数列求和型不等式解法揭秘
与数列求和有关的不等式证明及解题策略

与数列求和有关的不等式证明及解题策略作者:谢幸达来源:《环球市场信息导报》2013年第12期不等式是高中数学的重要内容,近几年高考试题中频繁出现数列求和与不等式的证明问题,此类问题难度大、综合度高、灵活性强。
解决此类问题时不仅需要我们掌握相关的主干知识,而且对我们的数学思维品质和素养提出了更高的要求。
本文就介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先放缩再求和,二是先求和再放缩。
下面结合一些典型例题谈谈与数列和有关的不等式证明及解题策略。
一.先放缩再求和1.放缩后成等差数列,再求和例1. 已知且,求证:对所有都成立。
证明:因为,所以,又,所以,。
2.放缩后成等比数列,再求和例2已知数列满足。
(1)试判断数列是否为等比数列,并说明理由。
(2)设,求数列的前项和。
(3)设,数列的前项和为,求证;对任意的。
解;(1)又,是以3为首项,-2为公比的等比数列。
(2)由(1)知(3),此题不等式左边不易求和,此时根据不等式特征,再对分母进行放缩,从而对左边可以进行求和.分式的放缩对于分子分母均取正值的分式。
该文原载于中国社会科学院文献信息中心主办的《环球市场信息导报》杂志http://总第528期2013年第47期-----转载须注名来源如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3.放缩后为裂项相消,再求和例3.已知是各项都为正数的数列,为其前项的和,且。
(1)分别求的值.。
(2)求数列的通项。
(3)求证:。
解:(1)由已知可得。
(2)由已知可解得。
(3)分析:又,由以上分析可得:此题采用了拆项放缩的技巧,放缩拆项时,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
二.先求和后放缩例4.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比求和或者利用分组、裂项、倒序相加等方法来求和。
第2讲 数列求和与数列不等式

(2)设
b1=a1,bbn+n 1=an+1,cn=
易错 提醒
(1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一 项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项公式裂项时,有时候需要调整前面的系数,才能使裂 项前后的式子相等.
跟踪演练2 已知数列{an}是公比q≠1的等比数列,且a4=27,3a1,2a2, a3成等差数列. (1)求数列{an}的通项公式;
解 Sn=-nn- 2 1,Tn=2n-1, 代入可得,t·2n-nn2-1-nn+ 2 1>0,即 t>n22nmax, 令 cn=n22n, 则 cn+1-cn=n2+n+112-n22n=-n2+2n+21n+1>0⇒n≤2,
所以n≤2时,cn+1>cn;n≥3时cn+1<cn.
因此,(cn)max=c3=98⇒t>98. 即实数 t 的取值范围是98,+∞.
(2)已知数列{bn}满足bn=6n-8,其前n项和为Tn,若Sn≥(-1)n·λ·Tn对 任意n∈N*恒成立,求实数λ的取值范围.
