(x0+1).…由x>x0时,ϕ(x)>0,h'(x)>0;0<x<x0时,ϕ(x)<0,h'(x)<0知:h(x)的最小值为.所以正整数k的最大值为3.…请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.【考点】与圆有关的比例线段.【分析】(I)由PA是圆的切线结合切割线定理得比例关系,求得PD,再由角相等得三角形相似:△PAC∽△CBA,从而求得AC的长;(II)欲求证:“BE=EF”,可先分别求出它们的值,比较即可,求解时可结合圆中相交弦的乘积关系.【解答】解:(I)∵PA2=PC•PD,PA=2,PC=1,∴PD=4,…又∵PC=ED=1,∴CE=2,∵∠PAC=∠CBA,∠PCA=∠CAB,∴△PAC∽△CBA,∴,…∴AC2=PC•AB=2,∴…证明:(II)∵,CE=2,而CE•ED=BE•EF,…∴,∴EF=BE.…[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.【解答】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=﹣时,根据f(x)=的最小值为3,可得lnf(x)最小值为ln3>lne=1,不等式得证.(Ⅱ)由绝对值三角不等式可得 f(x)≥|a﹣|,可得|a﹣|≥a,由此解得a的X围.【解答】解:(Ⅰ)证明:∵当a=﹣时,f(x)=|x﹣|+|x+|=的最小值为3,∴lnf(x)最小值为ln3>lne=1,∴lnf(x)>1成立.(Ⅱ)由绝对值三角不等式可得 f(x)=|x﹣|+|x﹣a|≥|(x﹣)﹣(x﹣a)|=|a﹣|,再由不等式f(x)≥a在R上恒成立,可得|a﹣|≥a,∴a﹣≥a,或 a﹣≤﹣a,解得a≤,故a的最大值为.。
江苏省扬州中学2016-2017学年高一上学期期中考试 数学 Word版含答案

江苏省扬州中学2016-2017学年第一学期期中考试高一数学一、填空题(5*14=70)1.集合A={x|﹣1≤x <2},集合B={x|x <1},则A ∩B= . 2.函数()()ln 2f x x =-的定义域为 . 3.已知24=a ,a x =lg ,则=x .4.函数]5,1[,54)(2∈+-=x x x x f ,则该函数值域为 . 5.已知函数3()1f x ax bx =++,且(2)f -=3,则(2)f = . 6.计算21()lg 2lg 52---=____________.7.集合{}2210A x ax x =++=中只有一个元素,则a 的值是 . 8.若函数ax x x f 2)(2+-=与xax g =)(在区间[1,2]上都是减函数,则实数a 的取值范围是______________.9.函数3)2(log 2+-=x y a (0,1a a >≠且)恒过定点的坐标为 . 10.已知函数2(1)2f x x x -=-,则()f x = .11. 已知偶函数()f x 在[)0,+∞上为增函数,且(1)(32)f x f x ->-,则x 的取值范围为 .12.)(x f 是定义在()+∞∞-,上的偶函数,且在 (]0,∞- 上是增函数,设)7(log 4f a =,)3(log 21f b =,)2.0(6.0f c =,则a ,b ,c 大小关系是 .13.已知函数1lg(1)y x=-的定义域为A,若对任意x A ∈都有不等式292222xm x mx x-->--恒成立,则正实数m 的取值范围是 .14. 已知函数xx x x x f 11)(--+=,关于x 的方程2()()0f x a f x b ++=(,)a b R ∈恰有6个不同实数解,则a 的取值范围是 .二、解答题:(14+14+14+16+16+16) 15.已知全集为R ,集合{|lg A x y x ==,1{|28}4x a B x -=<≤. (1)当0a =时,求()R C A B ;(2)若AB B =,求实数a 的取值范围.16.已知二次函数y =f (x )满足f (-2)=f (4)=-16,且f (x )最大值为2.(1)求函数y =f (x )的解析式.(2)求函数y =f (x )在[t ,t +1](t >0)上的最大值. 17.已知函数2()log (1),(0,1)a f x ax x a a =-+>≠ (1)21=a ,求函数()f x 的值域. (2)当()f x 在区间13,42⎡⎤⎢⎥⎣⎦上为增函数时,求a 的取值范围. 18.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =. (1)求()f π的值; (2)求13x -≤≤时,()f x 的解析式; (3)当44x -≤≤时,求方程()(0)f x m m =<的所有实根之和。
2016届江苏省扬州市高三上学期期末数学试卷(带解析)

绝密★启用前2016届江苏省扬州市高三上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:162分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)第II卷(非选择题)一、填空题(题型注释)1、(2015秋•扬州期末)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a|+|x﹣2a|﹣3|a|).若集合{x|f(x﹣1)﹣f(x)>0,x∈R}=∅,则实数a的取值范围为.2、(2015秋•扬州期末)已知数列{a n}中,a1=a(0<a≤2),a n+1=(n∈N*),记S n=a1+a2+…+a n,若S n=2015,则n= .3、(2015秋•扬州期末)已知圆O:x2+y2=4,若不过原点O的直线l与圆O交于P、Q 两点,且满足直线OP、PQ、OQ的斜率依次成等比数列,则直线l的斜率为.4、(2015秋•扬州期末)已知a>b>1且2log a b+3log b a=7,则的最小值为.5、(2015秋•扬州期末)已知,,,若,则= .6、(2015秋•扬州期末)已知函数(0≤x<π),且(α≠β),则α+β=.7、(2015秋•扬州期末)已知正四棱锥底面边长为,体积为32,则此四棱锥的侧棱长为.8、(2015秋•扬州期末)已知等比数列{a n}满足a2+2a1=4,,则该数列的前5项的和为.10、(2015秋•扬州期末)已知双曲线的方程为﹣=1,则双曲线的焦点到渐近线的距离为 .11、(2015秋•扬州期末)某学校从高三年级共800名男生中随机抽取50名测量身高.据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165)、…、第八组[190,195].按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .12、(2015秋•扬州期末)如图,若输入的x 值为,则相应输出的值为 .13、(2015秋•扬州期末)若复数z=i (3﹣2i )(i 是虚数单位),则z 的虚部为 .14、(2015秋•扬州期末)已知集合A={x|x 2﹣2x <0},B={0,1,2},则A∩B= .15、(2015秋•扬州期末)若数列{a n }中不超过f (m )的项数恰为b m (m ∈N *),则称数列{b m }是数列{a n }的生成数列,称相应的函数f (m )是数列{a n }生成{b m }的控制函数. (1)已知a n =n 2,且f (m )=m 2,写出b 1、b 2、b 3; (2)已知a n =2n ,且f (m )=m ,求{b m }的前m 项和S m ;(3)已知a n =2n ,且f (m )=Am 3(A ∈N *),若数列{b m }中,b 1,b 2,b 3是公差为d (d≠0)的等差数列,且b 3=10,求d 的值及A 的值.16、(2015秋•扬州期末)已知函数f (x )=(ax 2+x+2)e x (a >0),其中e 是自然对数的底数.(1)当a=2时,求f (x )的极值;(2)若f (x )在[﹣2,2]上是单调增函数,求a 的取值范围;(3)当a=1时,求整数t 的所有值,使方程f (x )=x+4在[t ,t+1]上有解.17、(2015秋•扬州期末)某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xOy .(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小.现隧道口的最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?(隧道口截面面积公式为S=lh )18、(2015秋•扬州期末)如图,已知椭圆(a >b >0)的左、右焦点为F 1、原点.(1)若椭圆方程为,且,求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.19、(2015秋•扬州期末)已知函数f (x )=ωx+sinωxcosωx (ω>0)的周期为π. (1)当时,求函数f (x )的值域;(2)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若,且a=4,b+c=5,求△ABC 的面积.20、(2015秋•扬州期末)如图,已知直三棱柱ABC ﹣A 1B 1C 1中,AB=AC ,D 、E 分别为BC 、CC 1中点,BC 1⊥B 1D .(1)求证:DE ∥平面ABC 1; (2)求证:平面AB 1D ⊥平面ABC 1.参考答案1、(﹣∞,]2、1343.3、±1.4、35、.6、.7、58、319、.10、411、14412、.13、315、(1)b1=1;b2=2;b3=3.(2).(3)d=3,A=64或65.16、(1),;(2)a的取值范围是.(3)t=﹣4,0.17、(1)40米;(2)当拱高为米,拱宽为米时,使得隧道口截面面积最小.18、(1);(2)(,1).19、(1).(2).20、见解析【解析】1、试题分析:把x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,条件等价为对∀x∈R,都有f(x﹣1)≤f(x),进行转化求解即可求解该不等式得答案.解:若{x|f(x﹣1)﹣f(x)>0,x∈R}=∅,则等价为f(x﹣1)﹣f(x)≤0恒成立,即f(x﹣1)≤f(x)恒成立,当x≥0时,f(x)=(|x﹣a|+|x﹣2a|﹣3|a|).若a≤0,则当x≥0时,f(x)=(x﹣a+x﹣2a+3a)=x,∵f(x)是奇函数,∴若x<0,则﹣x>0,则f(﹣x)=﹣x=﹣f(x),则f(x)=x,x<0,综上f(x)=x,此时函数为增函数,则f(x﹣1)≤f(x)恒成立,若0≤x≤a时,f(x)=[﹣x+a﹣(x﹣2a)﹣3a]=﹣x;当a<x≤2a时,f(x)=[x﹣a﹣(x﹣2a)﹣3a]=﹣a;当x>2a时,f(x)=(x﹣a+x﹣2a﹣3a)=x﹣3a.即当x≥0时,函数的最小值为﹣a,由于函数f(x)是定义在R上的奇函数,当x<0时,f(x)的最大值为a,作出函数的图象如图:由于∀x∈R,f(x﹣1)≤f(x),故函数f(x﹣1)的图象不能在函数f(x)的图象的上方,结合图可得1﹣3a≥3a,即6a≤1,求得0<a≤,综上a≤,故答案为:(﹣∞,]考点:函数恒成立问题.2、试题分析:a1=a(0<a≤2),a n+1=(n∈N*),可得a2=﹣a1+3=3﹣a∈[1,3).对a分类讨论:①当a∈[1,2]时,3﹣a∈[1,2],∴a3=﹣a2+3=a,….②当a∈(0,1)时,3﹣a∈(2,3),可得a3=a2﹣2=1﹣a∈(0,1),∴a4=﹣a3+3=a+2∈(2,3),a5=a4﹣2,对n分类讨论即可得出.解:∵a1=a(0<a≤2),a n+1=(n∈N*),∴a2=﹣a1+3=3﹣a∈[1,3).①当a∈[1,2]时,3﹣a∈[1,2],∴a3=﹣a2+3=a,….