阆中中学高中数学不等式测试题

合集下载

高中不等式经典练习题测试(含答案)

高中不等式经典练习题测试(含答案)

高中数学不等式经典练习题测试姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每小题2分,共40分)1.已知x,y,z,a∈R,且x2+4y2+z2=6,则使不等式x+2y+3z≤a恒成立的a的最小值为()A.6B.C.8D.2.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.3.下列不等式在给定区间上不恒成立的是()A.(x+1)cosx<1,x∈(0,π)B.e>1+x2,x∈(0,+∞)C.sinx+tanx>2x,x∈(0,)D.lnx+e x>x+2,x∈(0,+∞)4.若关于x的不等式|x+2|-|x-3|≤a有解,则a的取值范围为()A.[5,+∞)B.(-∞,5]C.[-5,+∞)D.(-∞,-5]5.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为()A.-1B.-1C.2-1D.-16.若不等式(lgx)2<|lgx|<|log x10|成立,则实数x的一个取值区间为()A.()B.(1,100)C.(,10)D.(0,10)7.若,则下列不等式:①a+b<ab②|a|>|b|③a<b④中,正确的不等式有()A.①②B.①④C.②③D.③④8.设a、b∈R,若a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<09.已知变量x,y满足线性约束条件,则目标函数z=x-y的最小值为()A.-B.2C.-2D.10.已知x,y,z∈R+且x+y+z=1则x2+y2+z2的最小值是()A.1B.C.D.211.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于()A.-3B.1C.-1D.312.要证:a2+b2-1-a2b2≤0,只要证明()A.2ab-1-a2b2≤B.a2+b2-1-≤0C.-1-a2b2≤D.(a2-1)(b2-1)≥13.已知a,b是任意实数,且a>b,则下列结论正确的是()A.a2>b2B.C.D.3-a<3-b14.已知正实数x,y满足z=(x-y)2+3y2,则的最大值为()A.B.C.1D.215.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度16.不等式|x+3|-|x-1|≥-2的解集为( ) A .(-2,+∞) B .(0,+∞)C .[-2,+∞)D .[0,+∞)17.若关于x 的不等式-+ax >-1的解集为{x|-1<x <2},则实数a=( ) A . B .C .-2D .218.已知不等式kx 2-2x+6k <0,若不等式的解集是R ,则k 的取值范围( ) A . B .C .D .19.下列式子成立的是( ) A . B .C .D .20.若x 、y ∈R +,且x ≠y ,则“,,”的大小关系是…( )A.B .C .D .第Ⅱ卷(非选择题)二.填空题(每小题3分,共15分) 21.-3x 2+x ≤2的解集是______.22.已知3≤x ≤6,,则x+y 的最大值为______,最小值为______.23.已知不等式|x+1|-a<|x-2|的解集为(-∞,2),则a的值为______.24.若x,y满足约束条件:,则z=2x+3y的最大值为______.25.已知实数x,y,z满足2x+y+3z=32,则的最小值为______.三.简答题(每小题9分,共45分)26.某人上午7:00时,乘摩托车以匀速V千米/时(4≤V≤20)从A港出发到相距50千米的B港去,然后乘汽车以匀速W千米/时(30≤W≤100)自B港向距300千米的C市驶去,要求在当天16:00时至21:00时这段时间到达C市.设汽车所需要的时间为X小时,摩托车所需要的时间为Y小时.(1)作图表示满足上述条件的X,Y的范围;(2)如果已知所要的经费:p=100+3(5-x)+2(8-y)(元),那么V,W分别是多少时所要的经费最少?此时需花费多少元?27.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.28.已知x,y,z∈R+,且x+y+z=1.(1)若++=2,求x,y,z的值.(2)求证:++≤.29.设n是不小于2的正整数,求证:<1-+-+…+-<.30.已知x,y,z>0,求++的最小值.参考答案一.单选题(共__小题)1.已知x,y,z,a∈R,且x2+4y2+z2=6,则使不等式x+2y+3z≤a恒成立的a的最小值为()A.6B.C.8D.答案:B解析:解:由x2+4y2+z2=6,利用柯西不等式可得(x+2y+3z)2≤(x2+4y2+z2)(12+12+32)=66,故有x+2y+3z≤,当且仅当==时,取等号.再根据不等式x+2y+3z≤a恒成立,可得a≥,故选:B.2.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D3.下列不等式在给定区间上不恒成立的是()A.