七年级平行线的判定及证明
平行线的六个判定

平行线的六个判定平行线是高中数学中的一个重要概念,也是几何学的基本定理之一。
平行线的概念最早由古希腊数学家欧几里得提出,并在《几何原本》一书中给出了平行线的六个判定。
六个判定分别是:同位角、内错角、同旁内角、同旁外角、平行线错角定理以及平行线夹角定理。
首先,同位角判定,其原理是:如果两条直线被一条横截线所切,且同位角之和为180°,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同位角之和为180°,那么这两条直线就是平行的。
这个判定可以通过实际的图形来演示和证明。
其次,内错角判定,其原理是:如果两条直线被一条横截线所切,且内错角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的内错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。
这个判定同样可以通过实际的图形来演示和证明。
接下来是同旁内角判定,其原理是:如果两条直线被一条横截线所切,且同旁内角之和为180°,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁内角之和为180°,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
然后是同旁外角判定,其原理是:如果两条直线被一条横截线所切,且同旁外角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁外角(一个在两直线之外,一个在两直线之间)互为补角,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
接下来是平行线错角定理,其原理是:如果两条直线被一条横截线所切,且错角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
七上数学平行线的判定

有关数学“平行线”的判定
有关数学“平行线”的判定方法如下:
1.同位角相等:如果两直线的同位角相等,那么这两直线平行。
2.内错角相等:如果两直线的内错角相等,那么这两直线平行。
3.同旁内角互补:如果两直线的同旁内角互补,即两个同旁内角的和为180度,那么这
两直线平行。
4.平行公理:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
5.垂直于同一直线的两条直线平行:如果两条直线都垂直于同一直线,那么这两条直线
平行。
6.平行于同一直线的两条直线平行:如果两条直线都平行于同一直线,那么这两条直线
也平行。
7.如果两条直线被第三条直线所截,那么同位角相等或内错角相等或同旁内角互补,则
这两条直线平行。
初一数学知识点:平行线的性质与判定知识点

初一数学知识点:平行线的性质与判定知识点人一辈子的道路专门长,但关键的却往往只有几步,而初中确实是这关键几步中的第一步,查字典数学网为大伙儿预备了平行线的性质与判定知识点,欢迎阅读与选择!【判定方法】(1) 同角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.【性质】(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
【相同点】课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
平行线的判定和性质研究的差不多上两直线被第三条直线所截的图形,能够说那个图形是它们共同的、必备的前提条件。
那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
七年级数学平行线的判定

a
2
b
/ 彩99
人带枪被汤再兴轰上咯半空.尚未落地,汤再兴手中红缨枪再次挺起,狂扫而至,将两人瞬间碾为两段.震荡出无数の血尘."老大,老二,我们为您报仇/"见汤再兴壹枪秒杀咯自己の两个出生入死の兄弟,汤再兴身后の两骑趁其否备,弯刀亮出,朝汤再兴の脖颈卷着凛冽の杀气袭去.汤再兴双眼微闭,已 经料到咯自己壹枪挑死两人,自己也会被后方偷袭致死,此时手中红缨枪朝地上壹震,荡起层层烟沙.等待那种冷风侵入血液の痛苦感."谁敢伤我大将/"壹声雷霆般の暴喝声响起.吭/寒光壹闪,壹声沉闷の金属撞击声响起,壹柄硕大の寒戟,在咫尺间出现,为汤再兴挡下咯那致命壹击.汤再兴回头望去, 只见东方升杀到,千钧壹发之际,东方升寒戟探出,挡下咯壹击."否知死の觉悟,今日便让我来解放您/"东方升冷冷の望咯壹眼汤再兴.又将目光抛到咯那壹骑の身上,发出壹声低沉否屑の冷笑,猿臂壹动,手中寒戟如携着雷霆之力.划破空际疾射而来,竟将马下の地面扫刮到狂尘骤起.没什么兵器の撞 击声,只有壹声沉闷の骨肉撕裂声.伴随着壹声痛苦の闷哼声,那壹骑连人带马被掀翻在地,壹片殷红腾飞而起,混合着漫天の尘沙否断升空.湮灭.仅仅壹招之间,东方升秒杀燕雨十八骑中の壹人.旁边五人悲痛の哀嚎壹声,并没什么任何の恐惧之感,反而否要命の扬起手中弯刀,朝东方升和汤再兴二 人涌来.因为在他们那习惯杀戮の眼神之中,燕雨十八骑,生当同生,死则同死,绝对没什么片刻の退缩."生死同刻,那我便成全您们/"东方升那冷绝寒冰般の眼眸之中,居然隐隐折射出咯些许钦佩之情,戟锋再次划破空气,发出"哧哧"の声响,刀锋未至,强如江潮般の劲气,便已先压而來.汤再兴亦是挥 起手中の红缨枪,掀起江潮般の巨力,如壹道长虹,呼啸而出.枪锋和戟锋结合壹起,强劲之极の力道,从地面上空扫过,竟是
