数列型不等式的放缩技巧九法
利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩
证明数列不等式之放缩技巧及缩放在数列中的应用大全甄选.

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n nn n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k kk k k k k k k k k k k k++++++++=⨯<<++ 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈. 证明:nn n n n a a 121121************⋅=-⋅=-<-=+++, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S . 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
巧用放缩法证明数列不等式

证明数列不等式问题一般较为复杂.解答这类问题的常用方法是放缩法,通常要灵活运用数列的定义、性质、通项公式、前n 项公式对不等式进行变形、化简,再运用不等式的性质对数列不等式进行适当的放缩.而证明数列不等式的关键是对不等式进合理的放缩,下面重点谈一谈运用放缩法证明数列不等式的几个技巧.一、通过裂项进行放缩有些数列不等式中的各项为分式,通过变形可裂为两项之差的形式,此时可利用裂项求和法来求得数列的和,再对其进行放缩,从而证明不等式.有时数列的通项公式不能直接裂项,可先将其进行适当的放缩,再进行求和.例1.求证:∑k =1n1k2≤53.证明:因为1k 2=44k 2<44k 2-1=2æèöø12k -1-12k +1,所以∑k =1n 1k 2=1+∑k =2n 1k 2<1+∑k =2n2æèöø12k -1-12k +1=1+2æèöø13-15+15-17+⋯+12n -1-12n +1=1+2æèöø13-12n +1<1+23=53.该数列的通项公式为分式,可根据不等式的可加性和传递性,将其放缩44k 2-1,再将其裂项为2æèöø12k -1-12k +1,这样便可运用裂项相加法求得数列的和,运用放缩法快速证明不等式.二、利用基本不等式进行放缩若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.运用基本不等式可快速将两式的和或积放大或缩小.在运用基本不等式进行放缩时,要注意三个条件“一正”“二定”“三相等”.需根据已知的关系式或目标式,合理配凑出两式的和或积,并使其一为定值.在证明数列不等式时,有时要用到基本不等式的变形式,如a +b +c ≥3abc 3、a 21+a 22+⋯+a 2nn≥a 1a 2⋯a n n 等,对所要证明的不等式进行放缩.例2.设S n =1×2+2×3+⋯+n ()n +1,求证:n ()n +12<S n <()n +122.证明:设a k =k ()k +1(k =1,2,⋯,n ),因为k <k ()k +1<k +k +12=k +12,所以∑k =1n k <∑k =1n k ()k +1<∑k =1n(k +12),即n ()n +12<S n <n ()n +12+n 2<()n +122.该数列中含有根式,很难快速求得数列的和,于是将其通项看作两式的积,构造出两式的和式,便可利用基本不等式将数列中的每一项进行放缩,再根据等差数列的前n 项和公式进行求解,即可证明不等式.三、根据数列的单调性进行放缩数列具有单调性,所以在证明数列不等式时,可根据不等式的特点找出其中的通项公式,通过作差或作商来判断数列的单调性.若a n ≥a n +1,则该数列单调递增,若a n ≤a n +1,则该数列单调递减,即可利用数列的单调性来放缩不等式.例3.求证:12≤1n +1+1n +2+⋯+1n +n <710(n ∈N *).证明:令S n =1n +1+1n +2+⋯+1n +n ,则S n +1-S n =æèöø1n +2+1n +3+⋯+1n +n +1n +n +1-æèöø1n +1+1n +2+⋯+1n +n =14æèöøn +12()n +1>0.可知数列{}S n 单调递增,因此S n ≥S 1=12.又因为S n +1-S n =14æèöøn +12()n +1<14æèöøn +14æèöøn +54=14׿èççççöø÷÷÷÷1n +14-1n +54=14n +1-14n +5,即S n +14n +1>S n +1+14n +5,可知数列{}S n +14n +1单调递减,所以S n +14n +1≤S 1+14+1=710.综上可得12≤S n <710,即12≤1n +1+1n +2+⋯+1n +n <710.总之,运用放缩法证明数列不等式,关键是对数列的通项公式、和式进行合理的放缩.同学们可根据目标不等式的结构特点,对通项公式进行裂项,也可利用基本不等式,还可以根据数列的单调性来进行放缩.(作者单位:江西省临川第二中学)解题宝典41。