解 因为bn=6n-8, 所以 Tn=n-2+26n-8=n(3n-5), 由(1)得 Sn=n2+n1·an=n·2n+1, 所以2n+1≥(-1)n·λ·(3n-5)恒成立, 当n为偶数时,2n+1≥λ·(3n-5)恒成立, 所以 λ≤32nn-+15min, 设 cn=32nn-+15,
2 考点二 裂项相消法
关于和式的数列不等式证明方法

关于和式的数列不等式证明方法第一篇:关于和式的数列不等式证明方法关于“和式”的数列不等式证明方法方法:先求和,再放缩例1、设数列{an}满足a1=0且an≠n,2an+1=1+an+1γan,n∈N*,记Sn=∑bk,证明:Sn<1.k=1n(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=【解析】:(Ⅰ)由⎧1⎫11-=1.得⎨⎬为等差数列,1-a1-an+11-ann⎭⎩前项为1111=1,d=1,于是=1+(n-1)⨯1=n,∴1-an=,an=1-1-a11-annn(Ⅱ)bn=n===-Sn=∑bk=k=1++K+=1-<1 练习:数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列{ban}是公比为64的等比数列,b2S2=64.(1)求an,bn;(2)求证1113++Λ+<.S1S2Sn4解:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1⎧ban+1q3+ndd6==q=64=2⎪q3+(n-1)d依题意有⎨ban①⎪S2b2=(6+d)q=64⎩由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故an=3+2(n-1)=2n+1,bn=8n-1(2)Sn=3+5+Λ+(2n+1)=n(n+2)∴1111111++Λ+=+++Λ+S1S2Sn1⨯32⨯43⨯5n(n+2)11111111=(1-+-+-+Λ+-)232435nn+211113=(1+--)<22n+1n+24方法:先放缩,再求和例1、(放缩之后裂项求和)(辽宁卷21).在数列|an|,|bn|中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N)(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测|an|,|bn|的通项公式,并证明你的结论;(Ⅱ)证明:*5++…+<. a1+b1a2+b2an+bn12本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分.解:(Ⅰ)由条件得2bn=an+an+1,an+1=bnbn+1 由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.···················································· 2分猜测an=n(n+1),bn=(n+1).······················································································· 4分用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即ak=k(k+1),bk=(k+1)2,那么当n=k+1时,2akak+1=2bk-ak=2(k+1)-k(k+1)=(k+1)(k+2),bk+1=+2=(k+2)2.bk所以当n=k+1时,结论也成立.由①②,可知an=n(n+1),bn(n+1)对一切正整数都成立.·········································· 7分(Ⅱ)5=<.a1+b1612n≥2时,由(Ⅰ)知an+bn=(n+1)(2n+1)>2(n+1)n.·············································· 9分故11111⎛111⎫++…+<+++…+⎪ a1+b1a2+b2an+bn62⎝2⨯33⨯4n(n+1)⎭=11⎛111111⎫+-+-+…+-⎪62⎝2334nn+1⎭11⎛11⎫115+-⎪<+= 62⎝2n+1⎭6412=综上,原不等式成立.··································································································· 12分(例2、(放缩之后等比求和)(06福建)已知数列{an}满足a1=1,an+1=2an+1(n∈N).*(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:an1a1a2n-<++...+n<(n∈N*)23a2a3an+122n(III).设bn=an(an+1),数列{bn}的前n项和为sn,令Tn=,sn (i)求证:T1+T2+T3+ΛTn<n;(ii)求证:T1+T2+T3+ΛTn<;本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。
求解数列不等式问题的两种思路

数列不等式问题在各类试题中比较常见,此类问题的综合性较强,难度系数较大,很多同学对此类问题心存畏惧,不知如何下手.其实,解答这类问题也是有规律可循的,下面笔者结合实例来谈一谈求解数列不等式问题的两种思路:先放缩再求和以及先求和再放缩,以供大家参考.例题:已知数列{}a n 满足a 1=1,a n +1-a n =2n +1(n ∈N *),数列{}b n 的前n 项和为S n ,且满足3S n =4b n -2(n ∈N *).(1)求数列{}a n ,{}b n 的通项公式;(2)记c n =a n b n ,求证:(i )当n ≥2且n ∈N *时,14<c n +1c n ≤916;(ii )当n ∈N *时,c 1+c 2+c 3+⋯+c n <53.本题主要考查数列的通项公式、求数列和的方法以及放缩不等式的方法.我们根据已知条件运用累加法,以及S n 与a n 的关系a n =S n -S n -1(n ≥2)便可求得数列{}a n 、{}b n 的通项公式a n =n 2,b n =22n -1,就能得到c n =n 222n -1.这里主要探讨一下(2)(ii )的解法.有以下两种思路.