(x+1)cosx<1,x∈(0,π)B.e>1+x2,x∈(0,+∞)C.sinx+tanx>2x,x∈(0,)D.lnx+e x>x+2,x∈(0,+∞)答案:A解析:解:对于A,可举x=∈(0,π),可得(x+1)cosx=(1+)×>1,即有A不恒成立;对于B,可令t=x2(t>0),由f(t)=e t-1-t的导数为f′(t)=e t-1>0,即为f(t)在t>0递增,即有f(t)>f(0)=0,则原不等式恒成立;对于C,令f(x)=sinx+tanx-2x(0<x<π),f′(x)=cosx+sec2x-2=cosx+-2,设t=cosx(0<t<1),则g(t)=t+t-2-2,g′(t)=1-2t-3<0,g(t)在(0,1)递减,即有g(t)>g(1)=0,则f(x)>0恒成立;对于D,lnx+e x>x+2,即为lnx+>x+2-e x,(x>0),设f(x)=lnx+,g(x)=x+2-e x,f′(x)=-,当x>1时,f(x)递增,0<x<1时,f(x)递减,即有x=1处f(x)取得最小值1;g(x)的导数为g′(x)=1-e x,当x>0时,g′(x)<0,即有g(x)<1,故原不等式恒成立.故选:A.4.若关于x的不等式|x+2|-|x-3|≤a有解,则a的取值范围为()A.[5,+∞)B.(-∞,5]C.[-5,+∞)D.(-∞,-5]答案:C解析:解:令y=|x+2|-|x-3|,∵||x+2|-|x-3||≤|x+2-(x-3)|=5,∴-5≤|x+2|-|x-3|≤5,则函数y=|x+2|-|x-3|的值域为[-5,5],若不等式|x+2|-|x-3|≤a有解,则a≥-5故实数a的取值范围是[-5,+∞)故选C.5.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为()A.-1B.-1C.2-1D.-1答案:A解析:解:由题可知不等式组确定的区域为阴影部分包括边界,点P到Q的距离最小为到(0,-2)的最小值减去圆的半径1,点(0,-2)到直线x-2y+1=0的距离为=;由图可知:|PQ|min=-1,故选A.6.若不等式(lgx)2<|lgx|<|log x10|成立,则实数x的一个取值区间为()A.()B.(1,100)C.(,10)D.(0,10)答案:C解析:解:∵不等式(lgx)2<|lgx|<|log x10|成立,∴-1<lgx<1,解得<x<10,故选C.7.若,则下列不等式:①a+b<ab②|a|>|b|③a<b④中,正确的不等式有()A.①②B.①④C.②③D.③④答案:B解析:解:取a=-,b=-1代入验证知②,③错误.①证明:∵<<0,∴a<0,b<0,∴ab>0,a+b<0,∴a+b<ab,故①正确;④证明:∵>0,>0,且a≠b,由均值不等式得+>2,故④正确;故正确的不等式有为①④.8.设a、b∈R,若a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<0答案:D解析:解:∵a+|b|<0,∴|b|<-a,∴b<-a,∴a+b<0.故选D.9.已知变量x,y满足线性约束条件,则目标函数z=x-y的最小值为()A.-B.2C.-2D.答案:C解析:解:画出满足线性约束条件的平面区域,如图示:,由目标函数z=x-y得:y=x-z,显然直线过(0,2)时,z最小,z的最小值是:-2,10.已知x,y,z∈R+且x+y+z=1则x2+y2+z2的最小值是()A.1B.C.D.2答案:B解析:解:∵(x2+y2+z2)×(1+1+1 )≥(x+y+z)2=1,∴x2+y2+z2≥1×=,当且仅当x=y=z时取等号,故x2+y2+z2的最小值为,故选B.11.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于()A.-3B.1C.-1D.3答案:A解析:解:由题意:A={x|-1<x<3},B={x|-3<x<2},A∩B={x|-1<x<2},由根与系数的关系可知:a=-1,b=-2,故选A.12.要证:a2+b2-1-a2b2≤0,只要证明()A.2ab-1-a2b2≤B.a2+b2-1-≤0C.-1-a2b2≤D.(a2-1)(b2-1)≥答案:D解析:解:要证:a2+b2-1-a2b2≤0,只要证明(a2-1)(1-b2)≤0,只要证明(a2-1)(b2-1)≥0.故选:D.13.已知a,b是任意实数,且a>b,则下列结论正确的是()A.a2>b2B.C.D.3-a<3-b答案:D解析:解:∵a>b,∴-a<-b,∴3-a<3-b.故选D.14.已知正实数x,y满足z=(x-y)2+3y2,则的最大值为()A.B.C.1D.2答案:B解析:解:∵z=(x-y)2+3y2,∴又x,y,为正实数,∴=≤(当且仅当时取“=”),即∴的最大值为.故选:B.15.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度答案:B解析:解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B16.不等式|x+3|-|x-1|≥-2的解集为()A.(-2,+∞)B.(0,+∞)C.[-2,+∞)D.[0,+∞)答案:C解析:解:由于|x+3|-|x-1|表示数轴上的x对应点到-3和1对应点的距离之差,数轴上的-2到-3和1对应点的距离之差等于-2,故不等式|x+3|-|x-1|≥-2的解集为[-2,+∞),故选:C.17.