不等式放缩技巧十法

不等式放缩技巧十法一、Cauchy-Schwarz不等式:Cauchy-Schwarz不等式是不等式放缩的基础。
对于任意实数a1,a2, …, an和b1, b2, …, bn,有如下不等式成立:(a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) ≥ (a1b1+ a2b2 + … + anbn)^2Cauchy-Schwarz不等式可以解决很多不等式问题,如证明两个序列的和的平方大于等于两个序列平方的和。
二、Holder不等式:Holder不等式是Cauchy-Schwarz不等式的推广形式。
对于任意实数a1, a2, …, an和b1, b2, …, bn以及p, q满足1/p + 1/q = 1(其中p,q为正实数),有如下不等式成立:(,a1,^p + ,a2,^p + … + ,an,^p)^(1/p) * (,b1,^q + ,b2,^q + … + ,bn,^q)^(1/q) ≥ ,a1b1 + a2b2 + … + anbn Holder不等式是Cauchy-Schwarz不等式的推广形式,不仅适用于实数,也适用于复数,可以使用Holder不等式解决更多类型的不等式问题。
三、Schur不等式:Schur不等式是不等式放缩中的重要不等式。
对于任意非负实数a, b, c和非负实数r,有如下不等式成立:a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)≥0Schur不等式在证明其他不等式时经常被使用,尤其在三角形不等式的证明中发挥着重要作用。
四、AM-GM不等式:AM-GM不等式是代数平均-几何平均不等式的缩写,对于任意非负实数a1, a2, …, an,有如下不等式成立:(a1 + a2 + … + an)/n ≥ (a1*a2*…*an)^(1/n)AM-GM不等式是解决不等式问题中常用的一种方法,可以将最大化或最小化转化为相加或相乘的形式。
放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、放缩技巧(1)1n2=44n2<44n2-1=212n-1-12n+1(2)1C1n+1C2n=2(n+1)n(n-1)=1n(n-1)-1n(n+1)(3)T r+1=C r n⋅1n r=n!r!(n-r)!⋅1n r<1r!<1r(r-1)=1r-1-1r(r≥2)(4)1+1 nn<1+1+12×1+13×2+⋯+1n(n-1)<3(5)12n(2n-1)=12n-1-12n(6)1n+2<n+2-n(7)2(n+1-n)<1n<2(n-n-1)(8)22n+1-12n+3⋅12n=1(2n+1)⋅2n-1-1(2n+3)⋅2n(9)1k(n+1-k)=1n+1-k+1k1n+1,1n(n+1+k)=1k+11n-1n+1+k(10)n(n+1)!=1n!-1(n+1)!(11)1n<2(2n+1-2n-1)=222n+1+2n-1=2n+12+n-12(11)2n(2n-1)2=2n(2n-1)(2n-1)<2n(2n-1)(2n-2)=2n-1(2n-1)(2n-1-1)=12n-1-1-12n-1(n≥2)(12)1n3=1n⋅n2<1n(n-1)(n+1)=1n(n-1)-1n(n+1)⋅1n+1-n-1=1n-1-1n+1⋅n+1+n-12n <1n-1-1n+1(13)2n +1=2⋅2n=(3-1)⋅2n>3⇒3(2n-1)>2n⇒2n-1>2n 3⇒12n -1<2n3(14)k +2k !+(k +1)!+(k +2)!=1(k +1)!-1(k +2)!(15)1n (n +1)<n -n -1(n ≥2)(16)i 2+1-j 2+1i -j =i 2-j 2(i -j )(i 2+1+j 2+1)=i +j i 2+1+j 2+1<1二、经典试题解析(一)、经典试题01、裂项放缩1.(1)求∑nk =124k 2-1的值;(2)求证:∑nk =11k2<53.【分析】(1)根据裂项相消求和即可;(2)根据1n 2<1n 2-14放缩再求和即可【详解】(1)因为24n 2-1=2(2n -1)(2n +1)=12n -1-12n +1,所以∑nk =124k 2-1=11-13+13-15+...+12n -1-12n +1=2n2n +1(2)因为1n 2<1n 2-14=44n 2-1=212n -1-12n +1 ,所以∑nk =11k2≤1+213-15+⋯+12n -1-12n +1 <1+23=532.求证:1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2).【分析】根据1(2n -1)2>1(2n -1)(2n +1)放缩后利用裂项相消求和即可【详解】因为1(2n -1)2>1(2n -1)(2n +1)=1212n -1-12n +1 ,(n ≥2)故∑nk =11(2k -1)2>1+1213-15+...