一、先放缩再求和有些数列不等式问题中的不等式没有呈现出规律,此时我们需先将不等式进行合理放缩,以便构造出易于求和的数列,如等比数列、等差数列、常数数列等,这样便能快速求出数列的和,证明不等式成立.在放缩不等式时,可以采用添加或去掉某些项、放大或缩小分子、分母、利用糖水不等式、基本不等式等方式来进行证明.证明:(2)(ii )由(i )的结论c n +1c n ≤916可得c n ≤916c n -1,则c n ≤916c n -1≤(916)2c n -2≤⋯≤(916)n -1c 1,因此c 1+c 2+c 3+⋯+c n ≤c 1+916c 1+æèöø9162c 1+⋯+æèöø916n -1c 1=87-87(916)n <53.这里主要利用了(i )的结论c n +1c n ≤916,从而得到c n ≤916c n -1,然后通过迭代,构造出不等式,再运用等比数列的前n 项和证明不等式成立.二、先求和再放缩有些数列不等式问题中的不等式直接呈现出规律,此时我们可以先对数列进行求和,然后再证明不等式成立.在求和时,可根据数列中通项的特点采用分组求和法、倒序求和法、错位相减法等来求出数列的和,然后再结合所要求证的目标放缩不等式.对于本题,我们可以根据已知条件求出c 1=c 2=12,c 3=932,得到c 1+c 2+c 3=1+932<53成立,而当n ≥4时,显然有n 2≤2n ,故c n =a n b n ≤12n -1,那么c 4+c 5+⋯+c n ≤123+124+⋯+12n -1<14<53,故c 1+c 2+c 3+⋯+c n =1+932+14<53.我们通过调整首项,构造出新等比数列123,124,⋯,12n -1,然后运用等比数列的前n 项和公式求出该数列的和,从而证明不等式.对于本题,我们还有一种解题思路:记T n =c 1+c 2+⋯+c n =1221+2223+⋯+n 222n -1,14T n =c 1+c 2+⋯+c n =1221+2223+⋯+n 222n -1,将两式作差可得3T n 8=14+342+⋯+2n -14n -n 24n +1,记H n =14+342+⋯+2n -14n,则H n 4=142+343++⋯+2n -14n +1,将两式作差并化简可得H n =59-6n +59×4n,因此T n =83æèçöø÷H n -n24n +1<83×59<53.在运用放缩不等式时,要将无穷小量去掉,以便放缩不等式.数列不等式问题常常与函数、方程、不等式等内容相结合,侧重于考查数列求和的方法、求数列通项的方法、等差或等比数列的定义、求数列的最值等.因此,在解答数列不等式时,同学们要重视函数、方程、不等式等知识的综合应用,从多个角度分析问题,灵活对问题进行转化.尤其在放缩不等式时,要充分利用方程思想、函数的性质、不等式的性质来证明结论.(作者单位:浙江省宁波市北仑泰河中学)学考方略48Copyright©博看网 . All Rights Reserved.。
高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。
2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。
例如等差数列的求和公式,就可以用该方法进行证明。
3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。
对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。
这种数列求和方式叫做错位相减。
4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。
5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。
6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。
7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。
高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
数列求和与数列不等式的证明--高考数学【解析版】

专题27 数列求和与数列不等式的证明等差数列、等比数列的性质、通项公式和前n 项和公式构成两类数列的重要内容,在历届高考中属于必考内容,既有独立考查的情况,也有二者与其它知识内容综合考查的情况.一般地,选择题、填空题往往独立考查等差数列或等比数列的基本运算,解答题往往综合考查等差数列、等比数列.数列求和问题是高考数列中的另一个易考类型,其中常见的是“裂项相消法”、“错位相减法”.数列求和与不等式证明相结合,又是,数列考题中的常见题型,关于数列中涉及到的不等问题,通常与数列的最值有关或证明(数列的和)不等式成立或确定参数的范围,对于数列中的最值项问题,往往要依靠数列的单调性,而对于数列的和不等式的证明问题,往往可以利用“放缩法”,要根据不等式的性质通过放缩,达到解题目的.【重点知识回眸】(一)数列的求和 1.公式法(1)等差数列的前n 项和公式: S n =n a 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q =a 1-a n q1-q ,q ≠1. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形: ①111(1)1n n n n =-++;②1111()(21)(21)22121n n n n =--+-+;11n n n n =+++(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.(6)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再统计前n 项和中含多少个周期即可. (二)数列中的不等关系1.数列中的最值项,要依靠数列的单调性.如何判断数列的单调性:(1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性.由于n N *∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N *∈得到数列的单调性(2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) (3)对于某数列的前n 项和{}12:,,,n n S S S S ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决.