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2D.2答案:A解析:解:由的解集是{x|-1<x<2},可知-1与2是方程的两根,∴,解得a=.故选A.18.已知不等式kx2-2x+6k<0,若不等式的解集是R,则k的取值范围()A.B.C.D.答案:C 解析:解:①当k=0时,不等式化为-2x <0,得到x >0,不等式的解集不是R ,应舍去; ②当k ≠0时,由不等式kx 2-2x+6k <0的解集是R ,则,解得.综上可知:k 的取值范围是.故选C .19.下列式子成立的是( ) A . B .C .D .答案:A 解析: 解:∵=24-10-2=14->14-10>0,∴,又∵函数y=5x 在R 上单调递增,∴,∴A 正确.故选A .20.若x 、y ∈R +,且x ≠y ,则“,,”的大小关系是…( )A.B .C .D .答案:B 解析: 解:由题意知利用分析法证明如下: 证明:①要证不等式x 、y ∈R +,成立,只需证成立即可化简得:(x+y)2≥4xy即:(x-y)2≥0恒成立又∵x≠y∴成立②要证不等式x、y∈R+,成立,两边平方得:(x+y)2≥4xy即不等式(x-y)2≥0恒成立又∵x≠y∴成立综上所述:由①②知不等式成立.故选B二.填空题(共__小题)21.-3x2+x≤2的解集是______.答案:∅解析:解:-3x2+x≤2化为3x2-x+2≥0,∵3>0,△=1-24<0,∴不等式的解集为∅.故答案为:∅.22.已知3≤x≤6,,则x+y的最大值为______,最小值为______.答案:184解析:解:如图所示,令x+y=t,得直线l:y=-x+t.联立解得A(3,1);联立,解得C(6,12).则当直线l过点A(3,1)时,t=3+1取得最小值4;当直线l过点C(6,12)时,t=6+12=18取得最大值18.故答案分别为18,4.23.已知不等式|x+1|-a<|x-2|的解集为(-∞,2),则a的值为______.答案:3解析:解:由题意可得不等式|x+1|-|x-2|<a 的解集为(-∞,2),|x+1|-|x-2|表示数轴上的x对应点到-1对应点的距离减去数轴上的x对应点到2对应点的距离,当x≥2时,|x+1|-|x-2|=3,当x<2时,|x+1|-|x-2|<3,故a的值为3,故答案为3.24.若x,y满足约束条件:,则z=2x+3y的最大值为______.答案:39解析:解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.由,解得,即A(6,9).此时z的最大值为z=2×6+3×9=12+27=39,故答案为:39.25.已知实数x,y,z满足2x+y+3z=32,则的最小值为______.答案:解析:解:12+22+32=14,∴由柯西不等式可得(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322,∴≥,即的最小值是,故答案为:.三.简答题(共__小题)26.某人上午7:00时,乘摩托车以匀速V千米/时(4≤V≤20)从A港出发到相距50千米的B港去,然后乘汽车以匀速W千米/时(30≤W≤100)自B港向距300千米的C市驶去,要求在当天16:00时至21:00时这段时间到达C市.设汽车所需要的时间为X小时,摩托车所需要的时间为Y小时.(1)作图表示满足上述条件的X,Y的范围;(2)如果已知所要的经费:p=100+3(5-x)+2(8-y)(元),那么V,W分别是多少时所要的经费最少?此时需花费多少元?答案:解:(1)依题意得:,,又4≤v≤20,30≤w≤100,所以,而9≤x+y≤14,所以满足条件的点的范围是图中阴影部分:(2)∵p=100+3×(5-x)+2×(8-y),∴3x+2y=131-p作出一组平行直线3x+2y=t(t为参数),由图可知,当直线3x+2y=t经过点(10,4)时,其在y轴上截距最大,此时p有最小值,即当x=10,y=4时,p最小,此时v=12.5,w=30,p min=93元27.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.28.已知x,y,z∈R+,且x+y+z=1.(1)若++=2,求x,y,z的值.(2)求证:++≤.答案:(1)解:柯西不等式得:(x+1+y+1+z+1)(1+1+1)≥(++)2,∵++=2,x+y+z=1∴x+1=y+1=z+1,∴x=y=z=;(2)证明:∵(1+x+1+y+1+z)(++)≥(1+1+1)2,x+y+z=1.∴++≥,∴++=1-+1-+1-=3-(++)≤3-=.∴++≤.29.设n是不小于2的正整数,求证:<1-+-+…+-<.答案:证明:1-+-+…+-=1++++…++-(1+++…+)=+++…+,当n=2时,+=>,即有1-+-+…+->;由柯西不等式可得,+++…+<,由<-+-+…+-=-=,即有<=.故1-+-+…+-<.则有原不等式成立.30.已知x,y,z>0,求++的最小值.答案:解:∵x,y,z>0,∴(x+y+y+z+z+x)≥x+y+z++=,∴++≥,当且仅当x=y=z时取等号,∴++的最小值为.。