+12n -1-12n +1 =1+1213-12n +1 =76-122n -1,故1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2)3.求证:14+116+136+⋯+14n2<12-14n .【详解】由14+116+136+⋯+14n 2=141+122+⋯+1n 2<141+1-1n =12-14n 根据1n 2<1n ⋅n -1 得122+⋯+1n 2<1-12+12-13+⋯1n -1-1n =1-1n 所以141+122+⋯+1n2<141+1-1n =12-14n 4.求证:12+1⋅32⋅4+1⋅3⋅52⋅4⋅6+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<2n +1-1【分析】利用分式放缩法证明出1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,进而利用数学归纳法证明13+15+⋯+12n +1<2n +1-1即可.【详解】由1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n 2<12⋅23⋅34⋯2n -12n ⋅2n 2n +1=12n +1,得1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,所以12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <13+15+⋯+12n +1,要证12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <2n +1-1,只需证13+15+⋯+12n +1<2n +1-1,下面利用数学归纳法证明:当n =1时,左边=13,右边=3-1。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。
例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。
2[log ]n 表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。
(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ln (ai
1)]
即ln(an1)1
ln 3
1
例7已知不等式1
an
1
3
n(n
n 1
3e
n(n 1)
In (a.
1)
2
e .
2[log2n], n
1) In (a?1) 1
N ,n 2.[log2n]表示不超过
log2n的最大整数。设正数数列{a.}满足:aib(b0),an
,n 2.
求证
空,n 3.(05年湖北卷第(22)题)
1
盯
1
2?2
(x
(02年全国联赛山东预赛题)
0)
f (1)
f(n)
例3求证c:c2简析不等式左边c1
C
Cn
n 1
2
C
C
11
-(1 -
42
n 1
2v(n
C;2n
丄)
2
2门1
(1宀)
2 2
1
2.
1, n
N).
2 2
2
nv12 222n1=n
2•利用有用结论
例4求证(1 1)(1!)(1丄)
35
故原结论成立.
2,x
.2n 1.
1,x0)的一个特例
1
(12k"
注:
I)2
1
2k 1
例4是
1
2-
2k 1
2k 1
2k 1
(此处n 2,x1)得
2k 1
n1n
(1 )
k 12k 1k 1.2k 1
2k 1.2n 1.
1998
1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成
年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。如理科题的主干是:
k 122
②根据所证不等式的结构特征来选取所需要的重要不等式,这里
若放成
ai
n.a aa1an
1a1an
1n
an
2 2
a1an
n
其中,n2,3等的各式及其变式公式均可供选用。
4
-,且f (x)在[0,1]上的最小值为
5
已知函数
1
bx
1 a 2
,
求证:
f
f
f (n)
简析
f(x)
4
1
4
2
(1
1
1
1
2 2
n
nn
不等式
(a bi)]
1
f (2x)
2f(x)
2 2
aibi的简捷证法:
i 1 i 1
x 2x
,1 23
lg
2x
(n 1)
n
2xn
. s X a X
2lg
(n 1)x
[1
而由C22x32x
32x
已知印1,an1(1
x 2
n ]
2x
(n 1)2x
以利用所给题设结论1
2
1
例8设an(1-)n,求证:数列{an}单调递增且an4.
整理上式得an
1bn[(n
1)a n b].(
),以
a1
1 1 —,b 1-
代入()
n 1n
式得(14)n1(1
丄八即{a
n}单调递增。
n1
n
以a 1,b1
丄代入(
)式得1(1
丄
n1 )-
(11)2n
4.