也可以考虑相邻项比较.在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定.进而把问题转化成为判断n a 的符号问题. (三)利用放缩法证明不等式 1.与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢.④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩.从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试. 2.放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.3.与数列中的项相关的不等式问题:① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即()1n n a a f n +-<或()1n na f n a +<(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为n a ,另一侧为求和的结果,进而完成证明 4.常见的放缩变形: (1)()()211111n n n n n <<+-,其中2,n n N ≥∈:可称21n为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择. 注:对于21n,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,这种放缩的尺度要小于(1)中的式子.此外还可以构造放缩程度更小的,如:()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2)n n n=+,从而有:212111n n n n n n nn n +=<<<--+++-n2,2,n n n n N n *<--≥∈ (3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ 此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题时不妨先构造出形式再验证不等关系.(4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 5.利用导数证明数列不等式 (四)数学归纳法证明不等式【典型考题解析】热点一 分组求和与并项求和【典例1】(2022·全国·高三专题练习)已知数列{n a }满足11a =,()*121N n n a a n +=+∈.(1)证明{1n a +}是等比数列,并求{n a }的通项公式; (2)求数列{1]n a n ++的前n 项和n S .【答案】(1)证明见解析;21nn a =-(2)()11222n n n n S ++=+-【分析】(1)根据题意结合等比数列定义可证1121n n a a ++=+,可得{}1n a +是首项为2,公比为2的等比数列,利用等比数列通项公式代入运算;(2)因为2n n b n =+,利用分组求和结合等差、等比数列求和公式整理运算.(1)由题意可得:1120a +=≠∵()11121212111n n n n n n a a a a a a +++==++=+++所以{}1n a +是首项为2,公比为2的等比数列则12nn a +=,即21n n a =-因此{n a }的通项公式为21n n a =-(2)由(1)知21nn a =-,令1n n b a n =++则2n n b n =+所以()()()121221222nn n S b b b n =+++=++++++.()12222(12)nn =++⋯++++⋯+()()2121122n n n -+=+-()11222n n n ++=+-.综上()11222n n n n S ++=+-.【典例2】.(2021·河南·高三开学考试(文))已知等比数列{}n a 的公比大于1,26a =,1320a a +=.(1)求{}n a 的通项公式;(2)若12331log log 22n n n n b a a a ++=+,求{}n b 的前n 项和n T .【答案】(1)123n n a -=⋅(2)131n n -+ 【分析】(1)设出公比q ,根据题目条件列方程求解; (2)先写出n b ,利用裂项求和,分组求和的办法表示出n T . (1)设等比数列{}n a 的公比为()1q q >,由26a =,1320a a +=得6620q q +=,解之得3q =或13q =(舍去),由26a =得,12a =,所以{}n a 的通项公式为123n n a -=⋅.(2) 由(1)知,()1112331111232311log log 22n n n n n n b a a an n n n --++=+=⋅+=⋅+-++所以{}n b 的前n 项和为()01111111233312231n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦13112131311n n n n -=⨯+-=--++ 【总结提升】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.热点二 裂项相消法求和【典例3】(2017·全国·高考真题(理))(2017新课标全国II 理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________. 【答案】21nn + 【解析】 【详解】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 【典例4】(2018·天津·高考真题(理))设{}n a 是等比数列,公比大于0,其前n 项和为()*n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()*n T n N ∈,(i )求n T ;(ii )证明()()()()22*122122n nk k k k T b b n N k k n ++=+=-∈+++∑. 【答案】(Ⅰ)12n n a -=,n b n =;(Ⅱ)(i )122n n T n +=--.(ii )证明见解析.