《平行线的判定》平行线的证明

首先确定两条直线a和b在同一平面内 。然后,通过测量或观察确定它们之 间的距离d。如果d始终为正,则a和b 不相交,即它们是平行的。
利用内错角判定
总结词
如果两条直线a和b被第三条直线c所截,截得的同旁内角互补 ,那么a和b是平行的。
详细描述
首先确定两条直线a和b被第三条直线c所截,得到两个内错角 。然后,测量这两个内错角的度数。如果这两个内错角的度 数之和等于180度,那么a和b就是平行的。
感谢您的观看
THANKS
证明两直线平行
2. 两条直线的斜率相等,且它们在x轴上的 截距相等。在这种情况下,我们可以利用直 线的斜截式方程来写出它们的方程,然后比 较它们在x轴上的截距是否相等。如果相等 ,则两条直线平行;
3. 两条直线的斜率都存在,且它们的斜率之 积等于-1。在这种情况下,我们可以利用直 线的斜率公式来计算出它们的斜率,然后比 较它们的斜率之积是否等于-1。如果等于-1
两直线平行,同旁内 角互补。
两直线平行,内错角 相等。
平行线的分类
按照定义分为
空间中不相交的两条直线和平面 中不相交的两条直线。
按照性质分为
等位平行线、等角平行线和同旁 内角平行线。
02
平行线的判定方法
利用定义判定
总结词
根据平行线的定义,如果两条直线在 同一平面内,不相交,那么这两条直 线就是平行的。这是判定平行线最基 本的方法。
利用角平分线证明
总结词
角平分线也是证明平行线的重要工具, 通过角平分线的性质,我们可以证明两 条直线平行。
VS
详细描述
角平分线将角分成两个相等的部分,因此 ,如果两条直线被一条角平分线所截,则 它们所对的角相等。我们可以利用这个性 质来证明两条直线平行。
七年级平行线的判定及平行线的性质

平行线的判定知识点1:同位角相等,两直线平行。
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
﹙即:同位角相等,两直线平行。
﹚知识点2:内错角相等,两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(即:内错角相等,两直线平行。
)知识点3:同旁内角互补,两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(即:同旁内角互补,两直线平行。
)知识点4:同一平面内,垂直于同一条直线的两条直线互相平行。
(即:若a 、b 、c 为同一平面内的三条不重合直线,且满足a ⊥c ,b ⊥c .那么a ∥b ) 注:1.知识点四必须是在“同一平面内”。
2.后面三个条件知道其中两个,则第三个一定成立。
例1:如下图1,∠1=∠2,则下面结论正确的是( ) A.AD ∥BC B.AB ∥CD C.AD ∥EF D.EF ∥BC例2:如下图2,已知∠ADE=60°,DF 平分∠ADE ,∠1=30°,试说明:DF ∥BE.例3:如下图3,已知∠1=30°,∠B=60°,AB ⊥AC. ⑴.计算:∠DAB+∠B⑵.AB 与CD 平行吗?AD 与BC 平行吗?例4:如下图4,AB ⊥EF 于B,CD ⊥EF 于D,∠1=∠2, ⑴请说明AB ∥CD 的理由。
⑵.试问BM 与DN 是否平行?为什么?如图4如图3如图2如图121N M FEDC BA 1DCBA1F E DCBA 21FE DCBA1. 利用“同位角相等,两直线平行”说明两直线平行。
如下图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,则BE ∥AC ,说明理由。
2. 利用“内错角相等,两直线平行”说明两直线平行。
如下图,已知∠3=∠1,AC 平分∠BAD ,试说明AB ∥CD.321DCBA3. 利用“同旁内角互补,两直线平行”来说明两直线平行。
初一数学:平行线(含解析)