∴当n=2k﹣1,k∈N*时,a1+a2=a+3﹣a=3,∴S2k﹣1=3(k﹣1)+a=2015,a=1时舍去,a=2时,k=672,此时n=1343;当n=2k,k∈N*时,a1+a2=a+3﹣a=3,∴S2k=3k=2015,k=671+,不是整数,舍去;②当a∈(0,1)时,3﹣a∈(2,3),∴a3=a2﹣2=1﹣a∈(0,1),∴a4=﹣a3+3=a+2∈(2,3),a5=a4﹣2=a∈(2,3),….当n=4k﹣1,k∈N*时,a1+a2+a3=a+3﹣a+1﹣a=4﹣a,∴S4k﹣1=6(k﹣1)+(4﹣a)=2015,舍去;当n=4k﹣2,k∈N*时,a1+a2=3,∴S4k﹣2=6(k﹣1)+3=2015,舍去.当4k﹣3,k∈N*时,∴S4k﹣2=6(k﹣1)+a=2015,舍去.综上可得:n=1343.故答案为:1343.考点:数列递推式.3、试题分析:设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx+t(t≠0),与圆的方程联立可得(1+k2)x2+2ktx+t2﹣4=0,得到根与系数的关系.利用直线OP、PQ、OQ的斜率成等比数列,可得=k2,化为k2=1,即可求出直线l的斜率.解:设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx+t(t≠0,±1).联立圆O:x2+y2=4,化为(1+k2)x2+2ktx+t2﹣4=0.∴x1+x2=﹣,x1x2=.∵直线OP、PQ、OQ的斜率成等比数列,∴=k2,∴(kx1+t)(kx2+t)=k2x1x2,化为tk(x1+x2)+t2=0,∴k•(﹣)+t=0,∴k2=1,∴k=±1.故答案为:±1.考点:直线与圆的位置关系.4、试题分析:由对数的运算可得b2=a,整体代入可得=a+=a﹣1++1,由基本不等式可得.解:∵a>b>1,∴t=log a b<1,又∵2log a b+3log b a=7,∴2t+=7,解得t=,或t=3(舍去),∴t=log a b=,∴b2=a,≥2+1=3,当且仅当a﹣1=即a=2且b=时取等号.故答案为:3考点:基本不等式.5、试题分析:通过数量积推出三角函数关系,然后利用诱导公式化简所求的表达式,利用平方关系式,即可求出结果.解:,,,,可得2cosα+sinα=1.,又sin2α+cos2α=1,解得cosα=,=﹣cos2α=1﹣2cos2α=1﹣2×=.故答案为:.考点:运用诱导公式化简求值;平面向量数量积的运算.6、试题分析:由条件利用正弦函数的图象的对称性,求得α+β的值.解:∵函数(0≤x<π),∴≤2x+<,且(α≠β),不妨设α<β,∴2α+=,2β+=2π+,∴2α+2β=,∴α+β=,故答案为:.考点:两角和与差的余弦函数.7、试题分析:利用体积求出正四棱锥的高,求出底面对角线的长,然后求解侧棱长.解:正四棱锥底面边长为,体积为32,可得正四棱锥的高为h,=32,解得h=3,底面对角线的长为:4=8,侧棱长为:=5.故答案为:5.考点:棱柱、棱锥、棱台的体积;点、线、面间的距离计算.8、试题分析:由题意可得首项和公比的方程组,解方程组代入求和公式计算可得.∵a2+2a1=4,,∴a1(q+2)=4,a12q4=a1q4,联立解得a1=1,q=2,∴数列的前5项的和为=31故答案为:31.考点:等比数列的前n项和.9、试题分析:从1,2,3,4,5这5个数中,随机抽取2个不同的数,求出基本事件总数和这2个数的和为偶数包含的基本事件个数,由此能求出这2个数的和为偶数的概率.解:从1,2,3,4,5这5个数中,随机抽取2个不同的数,基本事件总数n==10,这2个数的和为偶数包含的基本事件个数m==4,∴这2个数的和为偶数的概率:p==.故答案为:.考点:古典概型及其概率计算公式.10、试题分析:先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.解:由题得:其焦点坐标为(﹣5,0),(5,0).渐近线方程为y=±x,即±3y﹣4x=0,所以焦点到其渐近线的距离d==4.故答案为:4.考点:双曲线的简单性质.11、试题分析:根据频率和为1,求出男生身高在180cm以上(含180cm)的频率和频数.解:根据频率分布直方图,得;男生身高在180cm以上(含180cm)的频率为1﹣(0.008+0.016+0.04+0.04+0.06)×5=0.18;对应的人数有800×0.18=144.故答案为:144.考点:程序框图.12、试题分析:根据题意得出执行程序框图后输出的是分段函数y=,由此求出输入x=时输出y的值.解:根据题意,执行程序框图后输出的是分段函数y=,当输入x=时,sin>cos,所以输出的y=cos=.故答案为:.考点:程序框图.13、试题分析:由复数z=i(3﹣2i)(i是虚数单位),得z=2+3i,则z的虚部可求.解:由z=i(3﹣2i)=2+3i,则z的虚部为:3.故答案为:3.考点:复数代数形式的乘除运算.14、试题分析:求出A中不等式的解集确定出A,找出A与B的交集即可.解:由A中不等式变形得:x(x﹣2)<0,解得:0<x<2,即A=(0,2),∵B={0,1,2},∴A∩B={1},故答案为:{1}考点:交集及其运算.15、试题分析:(1)利用生成数列,与控制函数的意义即可得出.(2)对m分类讨论:可得b m.进而得出前n项和.(3)依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,所以2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论即可得出.解:(1)m=1,则a1=1≤1,∴b1=1;m=2,则a1=1<4,a2=4≤4,∴b2=2;m=3,则a1=1<9,a2=4<9,a3=9≤9,∴b3=3.(2)m为偶数时,则2n≤m,则;m为奇数时,则2n≤m﹣1,则;∴,m为偶数时,则;m为奇数时,则;∴.(3)依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,所以2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:故,由以下关系:得d<4,∵d为正整数,∴d=1,2,3.当d=1时,,不合题意,舍去;当d=2时,,不合题意,舍去;当d=3时,,,适合题意.此时,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴.当t=4时,,∴无解.当t=5时,,∴无解.当t=6时,,∴.当t=7时,,∴无解,∴.∵A∈N*,∴A=64或A=65.综上:d=3,A=64或65.考点:数列的应用.16、试题分析:(1)求函数的导数,利用函数极值和导数之间的关系进行求解即可.(2)根据函数单调性和导数之间的关系进行转化求解即可.(3)根据函数单调性结合函数零点的判断条件进行求解即可.解:(1)f(x)=(2x2+x+2)e x,则f′(x)=(2x2+5x+3)e x=(x+1)(2x+3)e x令f′(x)=0,∴,(2)问题转化为f′(x)=[ax2+(2a+1)x+3]e x≥0在x∈[﹣2,2]上恒成立;又e x>0即ax2+(2a+1)x+3≥0在x∈[﹣2,2]上恒成立;令g(x)=ax2+(2a+1)x+3,∵a>0,对称轴①当﹣1﹣≤﹣2,即时,g(x)在[﹣2,2]上单调增,∴g(x)的最小值g(x)=g(﹣2)=1>0,∴0<a≤②当﹣2<﹣1﹣<0,即时,g(x)在[﹣2,﹣1﹣]上单调减,在[﹣1﹣,2]上单调增,∴△=(2a+1)2﹣12a≤0,解得:,∴<a≤1+,综上,a的取值范围是.(3)∵a=1,设h(x)=(x2+x+2)e x﹣x﹣4,h′(x)=(x2+3x+3)e x﹣1令φ(x)=(x2+3x+3)e x﹣1,φ′(x)=(x2+5x+6)e x令φ′(x)=(x2x∴,∵,∴存在x0∈(﹣1,0),x∈(﹣∞,x0)时,φ(x)<0,x∈(x0,+∞)时,φ(x)>0∴h(x)在(﹣∞,x1)上单调减,在(x1,+∞)上单调增又∵由零点的存在性定理可知:h(x)=0的根x1∈(﹣4,﹣3),x2∈(0,1)即t=﹣4,0.考点:利用导数研究函数的极值;导数的几何意义.17、试题分析:(1)设抛物线的方程为:y=﹣ax2(a>0),利用待定系数法求出,由此能求出隧道设计的拱宽.(2)抛物线最大拱高为h米,h≥6,利用待定系数法求出,从而20<l≤40,S=,由此利用导数性质能求出当拱高为米,拱宽为米时,使得隧道口截面面积最小.解:(1)设抛物线的方程为:y=﹣ax2(a>0),则抛物线过点,代入抛物线方程解得:,令y=﹣6,解得:x=±20,则隧道设计的拱宽l是40米.(2)抛物线最大拱高为h米,h≥6,抛物线过点(10,﹣(h﹣)),代入抛物线方程得:令y=﹣h,则,解得:,则,,∵h≥6,∴≥6,即20<l≤40,∴,∴,当时,S'<0;当时,S'>0,即S在上单调减,在(20,40]上单调增,∴S在时取得最小值,此时,答:当拱高为米,拱宽为米时,使得隧道口截面面积最小.考点:直线与圆锥曲线的关系.18、试题分析:(1)由椭圆方程求得焦点坐标,求得OP,MF1,MF2,的斜率,求得直线F1M的方程,F2M的方程,求得交点,即可得到所求M的横坐标;(2)设P(x0,y0),M(x M,y M),运用向量的坐标和向量共线和垂直的条件,再由椭圆的性质可得﹣a<x0<a,解不等式即可得到所求离心率的范围.解:(1)∵椭圆的方程为∴F1(﹣2,0),F2(2,0),∴,∴直线F2M的方程为:,直线F1M的方程为:,由解得:,∴点M的横坐标为;(2)设P(x0,y0),M(x M,y M),∵∴∴,∵PO⊥F2M,∴即,联立方程得:,消去y0得:,解得:或,∵﹣a<x0<a,∴x0=∈(0,a),∴0<a2﹣ac<ac解得:,综上,椭圆离心率e的取值范围为(,1).考点:椭圆的简单性质;椭圆的标准方程.19、试题分析:(1)由题意利用三角恒等变换化简函数的解析式,利用正弦函数的周期性求得ω可得函数的解析式,再利用正弦函数的定义域和值域求得当时,求函数f(x)的值域.(2)由条件求得A,利用余弦定理求得bc的值,可得△ABC的面积.解:(1)∵,∵f (x)的周期为π,且ω>0,∴,解得ω=1,∴.又,得,,,即函数f(x)在[0,]上的值域为.(2)∵,∴,由A∈(0,π),知,解得:,所以.由余弦定理知:a2=b2+c2﹣2bccosA,即16=b2+c2﹣bc,∴16=(b+c)2﹣3bc.因为b+c=5,所以bc=3,∴.考点:三角函数的周期性及其求法;两角和与差的正弦函数;正弦定理.20、试题分析:(1)推导出DE∥BC1,由此能证明DE∥平面ABC1.(2)推民导出CC1⊥AD,AD⊥BC,从而AD⊥平面BCC1B1,进而AD⊥BC1,由此能证明平面AB1D⊥平面ABC1.证明:(1)∵D、E分别为BC、CC1中点,∴DE∥BC1,∵DE⊄平面ABC1,BC1⊂平面ABC1.∴DE∥平面ABC1.(2)直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∵AD⊂平面ABC,∴CC1⊥AD,∵AB=AC,D为BC中点,∴AD⊥BC,又∵CC1∩BC=C,CC1,BC⊂平面BCC1B1,∴AD⊥平面BCC1B1,∵BC1⊂平面BCC1B1,∴AD⊥BC1,又∵BC1⊥B1D∩AD=D,B1D∩AD=D,B1D,AD⊂平面AB1D,∴BC1⊥平面AB1D,∵BC1⊂平面ABC1,∴平面AB1D⊥平面ABC1.考点:平面与平面垂直的判定;直线与平面平行的判定.。
2016届江苏省扬州中学高三3月质量检测数学试题(解析版)综述

