2020-2021北京郭家务中学九年级数学下期中一模试题带答案
2020-2021初三数学下期中一模试题含答案(3)

2020-2021初三数学下期中一模试题含答案(3)一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .255B .55C .52D .123.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1B .2C .5D .25 4.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BCB .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 5.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小 6.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺8.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)9.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm.A .18B .20C .154D .80310.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD =OA ,则△ABC 与△DEF 的面积之比为 ( )A .1:2B .1:4C .1:5D .1:6 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m12.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 二、填空题13.51-的矩形称作黄金矩形.那么,现将长度为20cm 的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____cm . 14.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.15.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.17.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.三、解答题21.如图,∠ABD=∠BCD=90°,AB•CD=BC•BD,BM∥CD交AD于点M.连接CM交DB于点N.(1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.22.如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.23.如图,在△ABC 中,AB=AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B. (1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB 时,求BP 的长.24.已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD ,作BF ⊥CD ,垂足为点F ,BF 与AC 交于点C ,∠BGE=∠ADE .(1)如图1,求证:AD=CD ;(2)如图2,BH 是△ABE 的中线,若AE=2DE ,DE=EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.如图:已知▱ABCD ,过点A 的直线交BC 的延长线于E ,交BD 、CD 于F 、G . (1)若AB =3,BC =4,CE =2,求CG 的长;(2)证明:AF 2=FG ×FE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.2.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=255ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可. 【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴AC BC=2, ∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 2)2=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.4.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴12BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;∴AC=12AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.5.D解析:D 【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.6.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.8.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.9.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.10.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.11.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.12.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.二、填空题13.【解析】【分析】设这个黄金矩形较长的边长是xcm 根据题意得:解方程可得【详解】设这个黄金矩形较长的边长是xcm 根据题意得:解得:x=则这个黄金矩形较短的边长是cm 故答案为:【点睛】考核知识点:黄金分解析:(15-【解析】【分析】设这个黄金矩形较长的边长是xcm ,根据题意得:220x x ⎛⎫+= ⎪⎝⎭,解方程可得. 【详解】设这个黄金矩形较长的边长是xcm ,根据题意得:220x x ⎛⎫+= ⎪⎝⎭,解得:x= 5,5)(15=-cm .故答案为:(15【点睛】考核知识点:黄金分割点的应用.理解黄金分割的意义是关键.14.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.15.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC相似△A′B′C′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC相似△A′B′C′,面积比为1:4,∴△ABC与△A′B′C′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.16.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=218.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2 解析:3:2【解析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.19.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC 即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF ∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.20.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.三、解答题21.(1)见解析;(2)MC=.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC∵BM∥CD∴∠MBD =∠BDC ,∠MBC =∠BCD =90°∴∠ADB =∠MBD ,且∠ABD =90°∴BM =MD ,∠MAB =∠MBA∴BM =MD =AM =4∴MC .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.22.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF∴=, AB 4AC 7=,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 23.(1)证明见解析;(2)BP=253. 【解析】【分析】(1)由题意可得∠ABC =∠ACB ,∠DPC =∠BAP ,可证△ABP ∽△PCD ;(2))由△ABP ∽△PCD ,可得PC AB CD BP =,由PD ∥AB ,可得PC BC CD AC=,即AB BC BP AC=,可求BP 的长. 【详解】(1)∵AB =AC ,∴∠ABC =∠ACB .∵∠APC =∠ABC +∠BAP ,∴∠APD +∠DPC =∠ABC +∠BAP ,且∠APD =∠B ,∴∠DPC =∠BAP 且∠ABC =∠ACB ,∴△BAP ∽△CPD .(2)∵△ABP∽△PCD,∴PC CDAB BP=即PC ABCD BP=.∵PD∥AB,∴PC CDBC AC=即PC BCCD AC=,∴AB BCBP AC=,∴101210BP=,∴BP253=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.24.(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=12AE×DE=12×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=12AC•DE=12•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵AED BEG DE GEADE BGE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=12AE•BE=12•(2a)•2a=2a2,S△ACE=12CE•BE=12•(2a)•2a=2a2,S△BHG=12HG•BE=12•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(1)1;(2)证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
2020-2021九年级数学下期中一模试卷带答案(4)