【解析】 【详解】分析:(I )由题意得到关于q 的方程,解方程可得2q =,则12n n a -=.结合等差数列通项公式可得.n b n =(II )(i )由(I ),有21nn S =-,则()112122nk n n k T n +==-=--∑.(ii )因为()()()212221221k k k k k T b b k k k k ++++=-++++,裂项求和可得()()()22122122n nk k k k T b b k k n ++=+=-+++∑. 详解:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d += 由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )由(I ),有122112nn n S -==--,故()()1112122122212nnnk k n n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭∑. 【典例5】(2022·湖北·襄阳五中高三阶段练习)已知数列{}n a 满足()*1232311113333n n a a a a n n ++++=∈N . (1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .【答案】(1)()*3N n n a n =∈(2)()()1112212n T n n ⎡⎤=-⎢⎥++⎢⎥⎣⎦【分析】(1)由递推关系取1n =可求1a ,当2n ≥时,取递推关系中的1n n 可求(2)n a n ≥,由此可得数列{}n a 的通项公式;(2)由(1)可得n b n =,利用裂项相消法求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .(1)当1n =时,13a =,当2n 时,1232311113333n na a a a n ++++=①1231231111113333n n a a a a n --++++=-② 由①-②得()1113n n a n n =--=,即()32n n a n =. 当1n =时也成立,所以数列{}n a 的通项公式为()*3N n n a n =∈(2)因为33log log 3nn n b a n ===,所以()()()()()1211111122112n n n b b b n n n n n n n ++⎡⎤==-⎢⎥+++++⎢⎥⎣⎦, 所以()()()()()11111111112122323341122212n T n n n n n n ⎡⎤⎡⎤=-+-++-=-⎢⎥⎢⎥⋅⋅⋅⋅+++++⎢⎥⎢⎥⎣⎦⎣⎦. 【规律方法】裂项相消法的步骤、原则及规律 (1)基本步骤:裂项、累加、消项; (2)裂项原则一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (3)消项规律消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 热点三 错位相减法求和【典例6】(2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果; (Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211nk k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk k n n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n nk n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【典例7】(2022·云南·高三阶段练习)已知数列{}n a 的前n 项和为n S ,且243n n S a =-. (1)求数列{}n a 的通项公式; (2)令83n n nb a =⨯,求数列{}n b 的前n 项和n T . 【答案】(1)232n n a -=⋅(2)24(1)2n n T n +=+-⨯【分析】(1)根据n a 和n S 的关系式,即可求得数列{}n a 的通项公式. (2)由(1)中结论可得数列{}n b 的通项公式,再由错位相减法即可求得n T . (1)由已知得243n n S a =-. ①当1n =时,11132432S a a =-⇒=;当2n ≥时,11243243n n n n S a S a --=-⎧⎨=-⎩①②,-①②得12(2)n n a a n -=≥,所以{}n a 是以32为首项,2为公比的等比数列; 所以1232322n n n a --=⨯=⋅. (2)由(1)得1823n n n nb a n +=⨯=⋅, 所以21341222322n n T n +=⨯+⨯+⨯+⨯+⋅⋅⋅,①所以341221222(1)22n n n T n n ++=⨯+⨯+⋅⋅⋅+-⨯+⨯,②则-①②得:()234142222n n n T n ++-=-⨯+++⋅⋅⋅+,化简得24(1)2n n T n +=+-⨯.【典例8】(2020·全国卷Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 【答案】【解析】(1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3,即2a 1=a 1q +a 1q 2. 所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和. 由(1)及题设可得,a n =(-2)n -1. 所以S n =1+2×(-2)+…+n ×(-2)n -1,-2S n =-2+2×(-2)2+…+(n -1)×(-2)n -1+n ×(-2)n . 可得3S n =1+(-2)+(-2)2+…+(-2)n -1-n ×(-2)n =1(2)3n---n ×(-2)n .所以S n =19-(31)(2)9nn +-.【规律方法】错位相减法求和的具体步骤:热点四 其它求和方法【典例9】(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008 B .1009 C .2018 D .2019【答案】B【分析】根据()(1)1f x f x +-=,利用倒序相加法求解.