高中不等式练习题及答案知识讲解

高中不等式练习题及答案知识讲解

高中不等式练习题及答案收集于网络,如有侵权请联系管理员删除不等式1、解不等式:1211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.3、解不等式:65592+--x x x ≥-2. 4、解不等式:2269x x x -+->3.5、解不等式:232+-x x >x +5.6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。

7、若x,y >0,求y x yx ++的最大值。

8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,求参数m 的取值范围。

9、解不等式:log a (x +1-a)>1.10解不等式38->-x x .11.解log (2x – 3)(x 2-3)>012.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

收集于网络,如有侵权请联系管理员删除13.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。

15函数4522++=x x y 的最小值为多少?16.若a -1≤x 21log ≤a 的解集是[41,21],则求a 的值为多少?收集于网络,如有侵权请联系管理员删除17.设,10<<a 解不等式:()02log 2<--x x a a a18.已知函数y =13422+++x n x mx 的最大值为7,最小值为-1,求此函数式。

19.已知2>a ,求证:()()1log log 1+>-a a a a20.已知集合A=⎭⎬⎫⎩⎨⎧-<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?收集于网络,如有侵权请联系管理员删除21画出下列不等式组表示的平面区域,⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.110,100,3623,242y x y x y x1、[-21,1]∪(1,34) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3) 5、(-∞,-1323) 6、1, 43 7、2 8、-2<m <0收集于网络,如有侵权请联系管理员删除 9、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.101a a x a x , 解得x>2a-1.(II)当0<a<1时,原不等式等价于不等式组:⎩⎨⎧<->-+.101a a x a x +, 解得:a-1<x<2a-1.综上,当a>1时,不等式的解集为{x|x>2a-1}; 当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.10、原不等价于不等式组(1)⎪⎩⎪⎨⎧->-≥-≥-2)3(80308x x x x 或(2)⎩⎨⎧<-≥-0308x x 由(1)得22153+<≤x , 由(2)得x <3, 故原不等式的解集为⎭⎬⎫⎩⎨⎧+<2215|x x。