2016届江苏省扬州中学高三3月质量检测数学试题一、填空题1.已知集合{}|11M x x =-<<,|01x N x x ⎧⎫=≤⎨⎬-⎩⎭,则=⋂N M __________. 【答案】}10|{<≤x x【解析】试题分析:|01x N x x ⎧⎫=≤⎨⎬-⎩⎭=[0,1),=⋂N M [0,1) 【考点】集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的在第__________象限. 【答案】二【解析】试题分析:i(1i)z =+1i =-+在复平面内所对应点的在第二象限. 【考点】向量几何意义3.执行如图所示的程序框图,则输出的i 值为__________.【答案】4【解析】试题分析:第一次循环:2,2m i ==;第二次循环:1,3m i ==,第三次循环:0,4m i ==,结束循环,输出 4.i =【考点】循环结构流程图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】试题分析:2000(0.0350.030.02)101700⨯++⨯= 【考点】 频率分布直方图 5.已知等差数列{}n a 的公差0≠d ,且39108a a a a +=-.若n a =0 ,则n = .[【答案】5 【解析】试题分析:39108a a a a +=-3910821010828550200a a a a a a a a a a a a ⇒+=-⇒+=-⇒+=⇒=⇒=,因此n =5【考点】等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”) 【答案】充分不必要条件 【解析】试题分析:()cos f x a x x =⋅+在R 上单调递增()sin 0f x a x '⇒=-≥在R 上恒成立max (sin )11a x a ⇒≥=⇒≥,所以“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的充分不必要条件条件. 【考点】导数应用【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y =f (x )在某个区间内可导,如果f′(x )>0,则y =f (x )在该区间为增函数;如果f′(x )<0,则y =f (x )在该区间为减函数. (2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不km/h )频率0.0050.0200.030等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 7.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 【答案】13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤≤≤-⇒≤≤≤≤-或-或-,因此所求概率为22(1)13.1(1)3-=--【考点】几何概型概率8.已知正六棱锥底面边长为2,侧棱长为4,则此六棱锥体积为_______. 【答案】12【解析】试题分析:由题意得六棱锥的高为=,体积为216212.3⨯= 【考点】六棱锥体积9.函数xx a y 421⋅++=在]1,(-∞∈x 上0>y 恒成立,则a 的取值范围是 .【答案】(34-,+∞)【解析】试题分析:由题意得max 11[()],(1)42x x a x >-+≤,令12x t =,则1[,)2t ∈+∞,因此2113()()424x x t t -+=-+≤-,从而34a >-【考点】不等式恒成立10.已知F 是椭圆1C :1422=+y x 与双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 .【答案】26【解析】试题分析:设双曲线的实轴长为2a ,F '为椭圆1C :1422=+y x 与双曲线2C 的另一个公共焦点,则由对称性知0AF AF '⋅=,因此由22222()()2()8AF AF AF AF AF AF c '''-++=+=得22244832a a e +=⨯⇒=⇒==【考点】椭圆与双曲线定义 【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图. 11.平行四边形ABCD中,60,1,BAD AB AD P ∠===为平行四边形内一点,且2AP =,若),(R ∈+=μλμλ,则λ的最大值为 . 【答案】36【解析】试题分析:设(0,)3PAB πθθ∠=∈,,则由正弦定理得:2sin120sin(60)λθ==-,因此)3πλθ=+≤,当且仅当=6πθ时取等号【考点】向量与三角综合【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解. 12.已知ABC ∆,若存在111A B C ∆,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C ∆是ABC ∆的一个“友好”三角形.若等腰ABC ∆存在“友好”三角形,则其底角的弧度数为 .【答案】83π【解析】试题分析:不妨设A 为顶角,则由题意得2A π≠,且,,222A AB BC Cπππ'''=±=±=±,因此有3++=22A B C A B C A B C ππ'''=±±±⇒±±±,逐一验证得:3,=48A B C ππ==满足【考点】诱导公式13.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a ∈R ).若)()2016(,x f x f R x >+∈∀,则实数a 的取值范围是 . 【答案】504a <【解析】试题分析:当0a =时,(),f x x x R =∈,满足条件;当0a <时,2,0()0,02,0x a x f x x x a x ->⎧⎪==⎨⎪+<⎩,为R 上的单调递增函数,也满足条件;当0a >时,2,(),2,x a x a f x x a x ax a x a ->⎧⎪=--≤≤⎨⎪+<-⎩,要满足条件,需42016a < ,即0504a <<,综上实数a 的取值范围是504a <【考点】分段函数图像与性质14.若函数n mx x x f ++=2)(),(R n m ∈在[1,1]-上存在零点,且120≤-≤m n ,则n 的取值范围是 .【答案】3,9⎡--⎣【解析】试题分析:由题意得:(1)(1)0f f -≤或240112(1)0,(1)0m n m f f ⎧∆=-≥⎪⎪-≤-≤⎨⎪-≥≥⎪⎩,作出可行域OCAB :其中由2,(102n m n A n mm -==⎧⎧⇒--⎨⎨-+==-⎩⎩,2219(94,04n m n B m n m m ⎧-==-⎧⎪⇒--⎨⎨=<=-⎩⎪⎩得知n的取值范围是3,9⎡--⎣【考点】二次方程实根分布 【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二、解答题15.如图,已知直三棱柱111C B A ABC -中, BC AC =,N M ,分别是棱1CC ,AB 中点.(1)求证:CN ⊥平面11A ABB ; (2)求证:CN ∥平面1AMB ;【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)证明线面垂直,一般利用线面垂直判定与性质定理,经多次转化进行论证:先由直棱柱性质将侧棱垂直底面转化为线线垂直1AA CN ⊥,再根据平几中等腰三角形性质得CN AB ⊥,最后由线面垂直判定定理得证(2)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予论证,而线线平行的寻找,往往利用平几知识,本题构造平行四边形,利用平行四边形性质得到线线平行:CN ∥MG .试题解析:解:(Ⅰ)证明:因为三棱柱111ABC A B C -中,1AA ⊥底面ABC ,又因为CN ⊂平面ABC ,所以1AA CN ⊥. 因为AC BC =,N 是AB 中点, 所以CN AB ⊥. 因为1AA AB A ⋂=,所以CN ⊥平面11ABB A .(Ⅱ)证明:取1AB 的中点G ,连结MG ,NG ,因为N ,G 分别是棱AB ,1AB 中点,所以NG ∥1BB ,112NG BB =.又因为CM ∥1BB ,112CM BB =,所以CM ∥NG ,CM =NG .所以四边形CNGM 是平行四边形. 所以CN ∥MG .因为CN ⊄平面1AMB ,MG ⊂平面1AMB ,所以CN ∥平面1AMB .【考点】线面垂直判定与性质定理,线面平行判定定理【方法点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直. 16.设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析(2)9]8【解析】试题分析:(1)先由正弦定理,将已知条件统一成角的关系:即sin sin tan A B A =,再根据同角三角函数关系,化切为弦得sin cos B A =,最后根据诱导公式得2B Aπ=+(2)求取值范围问题,一般先利用条件,将其转化为一元函数:sin sin sin sin(2)2A C A A π+=+-,再利用二倍角公式,将其转化为二次函数:22sin sin 1A A ++,最后根据角的范围04A π<<,确定二次函数定义区间0sin 2A <<,结合对称轴得到函数值域9(]28试题解析:解析:(1)由t a n a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,(不写范围的扣1分) 故2B Aπ=+,即2B A π-=;(2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈, 于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+, ∵04A π<<,∴0sin A <<,因此21992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是9]8.【考点】正弦定理,诱导公式与二倍角公式,二次函数值域【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.某环线地铁按内、外环线同时运行,内、外环线的长均为30 km (忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度; (2)新调整的方案要求内环线列车平均速度为25 km/h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行? 【答案】(1)20 km/h.(2)内环线投入10列,外环线投入8列 【解析】试题分析:(1)本题实质为路程问题:9列列车总行驶30 km ,时间不超过10min ,即设内环线列车运行的平均速度为v km/h ,则3060109V ⨯≤,v≥20.注意单位统一(2)由(1)分析,可分别求出内、外环线乘客的最长候车时间:设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别72x ,6018x-.根据绝对值的定义研究差的单调性**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩,得x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.试题解析:解:(1) 设内环线列车运行的平均速度为v km/h ,由题意可知3060109V ⨯≤,v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2) 设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别为t1、t2 min ,则t1=30726025x x ⨯=,t2=30606030(18)18x x⨯=--.于是有t=|t1-t2|=**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩在(0,9)递减,在(10,17)递增.又(9)(10)t t >,所以x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短. 【考点】函数实际应用,分段函数最值18.