2020-2021九年级数学下期中一模试卷带答案(4)一、选择题1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是( )A .B .C .D .2.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 3.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .374.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小5.在△ABC 中,若=0,则∠C 的度数是( )A .45°B .60°C .75°D .105° 6.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .57.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:98.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.8039.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.1310.如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是()A.15m B.203m C.24m D.103m11.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶112.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为A.423B.2C.823D.2二、填空题13.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.14.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.15.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.16.如图,等腰△ABC 中,底边BC 长为8,腰长为6,点D 是BC 边上一点,过点B 作AC 的平行线与过A 、B 、D 三点的圆交于点E ,连接DE ,则DE 的最小值是___.17.如图,Rt ABC V 中,90ACB ∠=︒,直线EF BD P ,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S V 四边形,=则CF AD= .18.如果点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,那么:AP AB 的值为________.19.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 20.若函数y =(k -2)2k 5x -是反比例函数,则k =______.三、解答题21.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°,在点A 处有一栋居民楼,AO =320m ,如果火车行驶时,周围200m 以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向行驶时.(1)居民楼是否会受到噪音的影响?请说明理由;(2)如果行驶的速度为72km /h ,居民楼受噪音影响的时间为多少秒?22.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;23.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900, 求证:△ADQ ∽△QCP .24.如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC=40cm ,AD=30cm .从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M .(1)求证:AM HG AD BC=; (2)求这个矩形EFGH 的周长.25.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V中,90,C AC BC ︒∠===A ∠的度数【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A 不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B 、D 不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A 符合题意;故选C .【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C =∠C ,∴△ACE ∽△ECD ,∵∠2=∠3,∴DE ∥AB ,∴△BCA ∽△ECD ,∵△ACE ∽△ECD ,△BCA ∽△ECD ,∴△ACE ∽△BCA ,∵DE ∥AB ,∴∠AED =∠BAE ,∵∠1=∠2,∴△AED ∽△BAE ,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.3.B解析:B【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b b b -=.4.D解析:D 【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.5.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.8.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='VV的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.9.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.10.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt △ABC 中,BC =12cm ,tanA =1:3;∴AC =BC÷tanA =123cm , ∴AB =2212(123)+=24cm .故选:C .【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.11.C 解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案. 【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC ,∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.12.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒=3, ∵BE 平分∠ABC ,∴∠EBD=30°,∴=3,∴AE=AD-DE== 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题13.【解析】已知BC=8AD是中线可得CD=4在△CBA和△CAD中由∠B=∠DAC∠C=∠C可判定△CBA∽△CAD根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4解析:【解析】已知BC=8, AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得.14.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.15.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.16.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠E OD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD 作A 解析:5【解析】【分析】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .首先证明∠EOD =2∠C =定值,推出⊙O 的半径最小时,DE 的值最小,推出当AB 是直径时,DE 的值最小.【详解】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .∵BE ∥AC ,∴∠EBC+∠C =180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ 22A C CJ -2264-5∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C , ∴sin ∠EOK =sin ∠C =256, ∴3EK 25, ∴EK 5∴DE =5∴DE 的最小值为5故答案为【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.17.【解析】【分析】先证△AEG∽△ABC△AGF∽△ACD再利用相似三角形的对应边成比例求解【详解】解:∵EF∥BD∴∠AEG=∠ABC∠AGE=∠ACB∴△AEG∽△ABC且S△AEG=S四边形EB解析:1 2【解析】【分析】先证△AEG∽△ABC,△AGF∽△ACD再利用相似三角形的对应边成比例求解.【详解】解:∵EF∥BD∴∠AEG=∠ABC,∠AGE=∠ACB,∴△AEG∽△ABC,且S△AEG=13S四边形EBCG∴S△AEG:S△ABC=1:4,∴AG:AC=1:2,又EF∥BD∴∠AGF=∠ACD,∠AFG=∠ADC,∴△AGF∽△ACD,且相似比为1:2,∴S△AFG:S△ACD=1:4,∴S△AFG1=3S四边形FDCGS△AFG1=4S△ADC∵AF:AD=GF:CD=AG:AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF:AD=1:2.18.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P是线段AB的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P是线段AB的黄【解析】【分析】根据黄金分割的概念和黄金比是12解答即可. 【详解】 ∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB ,故填12. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =12. 19.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.-2【解析】【分析】根据反比例函数的定义列出方程解出k 的值即可【详解】解:若函数y =(k -2)是反比例函数则解得k =﹣2故答案为﹣2 解析:-2【解析】【分析】根据反比例函数的定义列出方程2k -5=-1k-20⎧⎨≠⎩,解出k 的值即可. 【详解】解:若函数y =(k -2)2k 5x -是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.