【详解】解:因为4()42xx f x =+,且114444()(1)1424242244--+-=+=+=+++⨯+x x x xx x x f x f x , 令1232018()()()()2019201920192019=++++S f f f f , 又 2018201720161()()()()2019201920192019=++++S f f f f , 两式相加得:212018=⨯S , 解得1009S =, 故选:B【典例10】(2022·全国·高三专题练习(文))1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列.即1,1,2,3,5,8,13,21,34,55,该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列{}n a ,则数列{}n a 的前2022项的和为________. 【答案】2276【分析】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,知{}n a 是周期为8的数列,即可求出数列{}n a 的前2022项的和.【详解】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,{}n a ∴是周期为8的数列,一个周期中八项和为112022109+++++++=,又202225286=⨯+,∴数列{}n a 的前2022项的和2022252982276S =⨯+=. 故答案为:2276.【典例11】(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=; 当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 热点五 与裂项相消法相关的不等式证明【典例12】(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析 【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【典例13】(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=-且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T <. 【答案】(1)()*2n n a n =∈N(2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=-两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明. (1)解:因为1212n n a a a a -+++-=-,所以1212n n a a a a ++++-=-,两式相减得12(2)n n a a n +=,当2n =时,122a a -=-, 又24a =,所以1212,2a a a ==,所以()*12n n a a n +=∈N ,所以{}n a 是首项为2,公比为2的等比数列,所以()*2n n a n =∈N ;(2)证明:()()()()11122111121212121n n n n n n n n a a +++==-------, 所以2231111111111121212121212121n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=-<⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭, 由1n ,得124n +,所以1121213n +--, 综上,213n T <. 【总结提升】(1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①21111(1)1k k k kk <=---. ②2211111()2111k k k k <=--+-.③21111111k k k kk -<<-+-. ④2(12(1)n n n n n+<<--.热点六 与错位相减法相关的不等式证明【典例14】(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.【典例15】(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii )证明)*12222nk k kk k a n N c a c +=∈-【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证; (ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得1112222n k k n k k k k a k c c a +-==-,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-, 所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅, 2122124222222n n n nn nna n anc c +--⋅⋅,所以1112222nk k n k k k k k a kc c a +-==-, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-, 所以11112224222222nn k k n k k k k a k n c c a +--==+⎫-<⎪-⎭ 【规律方法】等差数列的判定与证明的方法方法 解读适合题型 定义法 若a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列 解答题中证明问题等差中项法 2a n =a n +1+a n -1(n ≥2,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列 选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列【精选精练】一.单选题1.