如图,曲线Γ由两个椭圆1T :()222210x y a b a b +=>>和椭圆2T :()222210y x b c b c +=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点(0,M ,且,,a b c 的公比为22.x(1)求猫眼曲线Γ的方程; (2)任作斜率为()0k k ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:ON OMK k 为与k 无关的定值;(3l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N 为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.【答案】(1)222212:1,:1,422x y y T T x +=+=(2)详见解析(3)【解析】试题分析:(1)求椭圆标准方程,一般方法为待定系数法,由题意得b =再由,,a b c 成等比数列,且公比为22得2,1a c ==(2)弦中点问题,一般利用点差法得中点坐标与弦斜率关系:21k k OM-=⋅,2k k ON -=⋅,两式相除得ON OMK k 值为1.4(3)由椭圆几何意义得,过N1T 也相切,而直线与椭圆相切问题,一般利用判别式为零列等量关系,根据弦长公式可得底边长,根据平行直线间距离公式可得高试题解析:解. (1)b =2,1a c ∴==,221:142x y T ∴+=,222:12y T x ∴+=(2)设斜率为k 的直线交椭圆1T 于点()()1122,,,C x y D x y ,线段CD 中点()00,M x y121200,22x x y y x y ++∴==由22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,得()()()()12121212042x x x x y y y y -+-++=k 存在且0k ≠,12x x ∴≠,且0x 0≠ ∴01212012y y y x x x -⋅=-- ,即21k k OM -=⋅ 同理,2k k ON -=⋅41k k ON OM =∴得证(3)设直线l的方程为y m =+22221⎧=+⎪⎨+=⎪⎩y m y x b c ,()2222222220∴+++-=b c x x m c b c0∆=,2222∴=+m b c1: =+l y22221⎧=+⎪⎨+=⎪⎩y m x y a b , ()2222222220∴+++-=b a x x m a b a0∆=,2222∴=+m b a2: =l y两平行线间距离:d =∴=AB==AB ,d ==∆ABN的面积最大值为12S ==【考点】椭圆标准方程,点差法,直线与椭圆位置关系【思路点睛】定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.19.已知两个无穷数列{}{},n n a b 分别满足1112n n a a a +=⎧⎨-=⎩,1112n nb b b +=-⎧⎪⎨=⎪⎩,其中*n N ∈,设数列{}{},n n a b 的前n 项和分别为,n n S T ,(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2k ≥),使得1k k c c -<,称数列{}n c 为“k 坠点数列”①若数列{}n a 为“5坠点数列”,求n S ;②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由.【答案】(1)21na n =-,11,12,2n n n b n --=⎧=⎨≥⎩(2)①22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②6 【解析】试题分析:(1)由题意得数列{}n a 为等差数列,公差为2,首项为1,通项公式为21n a n =-,(2)①由题意得2123234345456563,5,7,5,7,a a a a a a a a a a a a a a a ≥⇒=≥⇒=≥⇒=<⇒=≥⇒=当6n ≥时,12n n a a +-=,可分项讨论得22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②三个未知正整数p 、q 、m 是本题难点,先分析数列{}n a 成为p 坠点数列的条件: 12,2p p a a p --=-≥,当n p ≠时,12n n a a +-=,数列{}n b 为“q 坠点数列” 的条件:除首项外有且只有一个负项. 这样,n n S T 的范围可用等差与等比数列前n 项和限制:当q m >时,121122223m m m m T --=-++⋅⋅⋅++=-,()211321(1)m S m m +≤++⋅⋅⋅++=+,当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立;当q m =时, 121122230m m m T --=-++⋅⋅⋅+-=-<不存在m,使得1m mS T +=成立;当q m<时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-,当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立,所以6m ≤,最后验证当6m =时,满足条件.试题解析:解(1)数列{}{},n n a b 都为递增数列,∴12n n a a +-=,21212,2,n n b b b b n N *++=-=∈,∴21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩;(2)①∵数列{}n a 满足:存在唯一的正整数=5k ,使得1k k a a -<,且12n na a +-=,∴数列{}n a 必为1,3,5,7,5,7,9,11,⋅⋅⋅,即前4项为首项为1,公差为2的等差数列,从第5项开始为首项5,公差为2的等差数列,故22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ② ∵2214n n b b +=,即12n n b b +=±,1||2n n b -∴=而数列{}n b 为“q 坠点数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数.()211321(1)m S m m +≤++⋅⋅⋅++=+i.当q m >时,121122223m m mm T --=-++⋅⋅⋅++=- 当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立 ii.当q m =时,121122230m m m T --=-++⋅⋅⋅+-=-< 显然不存在m ,使得1m m S T +=成立iii .当q m <时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立 所以6m ≤当6m =时,6q <,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,--⋅⋅⋅此时3p =,5q =,所以m 的最大值为6 【考点】等差数列与等比数列综合应用20.已知函数221()xax bx f x e++=(e 为自然对数的底数). (1) 若21=a ,求函数)(x f 的单调区间; (2) 若1)1(=f ,且方程1)(=x f 在)1,0(内有解,求实数a 的取值范围.【答案】(1)0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞;0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . (2))21,22(-e 【解析】试题分析:(1)求函数单调区间,一般利用导数,先求导函数:x e b x b x x f --+-+-=']1)2([)(2,再求导函数在定义区间内的零点情况:11=x ,b x -=12,最后根据两根大小分类讨论单调区间(2)先由1)1(=f 得a e b 21--=,再研究代入1)(=x f ,变量分离得2(1)12x e e x a x x ---=-,令函数2(1)1(),(0,1)x e e xg x xx x---=∈-,利用导数可知2(1)1(),(0,1)x e e x g x x x x ---=∈-为增函数,结合洛必达法则可得()(2,1)g x e ∈-,因此可得实数a 的取值范围.本题也可讨论求参数取值范围.试题解析:解.(1)当21=a ,x e bx x x f -++=)1()(2,x e b x b x x f --+-+-=']1)2([)(2,令0)(='x f ,得11=x ,b x -=12.当0=b 时,0)(≤'x f .当0>b ,11<<-x b 时,0)(>'x f ,b x -<1或1>x 时,0)(<'x f ; 当0<b ,b x -<<11时,0)(>'x f ,b x ->1或1<x 时,0)(<'x f .所以,0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞; 0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . .....4分(2)由1)1(=f 得e b a =++12,a e b 21--=,由1)(=x f 得122++=bx ax e x ,设12)(2---=bx ax e x g x , 则)(x g 在)1,0(内有零点.设0x 为)(x g 在)1,0(内的一个零点,则由0)1(,0)0(==g g 知)(x g 在区间),0(0x 和)1,(0x 上不可能单调递增,也不可能单调递减,设)()(x g x h '=,则)(x h 在区间),0(0x 和)1,(0x 上均存在零点,即)(x h 在)1,0(上至少有两个零点. b ax e x g x --='4)(,a e x h x4)(-='.当41≤a 时,0)(>'x h ,)(x h 在区间)1,0(上递增,)(x h 不可能有两个及以上零点;.6分当4ea ≥时,0)(<'x h ,)(x h 在区间)1,0(上递减,)(x h 不可能有两个及以上零点;.7分当441e a <<时,令0)(='x h 得)1,0()4ln(∈=a x ,所以)(x h 在区间))4ln(,0(a 上递减,在)1),4(ln(a 上递增,)(x h 在区间)1,0(上存在最小值))4(ln(a h . 若)(x h 有两个零点,则有:0))4(ln(<a h ,0)0(>h ,0)1(>h .)441(1)4ln(46)4ln(44))4(ln(ea e a a ab a a a a h <<-+-=--=设)1(,1ln 23)(e x e x x x x <<-+-=ϕ,则xx ln 21)(-='ϕ,令0)(='x ϕ,得e x =.当e x <<1时,0)(>'x ϕ,)(x ϕ递增,当e x e <<时,0)(<'x ϕ,)(x ϕ递减,01)()(max <-+==e e e x ϕϕ,所以0))4(ln(<a h 恒成立.由0221)0(>+-=-=e a b h ,04)1(>--=b a e h ,得2122<<-a e .当2122<<-a e 时,设)(x h 的两个零点为21,x x ,则)(x g 在),0(1x 递增,在),(21x x 递减,在)1,(2x 递增,所以0)0()(1=>g x g ,0)1()(2=<g x g ,则)(x g 在),(21x x 内有零点.综上,实数a 的取值范围是)21,22(-e . 【考点】利用导数求函数单调区间,利用导数研究参数取值范围【思路点睛】先把方程解的问题转化为函数的零点问题.,再利用导数解决与函数零点(或方程的根)有关的问题:通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 21.