【解析】【分析】(1)作AC⊥ON于C,利用含30度的直角三角形三边的关系得到AC=12AO=160,则点A到MN的距离小200,从而可判断学校会受到影响;(2)以A为圆心,100为半径画弧交MN于B、D,如图,则AB=AD=200,利用等腰三角形的性质得BC=CD,接下来利用勾股定理计算出BC=120,所以BD=2BC=240,然后利用速度公式计算出学校受到的影响的时间.【详解】(1)如图:过点A作AC⊥ON,∵∠QON=30°,OA=320米,∴AC=160米,∵AC<200,∴居民楼会受到噪音的影响;(2)以A为圆心,200m为半径作⊙A,交MN于B、D两点,即当火车到B点时直到驶离D点,对居民楼产生噪音影响,∵AB=200米,AC=160米,∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,∵72千米/小时=20米/秒,∴影响时间应是:240÷20=12秒.【点睛】此题是解直角三角形的应用,主要考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形.试题解析:在Rt△ADQ与Rt△QCP中,∵∠AQP=90°,∴∠AQP+∠PQC=90°,又∵∠PQC+∠QPC=90°,∴∠AQP=∠QPC,∴Rt△ADQ∽Rt△QCP.24.(1)证明见解析;(2)72cm.【解析】【分析】(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可得出结论;(2)根据(1)中比例式即可求出HE 的长度,以及矩形的周长.【详解】解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH ,∴∠AHG =∠ABC ,又∵∠HAG =∠BAC ,∴△AHG ∽△ABC , ∴AM HG AD BC=; (2)解:由(1)AM HG AD BC =得:设HE =xcm ,则MD =HE =xcm . ∵AD =30cm ,∴AM =(30﹣x )cm .∵HG =2HE ,∴HG =(2x )cm , 可得:303040x x -=, 解得:x =12,故HG =2x =24, 所以矩形EFGH 的周长为:2×(12+24)=72(cm ).答:矩形EFGH 的周长为72cm .【点睛】本题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG ∽△ABC 是解决问题的关键.25.(1;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(12⨯(2)∵90,C AC BC ︒∠===∴tanA =BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.。
2020-2021九年级数学下期中一模试卷(带答案)(5)

2020-2021九年级数学下期中一模试卷(带答案)(5)一、选择题1.如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 2.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 3.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)4.观察下列每组图形,相似图形是( )A .B .C .D .5.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交CD 于点F ,交AD 的延长线于点E ,若AB =4,BM =2,则△DEF 的面积为( )A .9B .8C .15D .14.56.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .7.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒8.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m 9.在反比例函数4y x =的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .10.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 11.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶112.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元二、填空题13.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.14.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.15.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .17.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.18.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 19.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.20.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)三、解答题21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB 的一部分影子BD 落在地面上,另一部分影子CD 落在楼房的墙壁上,分别测得BD =11.2米,CD =3米,求旗杆AB 的高度.22.已知四边形ABCD 中,E ,F 分别是AB ,AD 边上的点,DE 与CF 交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证:DE AD CF CD= ; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE AD CF CD=成立?并证明你的结论.23.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线;(2)若,且,求⊙O 的半径与线段的长.24.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.25.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE V V ∽.(2)若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.3.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.4.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.5.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.6.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.7.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.8.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.9.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 10.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.11.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.12.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题13.【解析】【分析】认真审题根据垂线段最短得出PM⊥AB时线段PM最短分别求出PBOBOAAB的长度利用△PBM∽△ABO即可求出本题的答案【详解】解:如图过点P作PM⊥AB则:∠PMB=90°当PM⊥解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB 的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.14.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 15.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 16.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 18.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.7【解析】设树的高度为m 由相似可得解得所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x =5﹣5是原方程的解析:18【解析】【分析】 根据黄金分割定义:AP BP AB AP=列方程即可求解. 【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=55﹣5≈6.18,x2=﹣55﹣5(不符合题意,舍去)经检验x=55﹣5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.旗杆AB的高度是11米.【解析】【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A =∠ADC =90°,由DE ⊥CF 可得∠ADE =∠DCF ,即可证得△ADE ∽△DCF ,从而证得结论;(2)在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .根据平行线的性质可得∠A =∠CDM ,再结合∠B+∠EGC =180°,可得∠AED =∠FCB ,进而得出∠CMF =∠AED 即可证得△ADE ∽△DCM ,从而证得结论;【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF , ∴DE AD CF DC= (2)当∠B +∠EGC =180°时,DE AD CF DC =成立,证明如下:在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM.∵AB ∥CD.∴∠A =∠CDM.∵AD ∥BC ,∴∠CFM =∠FCB.∵∠B +∠EGC =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED ,∴△ADE ∽△DCM ,∴DE AD CM DC =,即DE AD CF DC=. 【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.23.