(2021·全国·高三专题练习)数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,若2cos 3=πn n n b a ,且数列{}n b 的前n 项和为n S ,则11S =( ) A .64 B .80 C .64- D .80-【答案】C【分析】由已知可得111n n a a n n +-=+,即数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,由此求出22cos 3n n b n π=,分别令 1,2,3,,11n =可求出11S .【详解】数列{}n a 满足11a =,()()111n n na n a n n +=+++, 则111n na a n n+=++, 可得数列n a n ⎧⎫⎨⎬⎩⎭是首项为1、公差为1的等差数列,即有na n n=,即为2n a n =, 则222cos cos 33n n n n b a n ππ==, 则()()2222222222211112457810113692S =-++++++++++()22222222222222112334566789910112=-+--++--++--++ ()15234159642=-⨯+++=-. 故选:C.2.(2022·全国·高三专题练习(文))斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2022项和为( ) A .2698 B .2697 C .2696 D .2695【答案】C【分析】根据()*12123,,1n n n a a a n n a a --=+⋯∈==N , 递推得到数列{}n a ,然后再得到数列{}n b 是以6为周期的周期数列求解.【详解】因为()*12123,,1,n n n a a a n n a a --=+⋯∈==N所以数列{}n a 为 1,1,2,3,5,8,13,21,34,55,89,144,⋯此数列各项除以 4 的余数依次构成的数列{}n b 为:1,1,2,3,1,0,1,1,2,3,1,0,是以 6 为周期的周期数列, 所以20222022=(1+1+2+3+1+0)=26966S . 故选:C.3.(2018·浙江·高考真题)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>【答案】B 【解析】 【分析】先证不等式ln 1x x ≥+,再确定公比的取值范围,进而作出判断. 【详解】令()ln 1,f x x x =--则1()1f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()(1)0,ln 1f x f x x ≥=∴≥+,若公比0q >,则1234123123ln()a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则212341(1)(1)0,a a a a a q q +++=++≤但212311ln()ln[(1)]ln 0a a a a q q a ++=++>>,即12341230ln()a a a a a a a +++≤<++,不合题意; 因此210,(0,1)q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如ln 1,x x ≥+ 2e 1,e 1(0).x x x x x ≥+≥+≥二、填空题4.(2021·内蒙古呼和浩特·高三阶段练习(理))已知{}n a 是等比数列,公比大于1,且2420a a +=,38a =.记m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,则数列{}m b 的前60项的和60S 的值为______.【答案】243【分析】第一步求出{}n a 是等比数列的通项公式,第二步计算m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,列举求值即可。
数列不等式知识点归纳总结

数列不等式知识点归纳总结数列不等式是数学中重要的一个分支,它与数列和不等式的结合使我们可以更深入地理解和解决实际问题。
在这篇文章中,我将对数列不等式的相关知识点进行归纳总结,希望能帮助读者更好地理解和应用数列不等式。
1. 数列的概念首先,我们需要了解数列的基本概念。
数列是按照一定的顺序排列的一组数,可以用常数项或通项公式来表示。
数列常用的表示方法有:通项公式、递推式和列表法。
通项公式表示第n项与n的关系,递推式表示后一项与前一项的关系,而列表法则将所有项罗列出来。
2. 数列不等式的性质数列不等式有一些基本的性质,对于求解不等式问题非常有用。
(1)同号性质:对于给定的数列,如果数列中相邻两项的差值同号,即大于零或小于零,那么这个数列就是同号数列。
(2)双边性质:对于同号数列,如果将数列中的每一项都乘以一个正数或负数,不等号的方向保持不变。
(3)单调性:对于数列a1, a2, a3, ...,如果对于任意的n,有an≤an+1或an≥an+1,则这个数列是递增数列或递减数列。
3. 数列不等式的解法接下来,我们将介绍一些常见的数列不等式的解法。
(1)柯西不等式:柯西不等式是指对于任意的实数ai和bi,有(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²) × (b₁² + b₂² + ... + bn²)。
柯西不等式在计算机科学、金融等领域有很广泛的应用。
(2)排序不等式:对于给定的数列,在求解不等式问题时,可以将数列按照大小顺序排序,然后根据排序后的数列性质来进行分析和推导。
(3)图形法:对于一些复杂的数列不等式问题,可以利用图形来进行辅助推导和分析。
例如,通过作图可以更直观地观察数列的趋势和规律,从而找到解决问题的方法。
4. 数列不等式的应用数列不等式的应用非常广泛,可以涉及到各个领域。
数列求和型不等式解法揭秘

理 , 做 求 和运算 . 再
2
_一 l _ 】
= 所 以 6一6 >c, 以 c 。 所
b= 1
、 /n( + ) n 1
1 , 即不等式成立 .
现 . 1 证 明其 实不 必使 用数 学 归 例 的 纳 法.在 此不 等 式 中 , 不等 号 左 边是
数 列 和 的 形 式 . 项 为 通
k
综合①②知原不等式成立.
思考 对 于初 学者 来说 , 数 学 用
在 本例 中 . 我4 对 每一 项 都进 行放 若 f J
/ 1 \
方案 四 : 白裂项 分析 细 心 的 读 者 可 能 已 经发
思考
在 上 述 万法 中 , 们 通过 我
待 定 系数 法 求得q 的取值 汜 围 , 的 a 4 - 而g
最 终 取 值 由 题 目对 放 缩 的 要 求 决 定 .