平行线知识互联网板块一 平行线的定义、性质及判定知识导航【例1】 ⑴ 如下左图,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是________. ⑵ 如下中图,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是________. ⑶ 如下右图,已知a b ∥,170∠=°,240∠=°,则3∠=________. 图DCBA21ba lb a321CBA 【解析】⑴ 122°;⑵ 110°;⑶ 70°【例2】 ⑴ 根据图在()内填注理由:① ∵B CEF ∠ =∠(已知)∴AB CD ∥( )② ∵B BED ∠= ∠(已知)∴AB CD ∥( ) ③ ∵180B CEB ∠+∠=°(已知) ∴AB CD ∥( )⑵ 下列说法中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .过直线外一点,有且只有一条直线和已知直线相交C .同一平面内的两条不相交直线平行D .过直线外一点,有且只有一条直线与已知直线平行【解析】⑴ ① 同位角相等,两直线平行;② 内错角相等,两直线平行;③ 同旁内角互补,两直线平行.⑵ 本题主要考察两直线平行的识别.根据平行公理及其推论可知A 、D 正确;同一平面内的两条直线的位置关系只有相交和平行两种,C 正确;过直线外一点,有且只有一条直经典例题FC EB D A线与这条直线平行,而有无数条直线与这条直线相交,B 不正确.【例3】 请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.⑴ 如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑵ 如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑶ 如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠,CNE ∠,相交于点O .求证:MG NH ⊥.从本题我能得到的结论是:____________________________________.(1)A B C DE FG H M N(2)NMFEDC B A GH (3)NM FEDC B A G H O 【解析】⑴ 两直线平行,同位角的角平分线平行.⑵ 证明:∵AB ∥CD ,∴BMFCNE ∠ 又∵MG ,NH 分别平分BMF从本题我能得到的结论是:两直线平行,内错角的角平分线平行.⑶ 证明:∵AB ∥CD ,∴180AMF CNE ∠+∠=又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴∴18090MON GMF HNE ∠= ,∴MG ⊥NH从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【例4】 证明:三角形三个内角的和等于180°.【解析】平角为180°,若能用平行线的性质,将三角形三个内角集中到同一个顶点,并得到一个平角,问题即可解决.证法1 : 如图所示,过ABC △的顶点A 作直线l BC ∥,则1BBAC所以180B BAC C ∠+∠+∠=°量代换).即三角形三个内角的和等于180°. 证法2 : 如图所示,延长BC ,过C 作CE AB ∥,则1A ∠=∠ (两直线平行,内错角相等),2B ∠= ∠ (两直线平行,同位角12180BCA ∠+∠+∠=°, 所以180BCA A B ∠+∠+∠=°,即三角形三个内角的和等于180°.【教师备案】利用平行线证明三角形内角和为180°的方法有很l21C BA 21D C EB A多,老师可以带着学生多练几个【例5】 如图,ABC △中CD AB ⊥于D ,DE BC ∥,交AC 于点E .过BC 上任意一点F ,作FG AB ⊥于G ,求证:12∠=∠.GFE 21D CBA【解析】∵FG AB CD AB ⊥⊥,, ∴GF CD ∥ ∴∠∵DE BC ∥, ∴2BCD ∠=∠, ∴12∠=∠【例6】 我们知道,光线从空气射入水中会发生折射现象.光线从水射入空气中,同样也会发生折射现象.如图,为光线从空气射入水中,再从水射入空气中的示意图.由于折射率相同,因此有14∠=∠,23∠=∠.请你用所学的知识来判断光线c 与d 是否平行?并说明理由.ba465dcba321【解析】c d ∥如图:∵25180∠+∠=°,36180∠+∠=°,23∠= ∠ ∴56∠= ∠(等角的补角相等)又∵14∠=∠∴1564∠+∠=∠+∠∴c d ∥(内错角相等,两直线平行)【例7】 (成都市初中数学竞赛)如图,已知AE 平分BAC ∠,BE AE ⊥,垂足为E ,ED AC ∥,36BAE ∠ = ° 求BED ∠ 的度数.EDCBA【解析】126°【例8】 ⑴ 如图所示AB CD ∥.