已知矩阵 10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】11203A B ---⎡⎤=⎢⎥⎣⎦ 【解析】试题分析:由逆矩阵公式得110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,再利用矩阵运算得11203A B ---⎡⎤=⎢⎥⎣⎦ 试题解析:解:110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,11203A B ---⎡⎤=⎢⎥⎣⎦ 【考点】逆矩阵22.直角坐标系xoy 内,直线l 的参数方程22(14x tt y t =+⎧⎨=+⎩为参数),以OX 为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+,确定直线l 和圆C 的位置关系.【答案】直线l 与圆C 相交.【解析】试题分析:先利用代入消元得直线l 的普通方程为32-=x y ,再利用cos ,sin x y ρθρθ==将圆C 的极坐标方程化为直角坐标方程()()21122=-+-y x ,最后根据圆心到直线距离与半径大小关系确定位置关系试题解析:解:由⎩⎨⎧+=+=t y tx 4122,消去参数t ,得直线l 的普通方程为32-=x y ,由⎪⎭⎫⎝⎛+=4sin 22πθρ,即()()θρθρρθθρcos sin 2cos sin 22+=⇒+=,消去参数θ,得直角坐标方程为()()21122=-+-y x . 由(1)得圆心()1,1C ,半径2=r ,∴ C 到l 的距离r d =<=+--=25521231222,所以,直线l 与圆C 相交.【考点】参数方程化普通方程,极坐标方程化直角坐标方程,直线与圆位置关系23.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求在未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 【答案】(1)0.9477(2)2【解析】试题分析:(1)至多1年的年入流量超过120包含两种情况,一是4年年入流量不大于120,二是恰有一年年入流量超过120,利用互斥事件概率加法公式得351(120)5010P P X =>==,04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯=(2)由于至多安装3台,因此分三类依次讨论,分别求出对应分布列、数学期望值,最后比较数学期望值大小,试题解析:解:(1)由题意得:1101(4080)505P P X =<<==,2335751(80120),(120)50105010P P X P P X =≤≤===>==由二项分布,在未来4年中,至多1年的年入流量超过120的概率为04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯= (2) 设水电站年总利润为y (万元)①安装1台发电机,5000,5000.y Ey == y42000.2+100000.8=8840.Ey =⨯⨯y 150000.1=8620.+⨯综上,欲使水电站年总利润的均值达到最大,应安装发电机2台 【考点】数学期望值,概率【方法点睛】求解离散型随机变量的数学期望的一般步骤为: 第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B (n ,p )),则此随机变量的期望可直接利用这种典型分布的期望公式(E (X )=np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 24.设数列{}n a (n N ∈)为正实数数列,且满足20nin i n i ni C a aa -==∑. (1)若24a =,写出10,a a ;(2)判断{}n a 是否为等比数列?若是,请证明;若不是,请说明理由. 【答案】(1)2,110==a a (2)是等比数列【解析】试题分析:(1)先寻求10,a a 之间关系:当1n =时,0121011011102C a a C a a a a a +=⇒=,同理可得当2n =时,1222022*********C a a C a a C a a a a a ++=⇒=,再根据24a =,得到2,110==a a (2)利用数学归纳法,同(1)求出02nn a a =试题解析:解:(1)当1n =时,0121011011102C a a C a a a a a +=⇒= 当2n =时,01222022112202204C a a C a a C a a a a a ++=⇒= 因为24a =,所以2,110==a a(2)假设对于n i n N ≤∈,,均有02nn a a =,则当1n i =+时,2121110101022(22)2i i i i i i a a a a a a ++++++=+-⇒= 综上,02nn a a =,{}n a 为等比数列 【考点】数学归纳法。
7 扬州市高三2016—2017学年度第一学期期末检测数学试题(含答案)

扬州2016—2017学年度第一学期期末检测试数学一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.已知集合{0}A x x =≤,{1012}B =-,,,,则A B = ▲ . 2.设1i i 1ia b +=+-(i 为虚数单位,a ,b ∈R ),则ab = ▲ .3.某学校共有师生3200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 ▲ . 4.如图是一个求函数值的算法流程图,若输入的x 的值为5, 则输出的y 的值为 ▲ . 5.已知直线:20l x -=与圆22C :x +y =4交于,A B 两点, 则弦AB 的长度为 ▲ .6.已知,A B {}3,1,1,2∈--且A B ≠,则直线10Ax By ++=的斜率 小于0的概率为 ▲ .7.若实数,x y 满足10101x y y x x +-≥⎧⎪--≤⎨⎪≤⎩,则23zx y =+的最大值为 ▲ .8.若正四棱锥的底面边长为2(单位:cm ),侧面积为8(单位:2cm ), 则它的体积为 ▲ (单位:3cm ).9.已知抛物线216y x =的焦点恰好是双曲线222112x y b -=的右焦点,则双曲线的渐近线方程为 ▲ . 10.已知1cos()33πα+=()2πα<<0,则sin()πα+= ▲ .扬州11.已知1,5x x ==是函数()()()cos 0f x x ωϕω=+>两个相邻的极值点,且()f x 在2x =处的导数()20f '<,则()0f = ▲ .12.在正项等比数列{}n a 中,若4321226a a a a +--=,则56a a +的最小值为 ▲ .13.已知ABC ∆是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足2133AQ AP AC =+,则BQ的最小值是 ▲ .14.已知一个长方体的表面积为48(单位:2cm ),12条棱长度之和为36(单位:cm ),则这个长方体的体积的取值范围是 ▲ (单位:3cm ).二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分) 在ABC ∆中,6AB =,AC =18AB AC ⋅=-. (1)求BC 的长; (2)求tan 2B 的值.(第4题图)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD 的中点. (1)求证:EF ∥平面P AB ;(2)若AP =AD ,且平面P AD ⊥平面ABCD ,证明:AF ⊥平面PCD .17.(本小题满分14分)如图,矩形ABCD 是一个历史文物展览厅的俯视图,点E 在AB 上,在梯形BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在∆ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,MPN ∠为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,4MPN π∠=.记EPM θ∠=(弧度),监控摄像头的可视区域∆PMN 的面积为S 平方米. (1)求S 关于θ的函数关系式,并写出θ的取值范围;(参考数据:5tan 34≈) (2)求S 的最小值.如图,椭圆2222:1(0)x y C a b a b+=>>,圆222:O x y b +=,过椭圆C 的上顶点A 的直线l :y kx b =+分别交圆O 、椭圆C 于不同的两点P 、Q ,设AP PQ λ=. (1)若点(3,0),P -点(4,1),Q --求椭圆C 的方程; (2)若3λ=,求椭圆C 的离心率e 的取值范围.19.(本小题满分16分)已知数列{}n a 与{}n b 的前n 项和分别为n A 和n B ,且对任意n *∈N ,112()n n n n a a b b ++-=-恒成立. (1)若21,2n A n b ==,求n B ; (2)若对任意n *∈N ,都有n n a B =及3124122334113n n n b b b b a a a a a a a a ++++++<成立,求正实数1b 的取值范围; (3)若12,a =2n n b =,是否存在两个互不相等的整数,s t (1)s t <<,使11,,s ts tA A AB B B 成等差数列?若存在,求出,s t 的值;若不存在,请说明理由.已知函数()()()f x g x h x =⋅,其中函数()x g x e =,2()h x x ax a =++. (1)求函数()g x 在()1,(1)g 处的切线方程;(2)当02a <<时,求函数()f x 在[2,]x a a ∈-上的最大值;(3)当0a =时,对于给定的正整数k ,问函数()()2(ln 1)F x e f x k x =⋅-+是否有零点?请说明理由.(参考数据 1.649, 4.482,ln 20.693e ≈≈≈≈)2016—2017学年度第一学期期末检测试题高 三 数 学 2017.01试 题Ⅱ(全卷满分40分,考试时间30分钟)21.(本小题满分10分)已知,a b ∈R ,若点(1,2)M -在矩阵14a b ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(2,7)N -,求矩阵A 的特征值. 22.(本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 1sin x y αα=⎧⎨=+⎩(α为参数),以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为4πθ=,试求直线l 与曲线C 的交点的直角坐标. 23.(本小题满分10分)为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的. (1)求甲、乙、丙三人选择的课程互不相同的概率;(2)设X 为甲、乙、丙三人中选修《数学史》的人数,求X 的分布列和数学期望()E X .24.(本小题满分10分)已知010011(1)C ()(1)C ()(1)C (),()n n nn n n n F x f x f x f x n *=-+-++-∈N ()(0)x >, 其中i ()f x {}(i 0,1,2,,)n ∈是关于x 的函数.(1)若ii ()=f x x (i )∈N ,求21F (),20172F ()的值;(2)若i ()=(i )ixf x x+∈N ,求证:!=(1)(2)()n n F x x x x n +++()()n *∈N .2016-2017学年度高三第一学期期末测试数 学 试 题Ⅰ参 考 答 案2017.1一、填空题 1.{1,0}-2.03.2004.15- 5. 6.17.889.y x = 101112.48 132314.[16,20] 15.