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358 AF x x x=+=,362AE x=-,由363285xx-=,解得x值,进而求出圆的半径及AE长.【详解】解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结OD,∵AB AC=,∴B ACD∠=∠.∵OC OD=,∴ODC OCD∠=∠.∴B ODC∠=∠,∴OD∥AB.∵DE AB⊥,∴OD EF⊥.∴EF是⊙O的切线;(2)在Rt ODF∆和Rt AEF∆中,∵35OD AEOF AF==,∴35OD AEOF AF==. 设3OD x=,则5OF x=.∴26AB AC OD x===,358AF x x x=+=.∵32EB=,∴362AE x=-.∴363285xx-=,解得x=54,则3x=154,AE=6×54-32=6,∴⊙O的半径长为154,AE=6.24.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题25.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE V V ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=o .∵A A ∠=∠,∴ACD ABE V V ∽.()2若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由. ∵ACD ABE V V ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC V V ∽.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.。
2020-2021初三数学下期中一模试题(含答案)(4)

2020-2021初三数学下期中一模试题(含答案)(4)一、选择题1.已知一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >0 2.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 3.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .4 4.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:9 5.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变6.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm.A .18B .20C .154D .8037.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm (如箭头所示),则木桩上升了( )A .8tan20°B .C .8sin20°D .8cos20°8.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .99.如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2510.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .1311.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25- C .251 D 5212.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .22C .823D .32二、填空题13.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.16.在ABC ∆中,若45B ∠=o ,102AB =,55AC =,则ABC ∆的面积是______.17.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.18.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)19.近视眼镜的度数(y 度)与镜片焦距(x 米)呈反比例,其函数关系式为120.y x=如果近似眼镜镜片的焦距0.3x =米,那么近视眼镜的度数y 为______.20.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)三、解答题21.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22.如图,AD 是△ABC 的中线,tan B =13,cos C =22,AC =2.求: (1)BC 的长;(2)sin ∠ADC 的值.23.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)24.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?25.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为一次函数和反比例函数交于A、B两点,可知x-1=2x,解得x=-1或x=2,进而可得A、B两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y1>y2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.D解析:D【解析】【分析】 根据黄金分割的定义得出51BC AC AC AB -==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC , ∴512BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误; ∴AC=512AB ,故C 错误; 51-AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.3.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC=,可求出AC 的长. 【详解】 解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 4.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.5.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x =1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy ,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x =2xy ,其值为定值.【详解】解:因为等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,所以△BEC 和△DCF 都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.6.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .7.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 8.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE9.A解析:A【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.10.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.11.A解析:A【解析】根据黄金比的定义得:512APAB=,得5142522AP=⨯= .故选A.12.C 解析:C 【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒=3,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题13.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.14.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 15.6【解析】【分析】利用位似的性质得到AB:DE=OA:OD然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC与△DEF位似原点O是位似中心∴AB:DE=OA:OD即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.16.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键. 17.【解析】当时∵∠A=∠A∴△AED∽△ABC 此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是:解析:51235或 【解析】 当AE AB AD AC=时, ∵∠A=∠A , ∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC=时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==;故答案是:12553或. 18.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.19.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x =5﹣5是原方程的解析:18【解析】【分析】 根据黄金分割定义:AP BP AB AP=列方程即可求解. 【详解】解:设AP 为x 米,根据题意,得 x 1010x x-= 整理,得x 2+10x ﹣100=0解得x 1=﹣5≈6.18,x 2=﹣5(不符合题意,舍去)经检验x =5是原方程的根,∴AP 的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.观景亭D 到南滨河路AC 的距离约为248米.【解析】【分析】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,根据AE=DE ,列出方程即可解决问题.【详解】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,在Rt △DEB 中,tan ∠DBE=DE BE, ∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE .∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D 到南滨河路AC 的距离约为248米.22.