故上式 —三 i 1 -
\
xk 2 / /+
2
— — 一
b} 证 "2- = 证.而 {n如 何找 到呢 ?我们 常常选择 明4=1 -( b 1  ̄
[、 丽 2/
一2 (
6 n -(- ) ) n 1的方 式来构 造 它. 此 f 但
42
3 ] 易知2 / k 1 (+ ) (k 3 < , ), x (+ )k 2 - 2 + )0
2/ X T 3 / X2
2
(+ )/ 1 、
6 1 2…+ 即— + + c, —L + c —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和型不等式解法揭秘
作者:吴燕春
来源:《数学金刊·高中版》2012年第03期
数列与不等式均是高中数学的重点和难点,在高考中都占有较大的比重,常综合在一起进行考查,并以压轴题的形式出现.数列求和型不等式便是高考数学压轴题经常出现的问题,因此对其进行解题研究就显得非常必要.
通常情况下,放缩法常常被用于解决数列求和型不等式问题.其求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.对于第一种途径,需要该数列的前n项和能直接求出,或者通过变形后求出.求和过程中,一般需用到等差、等比求和公式或者使用分组、裂项、倒序相加等方法.然而更多的情况,数列是不能直接求和的,因此我们必须选择第二条途径,即先对数列进行放缩处理,再做求和运算.
证明不等式:++…+
方案一构造数列
证明令bn=21-,cn=.
因为bn-bn-1=21--21-=-=
=
≥
=
=cn,所以bn-bn-1>cn,所以bn-1-bn-2>cn-1,…,b2-b1>c2.又b1= 21-=2
->=c1,求和得bn>c1+c2+…+cn,即++…+
思考上法证明了一个充分条件,即需证明不等式an
方案二数学归纳法
分析这是一个典型的数列求和型不等式.由于不等号两边都含有n,即此为一个与自然数n相关的命题,故可以采取数学归纳法.
证明①当n=1时,左边=,右边=21-,左边
②假设n=k时不等式成立,即++…+
综合①②知原不等式成立.
思考对于初学者来说,用数学归纳法证明与自然数相关的命题无疑是最好的选择.但是对于部分命题,数学归纳法并不是简便的解法,甚至有些命题根本不能应用数学归纳法.比如我们若将上式稍作变形为++…+
方案三加强数学归纳
++…+
分析此时不等式的右边是常数,和n无关.此时数学归纳法已不起作用,必须用其他的方法.对此,我们先证明++…+
思考我们在构造加强命题的时候也可以选择其他形式,总体思路就是在不等式只含常数项的一边添加一个与n相关的无穷小量,使得不等号的两边成为都随着n变化的表达式,从而满足数学归纳法的适用条件.对于上面的不等式,同样可以构造成++…+
方案四:自裂项
分析细心的读者可能已经发现,例1的证明其实不必使用数学归纳法.在此不等式中,不等号左边是数列和的形式,通项为.考虑到形如的分式是可以裂项求和的,对于本题有
证明略.
思考此方法的目标是对通项进行放缩,使其成为另一数列连续项之差.而放缩的度是最难以把握的.下面笔者通过一例说明如何把握放缩的度.
求证:++…+
证明观察通项,令1,即
又∈,,故≥q≥2,所以,当q=2时,
++…+
思考在上述方法中,我们通过待定系数法求得q的取值范围,而q的最终取值由题目对放缩的要求决定.在本例中,若我们对每一项都进行放缩,即≤,解得q≤2,故可取q=2;若保持第一项不动,从第二项开始放缩,则有+≤,解得q≤,则q∈2,,其中任取一值均可.这样的方法有的放矢,避免盲目放缩.
方案五自等比
分析考虑例2中不等号的右边是一常数,可以联想到等比数列求和的极限.因此可将不等式左边放缩至等比数列,其关键是放缩的度.
证明观察通项an=,则连续两项之比q==∈,.故an+1
思考此法的优势在于我们直接假设出相邻两项的不等关系a。