⑴因为cos 18AB AC AB AC A =⨯⨯=-,且6AB =,AC =BC 分⑵方法一:在ABC ∆中,6AB =,AC =BC222222cos =210BA BC AC B BA BC +⨯-(-(, --------------------9分 又(0,)B π∈,所以sin B sin 1tan cos 3B B B ==,-------------11分所以2222tan 33tan 2=11tan 41()3BB B ==--. ---------------------14分 方法二:由6AB =,AC =cos 18AB AC AB AC A =⨯⨯=-可得cos =2A -, 又(0,)A π∈,所以34A π=.---------------------8分 在ABC ∆中,sin sin BC ACA B =,所以sin sin AC AB BC⨯===,-----------10分又(0,)4B π∈,所以cos 10B ,所以sin 1tan cos 3B B B ==, 所以2222tan 33tan 2=11tan 41()3B B B ==--. ---------------------14分 16. (1)证明:因为点E 、F 分别是棱PC 和PD 的中点,所以EF ∥CD ,又在矩形ABCD 中,AB ∥CD ,所以EF ∥AB , ---------------------3分又AB ⊂面P AB ,EF ⊄面P AB ,所以EF ∥平面P AB . ---------------------6分⑵证明:在矩形ABCD 中,AD ⊥CD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊂面ABCD ,所以CD ⊥平面P AD , ---------------------10分 又AF ⊂面P AD ,所以CD ⊥AF .①因为P A =AD 且F 是PD 的中点,所以AF ⊥PD ,②由①②及PD ⊂面PCD ,CD ⊂面PCD ,PD ∩CD =D ,所以AF ⊥平面PCD . -----------------14分 17.⑴方法一:在∆PME 中,EPM θ∠=,PE =AE -AP =4米,4PEM π∠=,34PME πθ∠=-, 由正弦定理得sin sin PM PEPEM PME =∠∠,所以sin 43sin sin cos sin()4PE PEM PM PME πθθθ⨯∠===∠+-, ---------------------2分同理在∆PNE 中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin cos sin()2PE PEN PN PNE πθθ⨯∠===∠-, - --------------------4分所以∆PMN 的面积S 1sin 2PM PN MPN =⨯⨯∠24cos sin cos θθθ=+ 41cos 21sin 222θθ=++88sin 2cos 2)4πθθθ==++1++1, --------------------8分 当M 与E 重合时,0θ=;当N 与D 重合时,tan 3APD ∠=,即54APD ∠=,3544πθ=-, 所以35044πθ≤≤-.综上可得:8)4S πθ=++1,350,44πθ⎡⎤∈-⎢⎥⎣⎦. ---------------------10分方法二:在∆PME 中,EPM θ∠=,PE =AE -AP =4米,4PEM π∠=,34PME πθ∠=-,由正弦定理可知:sin sin ME PEPMEθ=∠,所以sin 4sin 3sin sin()4PE ME PME θθπθ⨯===∠-, ---------------------2分在∆PNE 中,由正弦定理可知:sin sin NE PEEPN PNE=∠∠,所以sin()4sin()44cos sin()2PE NE ππθθπθθ⨯++===----------------------4分所以2cos sin cos MN NE ME θθθ=-=+,又点P 到DE的距离为4sin 4d π==, ---------------------6分所以∆PMN 的面积S=21441cos 212cos sin cos sin 222MN d θθθθθ⨯==+++88sin 2cos 2)4πθθθ==++1++1, ---------------------8分 当M 与E 重合时,0θ=;当N 与D 重合时,tan 3APD ∠=,即54APD ∠=,3544πθ=-, 所以35044πθ≤≤-.综上可得:8)4S πθ=++1,350,44πθ⎡⎤∈-⎢⎥⎣⎦. ---------------------10分⑵当242ππθ+=即350,844ππθ⎡⎤=∈-⎢⎥⎣⎦时,S1)=.---------13分 所以可视区域∆PMN面积的最小值为1)平方米. ---------------------14分 18.(1)由P 在圆222:O x y b +=上得3,b =又点Q 在椭圆C 上得2222(4)(1)1,3a --+= 解得218,a = ∴椭圆C 的方程是221.189x y += --------------------------------------5分 (2)由222y kx b x y b =+⎧⎨+=⎩得0x =或221P kbx k =-+ --------------------------------------7分 由22221y kx bx y ab =+⎧⎪⎨+=⎪⎩得0x =或22222Q kba x a k b =-+ --------------------------------------9分 AP PQ λ= ,3λ=,34AP AQ ∴=,2222223241kba kb k a b k ∴⋅=++即222223141a a k b k⋅=++ 222223441a b k e a -∴==- 20k >241e ∴>,即12e >,又01e <<,11.2e ∴<< ----16分19. (1)因为2,n A n =,所以221,1(1),n 2n n a n n =⎧=⎨--≥⎩ 即21n a n =- --------------------------------------2分故111()12n n n n b b a a ++-=-=,所以数列{}n b 是以2为首项,1为公差的等差数列,所以21132(1)1222n B n n n n n =⋅+⋅⋅-⋅=+ --------------------------------------4分(2)依题意112()n n n n B B b b ++-=-,即112()n n n b b b ++=-,即12n nbb +=,所以数列{}n b 是以1b 为首项,2为公比的等比数列,所以1112(21)12nn n n a B b b -==⨯=--,所以11112(21)(21)nn n n n n b a a b +++=-⋅- --------------------------5分因为111111112111()(21)(21)2121n n n n n n n n b b a a b b b ++++⋅==--⋅--- --------------------------8分所以31241112233411111()2121n n n n b b b b a a a a a a a a b +++++++=---,所以1111111()21213n b +-<--恒成立, 即1113(1)21n b +>--,所以13b ≥。
江苏省扬州市数学高三上学期理数期末考试试卷

江苏省扬州市数学高三上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高二上·枣阳开学考) 不等式x(x+2)≥0的解集为()A . {x|x≥0或x≤﹣2}B . {x|﹣2≤x≤0}C . {x|0≤x≤2}D . {x|x≤0或x≥2}2. (2分)已知,为虚数单位,若,则()A .B .C .D .3. (2分) (2018高一下·珠海月考) 为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n =()A . 13B . 12C . 10D . 94. (2分)直线xcosα+ y+2=0的倾斜角的取值范围()A . [0, ]B . [ ,)∪(, ]C . [ , ]D . [0,]∪[ ,π)5. (2分)如图,阴影是集合在平面直角坐标系上表示的点集,则阴影中间形如“水滴”部分的面积等于()A .B .C .D .6. (2分) (2016高一下·辽源期中) 在正项数列{an}中,a1=2,点(,)(n≥2)在直线x﹣y=0上,则数列{an}的前n项和Sn等于()A . 2n﹣1﹡B . 2n+1﹣2C . 2 ﹣D . 2 ﹣7. (2分)执行如图所示的框图,若输出结果为3,则可输入的实数值的个数为()A . 1B . 2C . 3D . 48. (2分)若椭圆的右焦点与抛物线的焦点重合,则的值为()A . 2B . -2C . 4D . -49. (2分) (2016高一下·南充期末) 某几何体的三视图如图所示,则该几何体的体积是()A .B . 8C . 12D .10. (2分)已知圆的方程为x2+y2﹣6x﹣8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为()A . 0B . -1C . 1D . -211. (2分) (2019高一下·蛟河月考) ()A .B .C .D .12. (2分)已知函数.若,则的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2012·湖南理) ()6的二项展开式中的常数项为________(用数字作答).14. (1分)已知锐角三角形ABC,下列三角函数值为负数的有________ 个.① ,② ,③tan(A+B),④cos(﹣B)15. (1分) (2016高一上·澄海期中) 已知函数f(x)=()x﹣()x+1的定义域是[﹣3,2],则该函数的值域为________16. (1分) (2019高一下·上海月考) 设数列的通项公式为,若数列是单调递增数列,则实数的取值范围为________.三、解答题 (共7题;共70分)17. (10分) (2018高一下·汪清期末) 在中,角的对边分别为(1)已知,求的大小;(2)已知,求的大小.18. (10分) (2016高二下·漯河期末) 某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]芯片甲81240328芯片乙71840296(1)试分别估计芯片甲,芯片乙为合格品的概率;(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.19. (10分) (2018高三上·凌源期末) 已知正四棱锥的各条棱长都相等,且点分别是的中点.(1)求证: ;(2)若平面,且,求的值.20. (10分)(2018·保定模拟) 椭圆的离心率为,且过点 .(1)求椭圆的方程;(2)设为椭圆上任一点,为其右焦点,是椭圆的左、右顶点,点满足 .①证明:为定值;②设是直线上的任一点,直线分别另交椭圆于两点,求的最小值.21. (10分)(2018·广元模拟) 已知函数在其定义域内有两个不同的极值点.(1)求的取值范围;(2)证明:22. (10分)(2017·长沙模拟) 在平面直角坐标系xoy中,点,圆F2:x2+y2﹣2 x﹣13=0,以动点P为圆心的圆经过点F1 ,且圆P与圆F2内切.(1)求动点的轨迹的方程;(2)若直线l过点(1,0),且与曲线E交于A,B两点,则在x轴上是否存在一点D(t,0)(t≠0),使得x轴平分∠ADB?若存在,求出t的值;若不存在,请说明理由.23. (10分) (2019高三上·日喀则月考)(1)解不等式;(2)设正数满足,求证:,并给出等号成立条件.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
江苏省扬州市2016届高三上学期期末考试英语试卷