(1)BC =4;(2)sin ∠ADC =22. 【解析】(1)如图,作AE⊥BC,∴CE =AC •cos C =1,∴AE =CE =1,1tan 3B =, ∴BE =3AE =3,∴BC =4;(2)∵AD 是△ABC 的中线,∴DE =1,∴∠ADC =45°,∴2sin ADC ∠= 23.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24.7【解析】【分析】根据已知角的度数,易求得∠BAC =∠BCA =30°,由此得BC =AB =3米;可在Rt△CBF中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF−EF求得汽车车头与斑马线的距离.【详解】如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°−30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=12BC=1.5米;故x=BF−EF=1.5−0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.【点睛】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.25.(1)画图见解析;(2)DE=4.【解析】【分析】(1)连接CB延长CB交DE于O,点O即为所求.连接OG,延长OG交DF于H.线段FH即为所求.(2)根据AB CAOD CD=,可得1.6 1.41.42.1DO=+,即可推出DO=4m.【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.。
2020-2021九年级数学下期中一模试卷附答案(2)

2020-2021九年级数学下期中一模试卷附答案(2)一、选择题1.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的2.已知线段a、b,求作线段x,使22bxa,正确的作法是()A.B.C.D.3.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)4.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A .﹣1B .1C .12-D .12 5.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .16.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .197.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( )A .aB .aC .aD .a8.在函数y =21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( )A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y29.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米10.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d 11.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°12.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.15.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.16.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.17.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P 点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.18.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.19.如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.20.已知一个反比例函数的图象经过点(2,3)--,则这个反比例函数的表达式为________.三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,3).(1)画出△ABC 绕点B 逆时针旋转90°得到的△A 1BC 1.(2)以原点O 为位似中心,位似比为2:1,在y 轴的左侧,画出将△ABC 放大后的△A 2B 2C 2,并写出A 2点的坐标 .23.如图,已知反比例函数y =k x 的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值; (2)若点C (x ,y )也在反比例函数y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.24.如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:(1)b 和k 的值;(2)△OAB 的面积.25.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC V 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,连接DE 交AC 于点F .() 1求证:四边形ADCE 为矩形;()2当ABC V 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.()3在()2的条件下,若AB AC 22==,求正方形ADCE 周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.4.A解析:A【解析】【分析】连接OC 、OB ,如图,由于BC ∥x 轴,根据三角形面积公式得到S △ACB =S △OCB ,再利用反比例函数系数k 的几何意义得到12×|3|+12•|k|=2,然后解关于k 的绝对值方程可得到满足条件的k 的值.【详解】连接OC 、OB ,如图,∵BC ∥x 轴,∴S △ACB =S △OCB ,而S △OCB =12×|3|+12•|k|, ∴12×|3|+12•|k|=2, 而k <0,∴k=﹣1,故选A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变. 5.D解析:D【解析】因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 6.D解析:D分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.7.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.8.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.9.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.11.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 12.A解析:A【解析】【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE ⊥AB 于E ,OF ⊥CD 于F ,由题意得,AB ∥CD ,∴△AOB ∽△COD ,∴CD AB =OF OE =13, ∴像CD 的长是物体AB 长的13. 故答案选:A.【点睛】 本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.05【解析】∵EG ⊥ABFH ⊥ADHG 经过A 点∴FA ∥EGEA ∥FH ∴∠HFA =∠AEG =90°∠FHA =∠EAG ∴△GEA ∽△AFH ∴∵AB =9里DA =7里EG =15里∴FA =35里EA =45里∴解析:05【解析】∵EG ⊥AB ,FH ⊥AD ,HG 经过A 点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E 解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.15.【解析】已知BC=8AD是中线可得CD=4在△CBA和△CAD中由∠B=∠DAC∠C=∠C可判定△CBA∽△CAD根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4解析:2【解析】已知BC=8, AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得AC=42.16.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 17.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴AB PF CD PE=,∴AB 15x CD 15+=, 依题意CD=20米,AB=50米, ∴1520 5015x =+, 解得:x=22.5(米).答:河的宽度为22.5米.18.1或4或25【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC 根据该相似三角形的对应边成比例求得DP 的长度【详解】设DP=x 则CP=5-x 本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【详解】设DP=x ,则CP=5-x ,本题需要分两种情况情况进行讨论,①、当△PAD ∽△PBC 时,AD BC =DP CP∴225x x=-,解得:x=2.5; ②、当△APD ∽△PBC 时,AD CP =DP BC ,即25x -=2x , 解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位. 19.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D (53)∴A (3)C (5)∴B ()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】 ∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.20.【解析】【分析】把已知点的坐标代入可求出k 值即得到反比例函数的解析式【详解】设这个反比例函数的表达式为了则所以这个反比例函数的表达式为故答案是:【点睛】考查的是用待定系数法求反比例函数的解析式解题关 解析:6y x =【解析】【分析】把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】 设这个反比例函数的表达式为了(0)k y k x=≠,则 (2)(3)6k =-⨯-=, 所以这个反比例函数的表达式为6y x =. 