求证:360B E D ∠+∠+∠=°EDCBA⑵ 已知,如图,AEC A C ∠=∠+∠,证明AB CD ∥ED CBA【解析】⑴ 如图,过E 点作EF AB ∥,则180B BEF ∠+∠=°因为AB CD ∥,所以EF CD ∥,180FED D ∠+∠=°所以360B BEF FED D ∠+∠+∠+∠=°又BEF FED BED ∠+∠=∠,∴360B BED D ∠+∠+∠=°即360B E D ∠+∠+∠=°F EDCBA ⑵ 解法一:过点E 作AEF A ∠=∠,则AB EF ∥, 又AEC A C AEF CEF ∠=∠+∠=∠+∠,∴C CEF ∠=∠,∴EF CD ∥,∴AB CD ∥. F ED CBA解法二:作180AEF A ∠+∠=°, 则AB EF ∥,∵360AEC AEF CEF ∠+∠+∠=°, ∴360A C AEF CEF ∠+∠+∠+∠=°, 经典例题板块二 平行线的构造∴180C CEF ∠+∠=°, ∴CD EF ∥, ∴AB CD ∥FE DCB A 【教师备案】这两个模型非常重要,建议各位老师分别从已知角度关系证明平行和已知平行证明角度关系两个方面讲解这两个小题,重点强调书写过程 【例9】 ⑴ 如图⑴,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.⑵ 如图⑵,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.⑶ 如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B −∠之间的关系.MNA 4B 2A 2A 3B 1A 1MNA nA 4A 3A 2A 1B n -1B 2B 1A nA n -1A 2A 1NM图⑴ 图⑵ 图⑶【解析】⑴ 123412180A A A A B B ∠+∠+∠+∠=∠+∠+°;⑵ 123(1)180n A A A A n ∠+∠+∠++∠=−×° . ⑶ 12121n n A A A B B B −∠+∠++∠=∠+∠++∠ ;【例10】如图,已知,CD EF ∥,C F ABC +=∠∠∠,求证AB GF ∥G FDECBAQPABCEDFG【解析】如图,过点B 作PQ CD ∥交GF 的延长线于点Q 则PQ EF ∥,【拓1】 如图所示,已知CB OA ∥,100C OAB∠ =∠ ,E ,F 在CB 上,且满足FOB AOB ∠= ∠,OE 平分COF ∠.思维拓展⑴ 求EOB ∠的度数;⑵ 若平行移动AB ,那么OBC ∠:OFC ∠的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;⑶ 在平行移动AB 的过程中,是否存在某种情况,使OECOBA ∠=∠?若存在,求出其度数;若不存在,请说明理由.ABC E FO 【解析】⑴40°;⑵1:2;⑶存在,60OECOBA ∠=【拓2】 在同一平面内有1a ,2a ,3a ,…,97a 共97条直线,如果12a a ∥,23a a ⊥,34a a ∥,45a a ⊥,56a a ∥,67a a ⊥,…,那么1a 与97a 的位置关系是________.【解析】寻找规律,12a a ∥,13a a ⊥,14a a ⊥;15a a ∥,16a a ∥,17a a ⊥,18a a ⊥…,4个一循环,974241÷= ,所以971a a ∥【拓3】 在同一平面内有7条直线,证明:必有两条直线的夹角小于26°.【解析】由平行线的性质可知,平移某条直线不影响该直线与其它直线的夹角,故可将7条直线平移使其交于同一点(如下图),A 7A 6A 5A 4A 3A 2A 1O点O 把7条直线分成14条射线,记为1OA ,2OA ,…,14OA ,相邻两射线组成14个角,记为1α,2α,…,14α,其和为一个周角:1214360ααα+++=° , 若结论不成立,则26i α°≥,()1214i = ,,,, 相加,得360这一矛盾说明,在1α,2α,…,14α中,必有一个角小于26°,即必有两条直线的夹角小于26°.【拓4】 如图,已知ABCDFED BC A FEDBC A【解析】如右图所示,分别过点E ,F 做AB 和CD 的平行线,易得:AEC EAB ECD∠=∠+∠x 90°50°30°30°ABCD E FG HMNPR Qx 90°50°30°30°AB CDE FG HMNOP【解析】过点G ,H 作AB ,CD 的平行线,那么AB OG HQ CD ∥∥∥∵AB OG ∥,HQ CD ∥∵OG HQ ∥,∴60GHQ OGH HGE EGO ∠=∠=∠−∠=° ∵在MHQ ∆中,180MHQ HMQ MQH ∠+∠+∠=°又∵180MQR MQH ∠+∠=°,∴MHQ HMQ MQR ∠+∠=∠ ,∴40GHM GHQ MHQ ∠=∠−∠=°习题1. 如图:已知12∠=∠,A C ∠= ∠,求证:①ABDC ∥证明:∵12∠=∠( )∴______∥______( ). ∴C CBE ∠= ∠( )又∵C A ∠=∠( )∴A ∠=________( ) ∴______∥______( ).EDCBA21【解析】已知:AB ,CD ;内错角相等,两直线平行;两直线平行,内错角相等;已知;CBE ∠; 等量代换;AD ,BC ;同位角相等,两直线平行. 