不等式测试题带答案

不等式测试题带答案

不等式测试题(带答案)【章节训练】第9章不等式与不等式组 -2一、选择题(共10小题)1.不等式组的解集在数轴上可表示为()A.B.C.D.2.不等式组的解为()A.x<2 B.x≤2 C.﹣2≤x<2D.无解3.a是任意实数,下列各式正确的是()A.3a>4a B.C.a>﹣a D.4.下列说法中正确的是()A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若a≠b,则|a|≠|b|D.若a≠b,则a2≠b25.(2014•镇海区模拟)若不等式组有解,则m 的取值范围是()A.m<2 B.m≥2 C .m<1 D.1≤m<26.不等式组的解在数轴上表示为()A.B.C.D.7.若不等式组无解,则不等式组的解集是()A.2﹣b<x<2﹣a B.b﹣2<x<a﹣2C.2﹣a<x<2﹣bD.无解8.已知m为整数,则解集可以为﹣1<x<1的不等式组是()A.B.C.D.9.(2009•大丰市一模)若a<b,则下列不等式中正确的是()A.a﹣2>b﹣2 B.﹣2a<﹣2bC.2﹣a>2﹣bD.m2a>m2b©2010-2014 菁优网10.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8二、填空题(共10小题)(除非特别说明,请填准确值)11.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为_________.12.不等式﹣2x>4的解集是_________;不等式x﹣1≤0的非负整数解为_________.13.如果不等式组无解,那么a的取值范围是_________.14.若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是_________.©2010-2014 菁优网15.已知关于x的不等式组无解,则a的取值范围是_________.16.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有_________个.17.如果不等式组的解集是x<2,那么m的取值范围是_________.18.6﹣的整数部分是_________.19.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是_________.20.若不等式组无解,则m的取值范围是_________.三、解答题(共10小题)(选答题,不自动判卷)©2010-2014 菁优网21.(2014•石景山区一模)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?22.解不等式:1﹣≥,并把解集在数轴上表示出来.23.(2009•黔东南州)若不等式组无解,求m 的取值范围.24.解下列不等式,并把解集在数轴上表示出来.(1)3(x+2)﹣1≥8﹣2(x﹣1)(2).25.阅读下列材料,然后解答后面的问题.求下列不等式的解集:(x+2)(x﹣3)>0©2010-2014 菁优网我们知道:“两个有理数相乘,同号得正”,则:或解得:x>3或x<﹣2.求下列不等式的解集:①;②.26.(2011•眉山)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E 地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地运往D地(元/立方米)22 20 20©2010-2014 菁优网运往E地(元/立方米)20 22 21在(2)的条件下,请说明哪种方案的总费用最少?27.解不等式:3+>x,并将解集在数轴上表示出了.28.(2012•栖霞市二模)解不等式组并写出它的正整数解.29.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题:(1)的整数部分是_________,小数部分是_________;(2)1+的整数部分是_________,小数部分是_________;©2010-2014 菁优网(3)若设2+整数部分是x,小数部分是y,求x ﹣y 的值.30.(2009•雅安)解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和..©2010-2014 菁优网【章节训练】第9章不等式与不等式组-2参考答案与试题解析一、选择题(共10小题)1.不等式组的解集在数轴上可表示为()A.B.C .D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.解答:解:解不等式组得,所以此不等式组的解集是﹣1<x≤1.故选A.点评:考查了解一元一次不等式组和在数轴上表示不等式的解集.不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,©2010-2014 菁优网“≤”实心圆点向左画折线.2.不等式组的解为()A.x<2 B.x≤2 C.﹣2≤x<2D.无解考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,由①得,x<2,由②得,x≤2,所以,不等式组的解集为x<2.故选A.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.a是任意实数,下列各式正确的是()A.3a>4a B.C.a>﹣a D.考点:不等式的性质.分析:根据不等式的基本性质或举出反例进行解答.解答:解:A、当a≤0时,不等式3a>4a不成立.故选项A 错误;B、当a=0时,不等式不成立.故选项B错误;C、当a≤0时,不等式a>﹣a不成立.故选项C错误;D、在不等式1>﹣的两边同时减去a,不等式仍然成立,即.故选项D正确;故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.下列说法中正确的是()A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若a≠b,则|a|≠|b|D.若a≠b,则a2≠b2考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a=﹣1,b=﹣2,则a2=1,b2=4,因而a2<b2,错误;B、若a>|b|,则a2>b2一定正确;C、a=﹣1,b=1,则|a|=|b|,故C不对;D、a=﹣1,b=1,则a2=b2,故D不对.故选B.点评:利用特殊值法验证一些式子的准确性是有效的方法.5.(2014•镇海区模拟)若不等式组有解,则m 的取值范围是()A.m<2 B.m≥2 C.m<1 D.1≤m<2考点:解一元一次不等式组.分析:本题实际就是求这两个不等式的解集.先根据第一个不等式中x的取值,分析m的取值.解答:解:原不等式组可化为(1)和(2),(1)解集为m≤1;(2)有解可得m<2,则由(2)有解可得m<2.故选A.点评:本题除用代数法外,还可画出数轴,表示出解集,与四个选项对照即可.同学们可以自己试一下.6.不等式组的解在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集,最后把不等式组的解集在数轴表示出来,即可选出答案.解答:解:,∵解不等式①得:x>1,解不等式②得:x≥2,∴不等式组的解集为x≥2,在数轴上表示不等式组的解集为:,故选C.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集等知识点,注意:包括该点用黑点,不包括该点用圆圈,找不等式组解集的规律之一是同大取大.7.若不等式组无解,则不等式组的解集是()A.2﹣b<x<2﹣a B.b﹣2<x<a﹣2C.2﹣a<x<2﹣bD.无解考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式组无解求出a≥b,根据不等式的性质求出2﹣a≤2﹣b,根据上式和找不等式组解集的规律找出即可.