故答案是:6y x=.【点睛】考查的是用待定系数法求反比例函数的解析式,解题关键是设关系式、再将已知点坐标代入,从而求解即可.三、解答题21.(1)90o ,2BC BD +;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒, 45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,2AC BD ∴=,∴AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,2BC BD +,(2)结论:90PBD ∠=︒; 2AB BD BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又2PA PC PB PD ==Q , PAC PBD ∴V V ∽,相似比为222=, 90PBD PAC ∴∠=∠=︒,22AC BD =, 22AC BD ∴=, 22AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.(1)见解析;(2)(﹣4,2) .【解析】【分析】(1)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.23.(1) k =4, m =1;(2)当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-43. 【解析】【分析】【详解】 试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x=﹣3和﹣1时y 的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB 的面积为2,∴k=4,∴反比例函数解析式为4y x =,∵A (4,m ),∴m=44=1; (2)∵当x=﹣3时,y=﹣43; 当x=﹣1时,y=﹣4,又∵反比例函数4y x =在x <0时,y 随x 的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.24.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=. 25.(1)证明见解析;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形;证明见解析;(3)8;【解析】【分析】( 1 )根据等腰三角形的性质,可得 ∠ CAD=12∠ BAC ,根据等式的性质,可得∠CAD+ ∠CAE=12( ∠BAC+ ∠CAM )=90°,根据垂线的定义,可得∠ADC=∠CEA ,根据矩形的判定,可得答案;( 2 )根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;( 3 )根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.【详解】()1∵AB AC =,AD BC ⊥,垂足为点D , ∴1CAD BAC 2∠∠=. ∵AN 是ABC V 外角CAM ∠的平分线, ∴1CAE CAM 2∠∠=. ∵BAC ∠与CAM ∠是邻补角,∴BAC CAM 180∠∠+=o , ∴()1CAD CAE BAC CAM 902∠∠∠∠+=+=o . ∵AD BC ⊥,CE AN ⊥,∴ADC CEA 90∠∠==o ,∴四边形ADCE 为矩形;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形,∵BAC 90∠=o 且AB AC =,AD BC ⊥, ∴1CAD BAC 452∠∠==,ADC 90∠=o , ∴ACD CAD 45∠∠==o ,∴AD CD =.∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;()3由勾股定理,得=,=,AD CDAB=,=,AD2=⨯=.正方形ADCE周长4AD428【点睛】本题考查了的正方形的判定与性质,(1)利用了等腰三角形的性质,矩形的判定;(2)利用了正方形的判定;(3)利用了勾股定理,正方形的周长,灵活运用是关键.。
2020-2021九年级数学下期中一模试卷含答案(2)

2020-2021九年级数学下期中一模试卷含答案(2)一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数1y x=-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( ) A .y 1<y 2<y 3 B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 23.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定4.如果反比例函数y =kx(k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6)5.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1B .2C .5D .256.反比例函数ky x=与1(0)y kx k =-+≠在同一坐标系的图象可能为( ) A . B . C . D .7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A.1:3 B.1:4 C.2:3 D.1:28.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺9.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.1211.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为()A .1 : 2B .1 : 3C .2 : 3D .4 : 912.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .9二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EFBF CF++=________。
2020-2021九年级数学下期中一模试卷(带答案)(1)

2020-2021九年级数学下期中一模试卷(带答案)(1)一、选择题1.已知一次函数y 1=x -1和反比例函数y 2=2x的图象在平面直角坐标系中交于A 、B 两点,当y1>y 2时,x 的取值范围是( ) A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >02.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .函数图象经过点(﹣3,2) B .函数图象分别位于第二、四象限 C .若x <﹣2,则0<y <3 D .y 随x 的增大而增大3.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍; B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;4.如图,△OAB ∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A .32OB CD=B .32αβ= C .1232S S = D .1232C C =5.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .1036.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺8.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+9.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<10.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.511.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1)D .(8,﹣4)12.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13二、填空题13.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.14.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____. 15.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________.16.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.17.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.18.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .19.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.20.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.三、解答题21.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)22.已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ; (2)AB•BC=BD•BE .23.如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.24.某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小2030405060时)T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.25.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2. 【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1), 如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >. 故选C. 【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.D解析:D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.4.D解析:D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.5.B解析:B【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.7.