习题2. 如图所示,复习巩固⑴ 已知:AB CD ∥,12∠=∠,求证:BE CF ∥; ⑵ 已知:AB CD ∥,BE CF ∥,求证:12∠=∠.F 21E B DA C【解析】⑴ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) ∵12∠=∠(已知),∴EBC BCF ∠= ∠(等量减等量差相等) ∴BE CF ∥(内错角相等,两直线平行)⑵ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) 又BE CF ∥(已知),∴EBCBCF ∠= ∠(两直线平行,内错角相等) ∴12∠=∠(等量减等量差相等)习题3. 如图,A B C ,,和D E F ,,分别在同一直线上,AF 分别交CE ,BD 于点G ,H .已知H BCG FE D A习题4. 如图,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5,延长AB GF 、交于点M .试探索AMG ∠与3∠的关系,并说明理由.M5G4321DCFEBA【解析】3AMG ∠= ∠.理由:∵12∠=∠,∴AB CD ∥(内错角相等,两直线平行). ∵34∠= ∠,∴CD EF ∥(内错角相等,两直线平行). ∴AB EF又53习题5. (十二届希望杯)如图所示,AB ED ∥,A E α=∠+∠,B C D β=∠+∠+∠,证明:2βα=.DCEBA21D CFEBA21DCFEBA【解析】证法l :因为AB ED ∥,所以180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥.由AB ED ∥,得CF ED ∥ (平行于同一条直线的两条直线平行) 因为CF AB ∥,有1B ∠= ∠ (两直线平行,内错角相等) 又CF ED ∥,有2D ∠= ∠,(两直线平行,内错角相等)所以12360B C D BCD β=∠+∠+∠=∠+∠+∠=° (周角定义)所以2βα=(等量代换)证法2:由AB ED ∥,得180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥(如图). 由AB ED ∥,得CF ED ∥.(平行于同一条直线的两条直线平行)因为CF AB ∥,所以1180B ∠+∠=(两直线平行,同旁内角互补), 又CF ED ∥,所以2180D ∠+∠=(两直线平行,同旁内角互补) 所以(12)(1)(2)360BCD B D B D β=∠+∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=°所以2βα=(等量代换). 习题6. 如图,已知:AB CD ∥,ABFDCE ∠=∠,求证:BFE FEC ∠=∠ FEDCBA4321ABC DEF 习题7. 如图,AB DE ∥,70ABC ∠=,147CDE ∠= °,求C ∠的度数. 147°70°ED CB AF147°70°E DCBA∴CF DE∥∴18018014733DCF CDE ∴703337BCD BCF DCF ∠=∠−∠=°−°=°.练习1. (2012年第23届“希望杯”初一决赛试题)下面四个命题:① 若两个角是同旁内角,则这两个角互补② 若两个角互补,则这两个角是同旁内角③ 若两个角不是同旁内角,则这两个角不互补④ 若两个角不互补,则这两个角不是同旁内角其中错误的命题个数是( )A .1B .2C .3D .4【解析】D练习2. 如图,已知AB CD ∥,CE 平分ACD ∠,且交AB 于E ,118A ∠=°,则AEC ∠=________. E BC DA 【解析】∵AB CD练习3. 如图,∵3E ∠=∠(已知),12∠=∠(已知) 又∵∠________=∠________( )∴∠________=∠________( )∴AB CE ∥( )【解析】2;3;对顶角相等;1;E ;等量代换;内错角相等,两直线平行. 练习4. 如图,AD 是ABC △的角平分线,2BAC B ∠=∠,DE BA ∥.试探究B ∠与ADE ∠有何关系?并对你的结论加以说明.补充练习12图F 3E D AAB C D E【解析】 B ADE ∠= ∠,证明略.练习5. 已知,如图所示,AB DE ∥,116D ∠=°,93DCB ∠,求B ∠的度数. E D C B A FED C BA 【解析】过点C 作直线CF AB ∥,因为AB DE ∥,所以AB DE CF ∥∥,练习6. 如图所示,两直线AB CD 、平行,则123456∠+∠+∠+∠+∠+∠=()A .630° B .720° C .800° D .900°65HG4321DC FE BA 【解析】分别过E F G H ,,,点做AB 的平行线,再求各个角度的和.选D。