解答:解:∵不等式组无解,∴a≥b,∴﹣a≤﹣b,∴2﹣a≤2﹣b,∴不等式组的解集是2﹣a<x<2﹣b,故选C.点本题考查了不等式的性质,解一元一次不等式评:(组)等知识点的应用,关键是求出不等式2﹣a≤2﹣b,题目比较好,有一定的难度.8.已知m为整数,则解集可以为﹣1<x<1的不等式组是()A.B.C.D.考点:解一元一次不等式组.专题:计算题;压轴题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:A、不等式组的解集大于1,不等式组的解集不同,故本选项错误;B、∵m>0时,不等式组的解集是x<,∴此时不等式组的解集不同;但m<0时,不等式组的解集是<x<1,∴此时不等式组的解集相同,故本选项正确;C、不等式组的解集大于1,故本选项错误;D、∵m>0时,不等式组的解集是<x<1,m <0时,不等式组的解集是x<,∴此时不等式组的解集不同,故本选项错误;故选B.点评:本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.9.(2009•大丰市一模)若a<b,则下列不等式中正确的是()A.a﹣2>b﹣2 B.﹣2a<﹣2bC.2﹣a>2﹣bD.m2a>m2b考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减2,不等号的方向不变,错误;B、不等式两边都乘﹣2,不等号的方向改变,错误;C、不等式两边都乘﹣1,不等号的方向改变,都加2后,不变,正确;D、m=0时,错误;故选C.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8考点:解一元一次不等式组.专计算题.题:分析:根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.解答:解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选B.点评:本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况.二、填空题(共10小题)(除非特别说明,请填准确值)11.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为7.考点:解一元一次不等式.专题:计算题.分析:先求出第二个不等式的解集,再根据两个不等式的解集相同,表示出第一个不等式的解集并列方程求解即可得到a的值.解答:解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.点评:本题考查了解一元一次不等式,表示出第一个不等式的解集,再根据解集相同列出关于a的方程是解题的关键.12.不等式﹣2x>4的解集是x<﹣2;不等式x ﹣1≤0的非负整数解为1,0.考点:一元一次不等式的整数解;解一元一次不等式.专题:计算题.分析:第一个不等式左右两边除以﹣2,不等号方向改变,即可求出解集;第二个不等式移项求出解集,找出解集中的非负整数解即可.解答:解:﹣2x>4,解得:x<﹣2;x﹣1≤0,解得:x≤0,则不等式的非负整数解为1,0.故答案为:x<﹣2;1,0点评:此题考查了一元一次不等式的解法,以及一元一次不等式的整数解,熟练不等式的解法是解本题的关键.13.如果不等式组无解,那么a的取值范围是a≤2.考点:解一元一次不等式组.分析:不等式组无解,则x必定大于较大的数,小于较小的数,因此可知a必定不大于2,由此可解出a的取值.解答:解:由不等式无解可知a≤2.故填≤2.点评:本题考查的是一元一次不等式组的解.可根据“比大的大,比小的小,无解”来解此题.14.若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是9≤m<12.考点:一元一次不等式的整数解.专题:计算题.分析:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答:解:不等式3x﹣m≤0的解集是x≤,∵正整数解是1,2,3,∴m的取值范围是3≤<4即9≤m<12.点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.已知关于x的不等式组无解,则a的取值范围是a≥3.考点:解一元一次不等式组.专题:计算题.分析:由题意分别解出不等式组中的两个不等式,由题意不等式的解集为无解,再根据求不等式组解集的口诀:大大小小找不到(无解)来求出a的范围.解答:解:由x﹣a>0,∴x>a,由5﹣2x≥﹣1移项整理得,2x≤6,∴x≤3,又不等式组无解,∴a≥3.点主要考查了一元一次不等式组解集的求法,将不评:等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集为无解反过来求a的范围.16.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.考点:一次函数与一元一次不等式;解一元一次不等式.专题:计算题;压轴题.分析:根据已知得出不等式x+4≥0和x<0,求出两不等式的解集,再求出其整数解即可.解答:解:∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:6点评:本题考查了解一元一次不等式和一次函数的应用,关键是根据题意得出不等式x+4≥0和x<0,主要培养学生的理解能力和计算能力.17.如果不等式组的解集是x<2,那么m的取值范围是m≥2.考点:解一元一次不等式组.专题:计算题.分析:先求出第一个不等式的解集,再根据“同小取小”解答.解答:解:,解不等式①,2x﹣1>3x﹣3,2x﹣3x>﹣3+1,﹣x>﹣2,x<2,∵不等式组的解集是x<2,∴m≥2.故答案为:m≥2.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),18.6﹣的整数部分是3.考点:估算无理数的大小;不等式的性质.专题:推理填空题.分析:根据二次根式的性质求出2<<3,根据不等式的性质推出4>6﹣>3即可.解答:解:∵2<<3,∴﹣2>﹣>﹣3,∴6﹣2>6﹣>6﹣3,即4>6﹣>3,∴6﹣的整数部分是3,故答案为:3.点评:本题考查了对不等式的性质,估计无理数的大小等知识点的应用,解此题的关键是确定的范围,此题是一道比较典型的题目.19.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是﹣1≤a<﹣.考点:一元一次不等式的整数解.专题:计算题;分类讨论.分析:首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.注意当x的系数含有字母时要分情况讨论.解答:解:不等式ax+3≥0的解集为:(1)a>0时,x≥﹣,正整数解一定有无数个.故不满足条件.(2)a=0时,无论x取何值,不等式恒成立;(3)当a<0时,x ≤﹣,则3≤﹣<4,解得﹣1≤a<﹣.故a的取值范围是﹣1≤a<﹣.点评:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.当x的系数含有字母时要分情况讨论.20.若不等式组无解,则m的取值范围是m≥8.考点:解一元一次不等式组.分不等式组无解就是两个不等式的解集没有公共析:部分,可利用数轴进行求解.解答:解:x<8在数轴上表示点8左边的部分,x>m 表示点m右边的部分.当点m在8这点或这点的右边时,两个不等式没有公共部分,即不等式组无解.则m≥8.故答案为:m≥8.点评:本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.三、解答题(共10小题)(选答题,不自动判卷)21.(2014•石景山区一模)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?考点:一元一次不等式的应用.分(1)设该公司购进甲型显示器x台,则购进乙析:型显示器(x﹣50)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50﹣x与(1)的结论构成不等式组,求出其解即可.