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.8.D解析:D 【解析】 【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算. 【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C , ∴2(﹣1﹣x )=a+1, 解得x =﹣12(a+3), 故选:D . 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.9.C解析:C 【解析】 【分析】根据题意可知反比例函数2y x=-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案. 【详解】∵反比例函数2y x=-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y xy x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=, ∵有两个不同的交点∴220x mx -+=有两个不相等的实数根, ∴△=m 2-8>0,∴m >m < 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.10.A解析:A 【解析】【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案. 【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2, 故选A .【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.11.A解析:A 【解析】 【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算. 【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1). 故选A . 【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.12.D解析:D 【解析】 【分析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB . 【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB 是等边三角形∴∠PAH=60°∴根据锐角三解析:933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.14.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.15.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y 随x 的增大而增大∵A (-4y1)B (-1y2)解析:y 1<y 2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.6【解析】【分析】利用位似的性质得到AB :DE=OA :OD 然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC 与△DEF 位似原点O 是位似中心∴AB:DE=OA :OD 即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB :DE=OA :OD ,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB :DE=OA :OD ,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF a ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l ∥2l ∥3l , ∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.20.【解析】【分析】如图所示连接BD 过点D 作DE 垂直于BC 的延长线于点E 构造直角三角形将∠CBD 置于直角三角形中设CE 为x 根据特殊直角三角形分别求得线段CDACBC 从而按正切函数的定义可解【详解】解:如解析:31- 【解析】【分析】 如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E ,构造直角三角形,将∠CBD 置于直角三角形中,设CE 为x ,根据特殊直角三角形分别求得线段CD 、AC 、BC ,从而按正切函数的定义可解.【详解】解:如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E,∵在Rt △ABC 中,∠ACB =45°,在Rt △ACD 中,∠ACD =90°∴∠DCE =45°,∵DE ⊥CE ∴∠CEB =90°,∠CDE =45°∴设DE =CE =x ,则CD 2x ,在Rt △ACD 中,∵∠CAD =30°, ∴tan ∠CAD=33=CD AC , 则AC 6x ,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC 3,∴在Rt △BED 中,tan ∠CBD =DE BE (13)x +=312故答案为:312. 【点睛】 本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.三、解答题21.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.23.(1)详见解析;(2)AC=9,CD=15 2.【解析】【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴AB AE AC AB=,∴AB2=AC•AE,∵AB=6,AE=4,∴AC=29 ABAE=,∵AB∥CD,∴△CDE∽△ABE,∴CD CE AB AE=,∴()••651542AB AC AEAB CECDAE AE-⨯====.【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.24.(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v的取值范围是24<v<40【解析】【分析】(1)根据表格中数据,可知v是t的反比例函数,设v=kt,利用待定系数法求出k即可;(2)根据时间t=13小时,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可.【详解】(1)根据表格中数据,可知v=kt,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=12t(t≥0.2).(2)∵1﹣16-12=13,∴t=13时,v=1213=36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.【点睛】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.25.(1)见解析 (2)△ABD∽△ACE【解析】分析:(1)由∠BAD=∠CAE易得∠BAC=∠DAE,这样结合∠ABC=∠ADE,即可得到△ABC∽△ADE.(2)由(1)中结论易得AB ACAD AE=,从而可得:AB ADAC AE=,这样结合∠BAD=∠CAE即可得到△ABD∽△ACE了.详解;(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE=,∴AB AD AC AE=,又∵∠BAD=∠CAE,∴△ABD∽△ACE.点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.。
2020-2021九年级数学下期中一模试卷附答案(3)

2020-2021九年级数学下期中一模试卷附答案(3)一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④2.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C .5 D .253.如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A .7B .7.5C .8D .8.5 4.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .375.如图,在同一平面直角坐标系中,反比例函数y =k x与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( ) A . B . C . D .6.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .47.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .8.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)9.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16510.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m11.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .1312.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A .512-B .512+C .2D .212+ 二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021北京郭家务中学九年级数学下期中一模试题带答案一、选择题1.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.2.已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B.C.D.3.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)4.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.35.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条6.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.57.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)8.