扬州市2015—2016学年度第一学期期末检测试题高三英语2016.01第 I 卷(选择题,三部分,共85分)第一部分听力(共两节,每题1分,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What do we learn from the conversation?A.The man hates to lend his tools to other people.B.The man hasn’t finished working on the bookshelf.C.The man lost those tools.2.What do we know about the man?A.He doesn’t like his job.B.He will not give up his job.C.He has a large family to support.3.What’s the relationship between the two speakers?A.Classmates.B. Teacher and student.C. Headmaster and teacher.4.Who is worried about gaining weight?A.The son.B. Aunt Louise.C. The mother.5.Why doesn’t the woman buy the coat?A.It is expensive.B. There isn’t her size.C. She doesn’t like the color.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标注在试卷的相应位置。
江苏省扬州市高三上学期期末数学试卷

江苏省扬州市高三上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共14分)1. (1分) (2019高三上·建平期中) 设函数的定义域是,为全体实数集,则________2. (1分)(2019·天津) 是虚数单位,则的值为________.3. (1分) (2017高二下·嘉兴期末) 过点(2,2)且与﹣y2=1有相同渐近线的双曲线方程为________.4. (1分)(2017·成都模拟) 在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是________.5. (1分) (2020高三上·静安期末) 如图,在平行四边形中,, ,则的值为________.6. (1分) (2018高二上·遂宁期末) 执行如右图所示的程序框图,若输入x=3,则输出的值为________.7. (1分)已知函数f(x)= (a∈R,b>0)的定义域和值域相同,则a的值是________.8. (1分) (2017高二下·和平期末) 从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是________.9. (1分)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________10. (1分)计算:cos42°sin18°+sin42°cos18°=________11. (1分)(2016·潮州模拟) 已知数列{an}的前n和为Sn , a1=2,当n≥2时,2Sn﹣an=n,则S2016的值为________.12. (1分)已知⊙C:x2+y2﹣2x+my﹣4=0上有两点M、N关于2x+y=0对称,直线l:λx+y﹣λ+1=0与⊙C 相交于A、B,则|AB|的最小值为________.13. (1分)(2017·吉安模拟) 对于函数g(x)= ,若关于x的方程g(x)=n(n>0)有且只有两个不同的实根x1 , x2 ,则x1+x2=________.14. (1分) (2019高二上·遵义期中) 已知实数满足,则的最大值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州市2015—2016学年度第一学期期末检测试题高 三 数 学第一部分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应位置) 1.已知集合{}02|2<x x x A -=,{}210,,=B ,则=B A ▲ . 2.若复数)23(i i z -=(i 是虚数单位),则z 的虚部为 ▲ . 3.如图,若输入的x 值为3π,则相应输出的值为 ▲ .4.某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 ▲ .5.双曲线116922=-y x 的焦点到渐近线的距离为 ▲ . 6.从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是 ▲ . 7.已知等比数列{}n a 满足4212=+a a ,523a a =,则该数列的前5项的和为 ▲ .8.已知正四棱锥底面边长为24,体积为32,则此四棱锥的侧棱长为 ▲ . 9.已知函数)32sin()(π+=x x f (π<x ≤0),且21)()(==βαf f (βα≠),则=+βα ▲ .10.已知)sin (cos αα,=,)12(,=,⎪⎭⎫⎝⎛-∈22ππα,,若1=⋅,则=+)232s i n (πα ▲ .11.已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 ▲ . 12.已知圆O :422=+y x ,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 ▲ . 13. 已知数列{}n a 中,a a =1(20≤a <),⎩⎨⎧≤+--=+)2(3)2(21n n n n n a a a a a >(*N n ∈),记n n a a a S +++= 21,若2015=n S ,则=n ▲ .14.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)(a a x a x x f 3221)(--+-=. 若集合{}Φ=∈--R x x f x f x ,>0)()1(|,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)如图,已知直三棱柱111C B A ABC -中,AC AB =,D 、E 分别为BC 、1CC 中点,D B BC 11⊥.(1)求证://DE 平面1ABC ; (2)求证:平面⊥D AB 1平面1ABC .16. (本小题满分14分)已知函数x x x x f ωωωcos sin cos 3)(2+=(0>ω)的周期为π. (1)当⎥⎦⎤⎢⎣⎡∈20π,x 时,求函数)(x f 的值域;(2)已知ABC ∆的内角A ,B ,C 对应的边分别为a ,b ,c ,若3)2(=A f ,且4=a ,5=+c b ,求ABC ∆的面积.17. (本小题满分15分)如图,已知椭圆12222=+by a x (0>>b a )的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足F λ=1(R ∈λ),M F PO 2⊥,O 为坐标原点. (1)若椭圆方程为14822=+y x ,且),(22P ,求点M 的横坐标; (2)若2=λ,求椭圆离心率e 的取值范围.18. (本小题满分15分)某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xoy .(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小. 现隧道口的最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?(隧道口截面面积公式为lh S 32=)19. (本小题满分16分)已知函数x e x ax x f )2()(2++=(0>a ),其中e 是自然对数的底数. (1)当2=a 时,求)(x f 的极值;(2)若)(x f 在[]22,-上是单调增函数,求a 的取值范围;(3)当1=a 时,求整数t 的所有值,使方程4)(+=x x f 在[]1+t t ,上有解.20. (本小题满分16分)若数列{}n a 中不超过)(m f 的项数恰为m b (*N m ∈),则称数列{}m b 是数列{}n a 的生成数列,称相应的函数)(m f 是数列{}n a 生成{}m b 的控制函数. (1)已知2n a n =,且2)(m m f =,写出1b 、2b 、3b ; (2)已知n a n 2=,且m m f =)(,求{}m b 的前m 项和m S ;(3)已知n n a 2=,且3)(Am m f =(*N A ∈),若数列{}m b 中,1b ,2b ,3b 是公差为d (0≠d )的等差数列,且103=b ,求d 的值及A 的值.第二部分(加试部分)21.(本小题满分10分)已知直线1=+y x l :在矩阵⎥⎦⎤⎢⎣⎡=10n m A 对应的变换作用下变为直线1=-'y x l :,求矩阵A .22. (本小题满分10分)在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.23. (本小题满分10分)某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金m 元,若摸中乙箱中的红球,则可获奖金n 元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.24. (本小题满分10分)已知函数232)(x x x f -=,设数列{}n a 满足:411=a ,)(1n n a f a =+. (1)求证:*N n ∈∀,都有31<<n a ; (2)求证:44313313313121-≥-++-+-+n na a a .扬州市2015-2016学年度第一学期高三期末调研测试数 学 试 题Ⅰ参 考 答 案2016.1一、填空题1.{}1 2.3 3.12 4.144 5.4 6.257.31 8.5 9.76π 10.725- 11.3 12.1± 13.1343 14.1(,]6-∞ 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.证明:(1)D 、E 分别为BC 、1CC 中点,1//DE BC ∴, …………2分 DE ⊄ 平面1ABC ,1BC ⊂平面1ABC //DE ∴平面1ABC …………6分(2)直三棱柱111ABC A B C -中,1CC ⊥平面ABC AD ⊂ 平面ABC 1CC AD ∴⊥ …8分 AB AC = ,D 为BC 中点 AD BC ∴⊥ ,又1CC BC C = ,1CC , BC ⊂平面11BCC B ,11面AD BCC B ∴⊥ 1BC ⊂ 平面11BCC B 1AD BC ∴⊥ …………11分又11BC B D ⊥ ,1B D AD D = ,1B D ,AD ⊂平面1AB D 1BC ∴⊥平面1AB D 1BC ⊂ 平面1ABC ∴平面1AB D ⊥平面1ABC …………14分16.解:(1)1()cos 2)sin 2sin(2)23f x x x x πωωω=++=++ …………2分()f x 的周期为π,且0ω>,22ππω∴=,解得1ω= ()sin(2)3f x x π∴=+…………4分又02x π≤≤, 得42333x πππ≤+≤,sin(2)13x π≤+≤,0sin(2)13x π≤++≤+ 即函数()y f x =在[0,]2x π∈上的值域为1]+.………7分(2) ()2A f =sin()3A π∴+= 由(0,)A π∈,知4333A πππ<+<,解得:233A ππ+=,所以3A π= …………9分由余弦定理知:2222cos a b c bc A =+-,即2216b c bc =+-216()3b c bc ∴=+-,因为5b c +=,所以3bc = …………12分∴1sin 2ABC S bc A ∆==. …………14分17.