解答:解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(x﹣50)台,由题意,得1000x+2000(50﹣x)≤77000解得:x≥23.∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x≤50﹣x,解得:x≤25.∴23≤x≤25.∵x为整数,∴x=23,24,25.∴购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.点本题考查了列一元一次不等式解实际问题的运评:用,一元一次不等式的解法的运用,方案设计的运用,解答时根据条件的不相等关系建立不等式是关键.22.解不等式:1﹣≥,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:首先不等式两边乘以各分母的最小公倍数,然后移项、合并同类项,再把不等式的解集表示在数轴上即可.解答:解:去分母,原不等式的两边同时乘以6,得6﹣3x+1≥2x+2,移项、合并同类项,得5x≤5,不等式的两边同时除以5,得x≤1.在数轴上表示为:点评:本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(2009•黔东南州)若不等式组无解,求m 的取值范围.考点:解一元一次不等式组.专题:计算题.分析:不等式组无解就是两个不等式的解集没有公共部分.解答:解:∵原不等式组无解,∴可得到:m+1≤2m﹣1,解这个关于m的不等式得:m≥2,∴m的取值范围是m≥2.点评:解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.解下列不等式,并把解集在数轴上表示出来.(1)3(x+2)﹣1≥8﹣2(x﹣1)(2).考点:解一元一次不等式;不等式的性质;在数轴上表示不等式的解集.专题:计算题.分析:(1)去括号得到3x+6﹣1≥8﹣2x+2,移项、合并同类项得出5x≥5,不等式的两边都除以5,即可求出答案;(2)去分母后去括号得:28﹣8x+36>9x+24﹣12x,移项、合并同类项得出﹣5x>﹣40,不等式的两边都除以﹣5,即可求出答案.解答:(1)解:去括号得:3x+6﹣1≥8﹣2x+2,移项得:3x+2x≥8+2﹣6+1,合并同类项得:5x≥5,∴x≥1.在数轴上表示不等式的解集是:.(2)解:去分母得:4(7﹣2x)+36>3(3x+8)﹣12x,去括号得:28﹣8x+36>9x+24﹣12x,移项得:﹣8x﹣9x+12x>24﹣28﹣36,合并同类项得:﹣5x>﹣40,∴x<8,在数轴上表示不等式的解集是:点评:本题考查了不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的运用,主要检查学生能否运用不等式的性质正确解不等式,注意:不等式的两边都除以一个负数,不等号的方向应改变.25.阅读下列材料,然后解答后面的问题.求下列不等式的解集:(x+2)(x﹣3)>0我们知道:“两个有理数相乘,同号得正”,则:或解得:x>3或x<﹣2.求下列不等式的解集:①;②.考点:解一元一次不等式组;不等式的性质;不等式的解集.专题:阅读型.分析:①根据两个有理数相乘,异号得负得出不等式组和,求出不等式的解集即可;②化为>0,根据两个有理数相乘,同号得正得出和,求出不等式组的解集即可.解答:①解:∵两个有理数相乘,异号得负,∴或,解得:空集或﹣1<x<5,即不等式的解集为﹣1<x<5.②解:﹣1>0,>0,即>0,∵两个有理数相乘,同号得正,∴或,解得:6<x<7或空集,即不等式的解集为6<x<7.点评:本题考查了有理数的除法,不等式的性质,解一元一次不等式(组)的应用,关键是正确得出两个不等式组,题目具有一定的代表性,有一定的难度.26.(2011•眉山)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E 地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地运往D地(元/立方米)22 20 20运往E地(元/立方米)20 22 21在(2)的条件下,请说明哪种方案的总费用最少?考点:一元一次不等式组的应用;一元一次方程的应用.专题:优选方案问题.分析:(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.解答:解:(1)设运往E地x立方米,由题意得,x+2x ﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.点评:本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.27.解不等式:3+>x,并将解集在数轴上表示出了.考点:解一元一次不等式;不等式的性质;在数轴上表示不等式的解集.专题:计算题.分析:去分母得出9+x+1>3x,移项、合并同类项地:﹣2x>﹣10,不等式的两边都除以﹣2,即可求出答案.解解:去分母得:9+x+1>3x,答:移项得:x﹣3x>﹣1﹣9,合并同类项地:﹣2x>﹣10,解得:x<5,在数轴上表示不等式的解集是:.点评:本题考查了用不等式的性质解一元一次不等式,关键是理解不等式的性质,不等式的性质是①不等式的两边都乘以或除以一个正数,不等号的方向不变,②不等式的两边都乘以或除以一个负数,不等号的方向改变.28.(2012•栖霞市二模)解不等式组并写出它的正整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:根据不等式的性质求出每个不等式得解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集是:﹣1≤x<3,即不等式组的正整数解是1,2.点评:本题考查了不等式得性质、解一元一次不等式(组)、不等式组的整数解等知识点,能根据不等式得解集找出不等式组的解集是解此题的关键.29.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题:(1)的整数部分是2,小数部分是﹣2;(2)1+的整数部分是2,小数部分是﹣1;(3)若设2+整数部分是x,小数部分是y,求x﹣y 的值.考点:估算无理数的大小;代数式求值;不等式的性质.专题:计算题;阅读型.分析:(1)求出的范围是2<<3,即可求出答案;(2)求出的范围是1<<2,求出1+的范围即可;(3)求出的范围,推出2+的范围,求出x、y 的值,代入即可.解答:解:(1)∵2<<3,∴的整数部分是2,小数部分是﹣2,故答案为:2,﹣2.(2)∵1<<2,∴2<1+<3,∴1+的整数部分是2,小数部分是1+﹣2=﹣1,故答案为:2,.(3)∵1<<2,∴3<2+<4,∴x=3,y=2+﹣3=﹣1,∴x﹣y=3﹣(﹣1)=.点评:本题考查了估计无理数的大小,不等式的性质,代数式求值等知识点的应用,关键是关键题意求出无理数的取值范围,如2<<3,1<<2,1<<2.30.(2009•雅安)解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和..考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式;一元一次不等式组的整数解.专题:计算题.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,找出不等式组的整数解,相加即可.解答:解:,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∵不等式组的整数解为﹣1,0,1,∴不等式组所有整数解的和是:﹣1+0+1=0.点评:本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集,不等式组的整数解等知识点的应用,关键是求出不等式组的解集,题目具有一定的代表性,是一道比较好的题目.。