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.8039.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°10.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.5B.(105 1.5) mC.11.5m D.10m11.在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B. C.D.12.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个二、填空题13.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且43OEEA=,则FGBC=______.16.如图,点A在双曲线y=2x上,点B在双曲线y=5x上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.17.已知一个反比例函数的图象经过点(2,3)--,则这个反比例函数的表达式为________.18.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.19.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .20.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.三、解答题21.如图,AD 是△ABC 的中线,tan B =13,cos C =22,AC =2.求: (1)BC 的长;(2)sin ∠ADC 的值.22.马路两侧有两根灯杆AB 、CD ,当小明站在点N 处时,在灯C 的照射下小明的影长正好为NB ,在灯A 的照射下小明的影长为NE ,测得BD=24m ,NB=6m ,NE=2m.(1)若小明的身高MN=1.6m ,求AB 的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.23.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.24.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O 为位似中心,位似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)如果点D(a ,b)在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.25.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.4.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.5.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△AB C;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.6.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴22AM AB BM16425=+=+=,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=25 25=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.7.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.8.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='VV的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.9.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−2|+(1−tan B)2=0,∴sinA=2,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.10.C解析:C【解析】【分析】确定出△DEF和△DAC相似,根据相似三角形对应边成比例求出AC,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.11.B解析:B【解析】【分析】 根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .二、填空题13.或6【解析】【分析】当△PQB 为等腰三角形时有两种情况需要分类讨论:①当点P 在线段AB 上时如图1所示由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时如图2所示利用角 解析:53或6. 【解析】【分析】 当△PQB 为等腰三角形时,有两种情况,需要分类讨论:①当点P 在线段AB 上时,如图1所示.由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时,如图2所示.利用角之间的关系,证明点B 为线段AP 的中点,从而可以求出AP .【详解】解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P o o ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为53或6.故答案为53或6.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q 四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE 4EA 3=, OE 4OA 7∴=, 则FG OE 4BC OA 7==, 故答案为:47. 【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.16.3【解析】试题分析:由AB ∥y 轴可知AB 两点横坐标相等设A (m )B (m )求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k 的几何意义解析:3【解析】试题分析:由AB ∥y 轴可知,A 、B 两点横坐标相等,设A (m ,2m ),B (m ,5m ),求出AB=5m ﹣2m =3m ,再根据平行四边形的面积公式进行计算即可得ABCD S Y =3m •m=3. 考点:反比例函数系数k 的几何意义17.【解析】【分析】把已知点的坐标代入可求出k 值即得到反比例函数的解析式【详解】设这个反比例函数的表达式为了则所以这个反比例函数的表达式为故答案是:【点睛】考查的是用待定系数法求反比例函数的解析式解题关 解析:6y x =【解析】【分析】把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】 设这个反比例函数的表达式为了(0)k y k x=≠,则 (2)(3)6k =-⨯-=, 所以这个反比例函数的表达式为6y x =. 故答案是:6y x=. 【点睛】考查的是用待定系数法求反比例函数的解析式,解题关键是设关系式、再将已知点坐标代入,从而求解即可.18.3:2【解析】因为DE∥BC 所以因为EF∥AB 所以所以故答案为:3:2 解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 19.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.20.【解析】当时∵∠A=∠A∴△AED∽△ABC 此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是: 解析:51235或 【解析】 当AE AB AD AC=时, ∵∠A=∠A , ∴△AED ∽△ABC ,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=·52563 AC ADAB⨯==;故答案是:125 53或.三、解答题21.(1)BC=4;(2)sin ∠ADC=2 2.【解析】(1)如图,作AE⊥BC,∴CE=AC•cos C=1,∴AE=CE=1,1 tan3B=,∴BE=3AE=3,∴BC=4;(2)∵AD是△ABC的中线,∴DE=1,∴∠ADC=45°,∴2 sin ADC∠=22.(1)AB=6.4m;(2)AB=CD,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN∥AB,∴△MNE∽ABE,∴MNAB=NEBE.∵NB=6,NE=2,MN=1.6,∴1.6AB=28,∴AB=6.4(m);(2)这两根灯杆的高度相等,理由如下:∵MN∥CD,BD=24,∴MNAB=NEBE=28=14,∴MNCD=BNBD=624=14,∴AB=CD.【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.23.(1)见解析(2)见解析(3)AC7 AF4=.【解析】【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD.(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=12AB=AE,从而可证得∠DAC=∠ECA,得到CE∥AD.(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得AFCF的值,从而得到ACAF的值.【详解】解:(1)证明:∵AC平分∠DAB ∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴AD AC AC AB=即AC2=AB•AD.(2)证明:∵E为AB的中点∴CE=12AB=AE∴∠EAC=∠ECA.∵∠DAC=∠CAB ∴∠DAC=∠ECA ∴CE∥AD.(3)∵CE∥AD∴△AFD∽△CFE∴AD AF CE CF =. ∵CE=12AB ∴CE=12×6=3. ∵AD=4∴4AF 3CF = ∴AC 7AF 4=. 24.(1)图见解析,C 1(-6,4);(2)D 1(2a ,2b).【解析】【分析】(1)连接OB 并延长,使BB 1=OB ,连接OA 并延长,使AA 1=OA ,连接OC 并延长,使CC 1=OC ,确定出△A 1B 1C 1,并求出C 1点坐标即可;(2)根据A 与A 1坐标,B 与B 1坐标,以及C 与C 1坐标的关系,确定出变化后点D 的对应点D 1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C 1的坐标为(-6,4);(2)变化后D 的对应点D 1的坐标为:(2a ,2b ).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.25.(1)12y x=;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.。