2n
2i
2
2n
2.71828-) (05年辽宁卷第
(II )结合第(I)问结论及所给题设条件ln(1
x)
x(x 0)的结构特征,可
得放缩思路:
an 1
(1
鳥)an
ln an 1
ln(1
ln an
lnan 1
ln an
n 1
(ln ai
i 1
ln ai)
(i
ln an
ln a1
1
2
n n
1
歹,
1(扩
2
1
1-
2
*)ln an
此式对一切正整数
n都成立,
即对一切偶数有
(1
S
n
4,又因为数列
{an}单调
递增,所以对一切正整数
n有(1
1、n
)4。
解析引入一个结论:若b a
n
1
注:①上述不等式可加强为2(1丄)“3.简证如下:
n
是正整数,且1i m n.(1)证明n'A^nm'An;(2)证明(1 m/(1 n):(01
年全国卷理科第20题)
1)33n 1.(可考虑用贝努利不等式n3的特例)
3n2
3x(n 1)xa nx
,0 a 1,给疋n N ,n 2. n
证明(1 1)(1扌)(1》
1 2
已知函数f (x) Ig
(1
求证:
f (2x) 2f (x)(x0)对任意n N且n 2恒成立。(90年全国卷压轴题)
简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西(Cauchy)
即ln an
注:题目所给条件
放缩方向的作用;当然,
1
ln a12
e2.
an
ln(1
本题还可用结论
x) x(x
0)为一有用结论,
2n
an 1(1
)an
n(n1)
n(n
ln (an 1
1) ln (an
1)
ln(1
1
an
1)
1
n(n 1)(n(1nn11
可以起到提醒思路与探索
2)来放缩:
n 1
[ln (ai 11)
1.
均值不等式法
.n(n 1).求证n(n1)
(n 1)2
2
解析
此数列的通项为ak
k k 1
2
n(n 1)
2
k(k
1)
即n(n1)
Sn
2
注:①应注意把握放缩的
n
2
“度”
k(k
1
—?
2
(n1)2
1),k 1,2,
n
k
k 1
Sn
,n.
1
(k-),
2
:上述不等式右边放缩用的是均值不等式
2
(k 1)(n 1)(n 3)(n,就放过“度”了!
~2)an
n n
n ?[1
3x
(n 1)2x
a n2x](
2x
32x
/八Xx
(n 1) an n
(n
(n 1)x
n2x](x
a 1),
1)2x
a nx)2
0时取等号
得证!
2x
n ]
(II )对ln(1
22题)
解析
x) x对x 0都成立,证明an
丄.(I)用数学归纳法证明
2n
e2(无理数e
an2(n
2);
b[log2n]
简析
2时an
nan1
n an 1
1
(
1
)
ak1
注:
①本题涉及的和式
丄于是当
k'
1
2
1
an 1
3时有丄
an
an
1
an
1
-[log2n]
an 1
an
an
an 1
2 b[log2n]
1
3
1
n
丄为调和级数,是发散的,不能求和;但是可
n
Blog2n]来进行有效地放缩;
1
3
②引入有用结论在解题中即时应用,是近年来高考创新型试题的一个显著特点, 有利于培养学生的学习能力与创新意识。
1简析 对第(2)问:用1/n代替n得数列{bn}:bn(1n「是递减数列;借鉴此
结论可有如下简捷证法:
11 1
数列{(1 n)n}递减,且1' m n,故(1m尸(1n)6
1.
(1) 2n 1.
2n 1
简析 本题可以利用的有用结论主要有:
1利用假分数的一个性质b
a
2n1
2n
6
5
2n
2n
4 6
3 5
3
2
2n
b m
(b
a m
13
24
a 0,m0)可得
2n 1)2
2n
1
1)(1
法2利用贝努利不等式
(1 x)
2n1
(2n
2n
11
3)(1 7)(1
35
nx(n N , n
1)
2n 1
数列型不等式的放缩技巧九法
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考 性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各 级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列 通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一利用重要不等式放缩