(1)22184x y += 12(2,0),(2,0)F F ∴- 21OP F M F M k k k ∴===∴直线2F M的方程为:2)y x =-,直线1F M的方程为:2)y x =+ …………4分由2)2)y x y x ⎧=-⎪⎨=+⎪⎩解得:65x = ∴点M 的横坐标为65 …………6分 (2)设00(,),(,)M M P x y M x y 12F M MP = 1002(,)(,)3M M F M x c y x c y ∴=+=+ 00200212242(,),(,)333333M x c y F M x c y ∴-=-2PO F M ⊥ ,00(,)OP x y = 2000242()0333x c x y ∴-+=即220002x y cx += …………9分联立方程得:2200022002221x y cx x y ab ⎧+=⎪⎨+=⎪⎩,消去0y 得:222222002()0c x a cx a a c -+-=解得:0()a a c x c +=或 0()a a c x c-= …………12分0a x a -<< 0()(0,)a a c x a c -∴=∈ 20a ac ac ∴<-< 解得:12e >综上,椭圆离心率e 的取值范围为1(,1)2. …………15分18.解:(1)设抛物线的方程为:2(0)y ax a =->,则抛物线过点3(10,)2-,代入抛物线方程解得:3200a =, …………3分令6y =-,解得:20x =±,则隧道设计的拱宽l 是40米; …………5分(2)抛物线最大拱高为h 米,6h ≥,抛物线过点9(10,())2h --,代入抛物线方程得:92100h a -=令y h =-,则292100h x h --=-,解得:210092h x h =-,则2100()922l h h =-,2292400lh l =-………9分229266400l h l ≥∴≥- 即2040l <≤ 232292232(2040)33400400ll S lh l l l l ∴==⋅=<≤--………12分2232222229(400)323(1200)'(400)(400)l l l l l l S l l --⋅-∴===--当20l <<'0S <;当40l≤时,'0S >,即S 在上单调减,在上单调增,S ∴在l =l =,274h =答:当拱高为274米,拱宽为 ………15分19.解:(1)2()(22)x f x x x e =++,则'2()(253)(1)(23)x x f x x x e x x e =++=++ ………2分令'()0f x = ,31,2x =--323()()52极大值=f x f e -∴-= ,1()(1)3极小值=f x f e --= ………4分(2)问题转化为'2()(21)30xf x ax a x e ⎡⎤=+++≥⎣⎦在[2,2]x ∈-上恒成立;又0x e > 即2(21)30ax a x +++≥在[2,2]x ∈-上恒成立; ………6分 2()(21)3令g x ax a x =+++ 0a >,对称轴1102x a=--< ①当1122a --≤-,即102a <≤时,()g x 在[2,2]-上单调增, min ()(2)10g x g ∴=-=> 102a ∴<≤………8分 ②当12102a -<--<,即12a >时,()g x 在1[2,1]2a ---上单调减,在1[1,2]2a--上单调增,2(21)120a a ∴∆=+-≤ 解得:11a -≤≤112a ∴<≤综上,a 的取值范围是(0,1. ………10分 (3)1,a = 设2()(2)4x h x x x e x =++-- ,'2()(33)1x h x x x e =++- 令2()(33)1x x x x e ϕ=++- ,'2()(56)x x x x e ϕ=++ 令'2()(56)0,2,3得x x x x e x ϕ=++==--33()(3)10极大值=x e ϕϕ∴-=-< ,21()(2)10极小值=x eϕϕ-=-< ………13分1(1)10,(0)20e ϕϕ-=-<=> 000(1,0),()()0()()0存在-,时,,+时x x x x x x x ϕϕ∴∈-∈∞<∈∞> ()h x ∴在0(,)x -∞上单调减,在0(,)x +∞上单调增又43148(4)0,(3)10,(0)20,(1)450h h h h e e e -=>-=-<=-<=-> 由零点的存在性定理可知:12()0(4,3),(0,1)的根h x x x =∈--∈ 即4,0t =-. ………16分20.解:(1)1m =,则111a =≤ 11b ∴=;2m =,则114a =<,244a =≤ 22b ∴=3m =,则119a =<,249a =< 399a =≤ 33b ∴= …………3分(2)m 为偶数时,则2n m ≤,则2m m b =;m 为奇数时,则21n m ≤-,则12m m b -=; 1()2()2为奇数为偶数m m m b m m -⎧⎪⎪∴=⎨⎪⎪⎩ …………5分m 为偶数时,则21211(12)2224m m m m S b b b m =+++=+++-⨯=; m 为奇数时,则221211(1)11424m m m m m m m S b b b S b ++++-=+++=-=-=; 221()4()4为奇数为偶数m m m S m m ⎧-⎪⎪∴=⎨⎪⎪⎩ …………8分 (3)依题意:2n n a =,(1)f A =,(2)8f A =,(5)125f A =, 设1b t =,即数列{}n a 中,不超过A 的项恰有t 项,所以122t t A +≤<, 同理:1221282,21252,++t d t d t d t d A A ++++≤<≤<即⎧⎪⎨⎪⎩13222122,22,22,125125++t t t d t d t dt d A A A +-+-++≤<≤<≤<故22131222max{2,2,}min{2,2,}125125++t d t d t t d t t d A ++-++-≤<由⎧⎨⎩312222,22,125++t d t t d t d -++-<<得4d <,d 为正整数 1,2,3d ∴=, …………10分 当1d =时,232242max{2,2,}max{2,,}21254125++=t d tt t t d t t -⨯= , 21121228282min{2,2,}min{2,,}21252125125=t d t t t t t d t t ++++-+⨯⨯=< 不合题意,舍去; 当2d =时,2312162max{2,2,}max{2,2,}2125125+=t d t tt d t t t +--⨯= , 211212322322min{2,2,}min{2,2,}2125125125=t d t t t t d t t t ++++-+⨯⨯=< 不合题意,舍去; 当3d =时,232642max{2,2,}max{2,2,}2125125++=t d t tt d t t t -⨯= ,211211212821282min{2,2,}min{2,2,}2125125125+=t d t t t t d t t t ++++-+⨯⨯=>适合题意,………12分 此时12822125t t A ≤<⨯,125,3,6b t b t b t ==+=+,336t b t ∴+≤≤+ 310b = 47t ∴≤≤ t 为整数 4,5,6t t t ∴===或7t =(3)27f A = ,310b = 10112272A ∴≤< 1011222727A ∴≤< ………14分 当4t =时,11422125A ≤< ∴无解 当5t =时,12522125A ≤< ∴无解 当6t =时,13622125A ≤< 13264125A ∴≤< 当7t =时,14722125A ≤< ∴无解 13622125A ∴≤< *A N ∈ 64A ∴=或65A = 综上:3d =,64A =或65. ………16分2015-2016学年度第一学期高三期末调研测试数 学 试 题 Ⅱ 参 考 答 案21.解:(1)设直线:1l x y +=上任意一点(,)M x y 在矩阵A 的变换作用下,变换为点(,)M x y ''' . 由''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得x mx ny y y'=+⎧⎨'=⎩ …………5分 又点(,)M x y '''在l '上,所以1x y ''-=,即()1mx ny y +-=依题意111m n =⎧⎨-=⎩,解得12m n =⎧⎨=⎩,1201A ⎡⎤∴=⎢⎥⎣⎦ …………10分22.解:圆的直角坐标方程为22(4)16x y +-=, …………3分直线的直角坐标方程为y =, …………6分圆心(0,4)到直线的距离为2d ==,则圆上点到直线距离最大值为246D d r =+=+=. …………10分23.解:(1)设参与者先在乙箱中摸球,且恰好获得奖金n 元为事件M . 则131()344P M =⨯= 即参与者先在乙箱中摸球,且恰好获得奖金n 元的概率为14. …………4分(2)参与者摸球的顺序有两种,分别讨论如下:①先在甲箱中摸球,参与者获奖金x 可取0,,m m n + 则3121111(0),(),()44364312P P m P m n x x x ====?=+=? 3110()4612412m n E m m n x =??+?+ …………6分 ②先在乙箱中摸球,参与者获奖金h 可取0,,n m n + 则2131111(0),(),()33443412P P n P m n ηηη====⨯==+=⨯= 2110()3412123m n E n m n h =??+?+ …………8分 2312m n E E x h --=当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大; 当32m n =时,两种顺序参与者获奖金期望值相等; 当32m n <时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. 答:当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当32m n =时,两种顺序参与者获奖金期望值相等;当32m n <时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. …………10分24.(1)解:①当1n =时,114a =, 有1103a << 1n ∴=时,不等式成立 …………1分②假设当*()n k k N =∈时,不等式成立,即103k a << 则当1n k =+时,2221211()233()3()333k k k k k k k a f a a a a a a +==-=--=--+ 于是21113()33k k a a +-=-103k a << ,∴21103()33k a <-<,即111033k a +<-<,可得1103k a +<< 所以当1n k =+时,不等式也成立由①②,可知,对任意的正整数n ,都有103n a << …………4分(2)由(1)可得21113()33n n a a +-=-两边同时取3为底的对数,可得31311log ()12log ()33n n a a +-=+- 化简为313111log ()2[1log ()]33n n a a ++-=+- 所以数列31{1log ()}3n a +-是以31log 4为首项,2为公比的等比数列 …………7分 133111log ()2log 34n n a -∴+-=,化简求得:12111()334n n a --= ,1213413n na -∴=-2n ≥ 时,101211111211n n n n n n C C C C n n ------=++++≥+-= ,1n =时,121n -=*n N ∴∈时,12n n -≥,121343413n n na -∴=⋅≥⋅-011222121121113[444]3[444]44333n n n na a a -++++=+++≥+++=---- 11233344131313n na a a +∴+++≥---- . …………10分。