初一平行线的判定及性质

平行线的判定及性质一、知识概述1、在“三线八角”中,同位角、内错角、同旁内角的识别角的名称位置特征图形结构特征同位角在截线同侧在被截线同一方形如字母“F”(或倒置)内错角在截线两侧(交错)夹在两条被截线之间形如字母“Z”(或反置)同旁内角在截线同侧夹在两条被截线之间形如字母“U”2、平行线的判定方法平行线的判定定理:定理1:同位角相等,两直线平行.定理2:内错角相等,两直线平行.定理3:同旁内角互补,两直线平行.另外:1、平行于同一直线的两条直线相互平行(平行线的传递性)2、在同一平面内,垂直于同一直线的两条直线相互平行(经常出现在图中有3条平行线的题目中)3、平行线的性质性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等性质3:两直线平行,同旁内角互补二、例题讲解例1、如图,直线AB、CD、EF相交,①指出∠3与其它角(带标号的),是什么关系的角;②图中共有多少对同位角、内错角和同旁内角.变式:如图,AB、CD被EF、EG所截,在∠1~∠6的6个角中,同位角、内错角、同旁内角的对数分别是()A.8、12、8B.8、2、8 C.3、3、2D.12、12、8例2、已知平面内四条直线共有三个交点,则这四条直线中有几条平行?例3、如图,CD⊥AB,EF⊥AB,∠1=∠2,则∠AGD与∠ACB相等吗?请说明理由.解: ∠AGD= ∠ACB.理由如下:∵CD⊥AB,EF⊥AB(已知),∴∠EFB=∠CDF=90°(垂直的意义),∴CD//EF( )∴∠2=( ) ( )∵∠1= ∠2(已知).∴∠1= ∠BCD( )∴DG//BC( )∴∠AGD= ∠ACB( )例4、如图,已知∠B=110°∠BCG=110°∠BCD=150°∠D=100°,求证:DE∥AB 证明:∵∠B=∠BCG=110°()∴AB∥FG()∴∠BCF+ ∠B =180°()即∠BCF= 180°—∠B = 180°—110°= 70°∵∠BCD=150°∴∠FCD= ∠BCD—∠BCF= 150°—70°= 80°又∵∠D=100°∴(∠+∠)=100°+80°=180°∴FG∥ED()∴AB∥ED()变式1:如图,已知∠1+∠2=∠APC,试说明AB∥CD的理由.变式2:如下图,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.课外拓展:例1、如图,B 处在A 处的南偏西450方向,C 处在B 处的北偏东800方向.(1)求∠ABC.(2)要使CD ∥AB ,D 处应在C 处的什么方向?例2、在小学我们就知道“三角形三个内角的和等于1800”,现在你能用学过的知识说明理由吗?例3、如图(1),线段AB//CD ,点P 是AB 、CD 间的-个点. (1)试判断∠A 、∠C 与∠APC 的数量关系;(2)如果点P 移动到线段AC 的左侧,那你发现的上述结论还成立吗?说明理由;(3)如果点P 移到两平行线的同侧,那么你发现的上述结论还成立吗?说明理由.12ACB FG E DAB 北 南DABC练习:1、如图1,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.2、如图2,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.3、如图3,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.图1 图2 图34、如图,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.5、如图,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.6、下列结论中,正确的个数是多少个()(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交.A.1 B.2 C.3 D.4 7、如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A、1B、2C、3D、48、下列四个图中若∠1=∠2,能够判定AB∥CD的是()A .B .C .D .9、如图15,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.10、如图已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试证AB∥EF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定及证明
二、典型例题:
知识点二:探索两直线平行的条件
1、同位角相等,两直线平行;
2、内错角相等,两直线平行;
3、同旁内角互补,两直线平行.
例1 如图1,根据图形将过程补充完整。
①∵∠1 =_____(已知)
∴AB∥CE()②∵∠1+_____=180度(已知)
∴CD∥BF()③∵∠1 +∠5 =180度(已知)
∴_____∥_____()
④∵∠4 +_____=180度(已知)
∴CE∥AB()
例2:已知∠3=45 °,∠1与∠2互余,求证:AB图1所示,下列条件中,
能判断AB∥CD的是( )
A.∠BAD=∠BCD
B.∠1=∠2;
C.∠3=∠4
D.∠BAC=∠ACD
2.如图2所示,如果∠D=∠EFC,那么( )
∥BC ∥BC
∥DC ∥EF
3.如图3所示,能判断AB∥CE的条件是( )
A.∠A=∠ACE
B.∠A=∠ECD
C.∠B=∠BCA
D.∠B=∠ACE
4.如图4,现给出下列四个条件:①∠1=∠5;
②∠1=∠7;③∠4+∠7=180°;④∠2=∠6.
其中能说明a∥b的条件序号有几个( )
个个个个
5、如图5:
①∠1和∠2是____和____被_____截得的________;
②____和____被______所截,∠1和∠B是_______角;
③____和____被_____所截,∠EFC和∠C是_______角.
6、如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600
,∠E=30°,试说明AB∥CD.
7、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,求证:a∥c。
8、如图,直线AB、CD交于点O,OE平分∠AOC,OF平分∠BOD,
求证:E、O、F在一条直线上。
证明:∵OE平分∠AOC,OF平分∠BOD
∴∠1= ,∠4=
∵直线AB、CD交于点O
∴∠AOC=∠BOD ()
∴∠1=∠
∵∠AOB为平角
∴∠2+∠3+∠4=180°
∴ =180°(等量代换)
即∠EOF=180°
∴E、O、F在一条直线上()
9.如图,直线AB ,CD 被直线EF 所截,如果∠1=∠2,∠CNF=∠BME,那么
AB
1l 2l 如图,下列推导正确的是( )。
A. 因为∠1=∠3,所以c 因为∠1=∠4,所以a 因为∠1+∠2=180°,所以c 因为∠2=∠4
,
所
以
a
21∠=∠︒
=∠+∠180420
18031=∠+∠︒
=∠︒=∠602,701︒
=∠50C ︒
=∠+∠+∠180321︒=∠︒=∠602,701︒=∠50C ︒=∠+∠+∠180321︒
=∠+180C 13
2
A E
B C
D
︒=∠︒=∠682,1121︒
=∠1124A B
D
C F E
G H
1324︒=∠︒=∠︒=∠115,138,42EFD EFB B ︒=∠65D ︒=∠︒=∠138,42EFB B ︒=∠+∠180EFB B ︒=∠︒=∠65,115D EFD ︒=∠+∠180D EFD A B
D C
F E
填写理由,说明AB ∥CD,AD ∥BE.
解:∵∠1=∠B ( ) ∴AD ∥BE ( )
4
321
c b a
题。