不等式考试题及答案

不等式考试题及答案

不等式考试题及答案一、选择题(每题5分,共20分)1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),则下列哪个不等式有相同解集?A. \( ax^2 + bx + c < 0 \)B. \( -ax^2 - bx - c > 0 \)C. \( ax^2 + bx + c \leq 0 \)D. \( -ax^2 - bx - c < 0 \)答案:B2. 对于不等式 \( |x - 3| < 2 \),下列哪个区间是其解集?A. \( (1, 5) \)B. \( (-1, 7) \)C. \( (-2, 4) \)D. \( (3, 5) \)答案:A3. 若不等式 \( x^2 - 5x + 6 < 0 \) 的解集为 \( A \),则 \( A \) 与 \( (2, 3) \) 的交集是什么?A. \( \emptyset \)B. \( (2, 3) \)C. \( (2, 3) \cap A \)D. \( (3, 4) \)答案:C4. 已知不等式 \( x^3 - 3x^2 + 2x > 0 \) 的解集包含 \( (1, 2) \),那么下列哪个不等式也包含 \( (1, 2) \) 作为其解集的一部分?A. \( x^3 - 3x^2 + 2x < 0 \)B. \( -x^3 + 3x^2 - 2x < 0 \)C. \( x^3 - 3x^2 + 2x \leq 0 \)D. \( -x^3 + 3x^2 - 2x \geq 0 \)答案:B二、填空题(每题5分,共20分)1. 若不等式 \( 2x - 3 < 5 \) 的解为 \( x < 4 \),则 \( 2x -3 > 5 \) 的解为 \( x > \_\_\_\_\_ \)。

答案:42. 不等式 \( |x + 1| \geq 3 \) 的解集为 \( x \leq -4 \) 或\( x \geq 2 \),那么 \( |x + 1| < 3 \) 的解集为 \( x \in\_\_\_\_\_ \)。

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。

为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。

1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。

2. 解不等式 $\frac{2-x}{x+1}\geq 1$。

【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。

因此,$x\in(-\infty,-1]\cup[1,+\infty)$。

3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。

【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。

解得 $x\in(-\infty,1)\cup(3,+\infty)$。

4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。

所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

高中数学不等式经典题型专题训练试题(含答案)

高中数学不等式经典题型专题训练试题(含答案)

高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。

四川省阆中中学2023—2024学年高三上学期一模数学理科试题含答案

四川省阆中中学2023—2024学年高三上学期一模数学理科试题含答案

阆中中学校高2021级2023年秋一模数学试题(理)(满分:150分考试时间:120分钟)一、单选题。

(每小题5分,共计60分)1.已知集合{}1,412A x x B x y x ⎧⎫=≤==-⎨⎬⎩⎭,则A B = ()A.1,2⎛⎤-∞ ⎥⎝⎦B.10,2⎡⎤⎢⎥⎣⎦C.11,42⎡⎤⎢⎥⎣⎦D.1,4⎡⎫+∞⎪⎢⎣⎭2.已知1i z =+,则1zz =+()A.13i55-B.1355i+C.31i55-D.31i55+3.在等比数列{}n a 中,11a =,34a =,则7a =()A.128-B.128C.64-D.644.若曲线ln x ay x-=在()1,a -处的切线与直线:250l x y -+=垂直,则实数=a ()A.1B.32-C.32D.25.已知函数()f x 的部分图像如图,则函数()f x 的解析式可能为()A.()()e e sin x xf x x-=-B.()()e e sin x xf x x -=+C.()()ee cos xxf x x-=-D.()()e e cos x xf x x-=+6.已知向量,a b 满足3,2,2213a b a b ==-= ,则a 与b 的夹角为()A.π2B.2π3C.3π4D.5π67.设变量,x y 满足约束条件306010x y x y y +≥⎧⎪--≤⎨⎪-≤⎩,则目标函数3z x y =-+的最小值为()A.-8B.-15C.-20D.-218.已知函数π()2sin()(0)3f x x ωω=+>的最小正周期为T ,若π2π23T <<,且π3是()f x 的一个极值点,则ω=()A.12B.2C.103D.729.已知函数1()e 1x f x =-,则对任意非零实数x ,有()A.()()0f x f x --=B.()()1--=-f x f x C.()()1f x f x -+=D.()()1f x f x -+=-10.圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 圆上任意一点,BM xBA yBD =+(x ,R y ∈),则2x y +的最大值为()A.22B.2C.2D.311.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,北京市文化宫于春分时节开展油纸伞文化艺术节.活动中将油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为2的圆,圆心到伞柄底端距离为2,阳光照射油纸伞在地面形成了一个椭圆形影子(春分时,北京的阳光与地面夹角为60︒),若伞柄底端正好位于该椭圆的焦点位置,则该椭圆的离心率为()A.23-B.21-C.31-D.2212.定义在R 上的奇函数()f x 满足()()2=f x f x -,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A.30B.14C.12D.6二、填空题。

四川省南充市阆中中学校2024-2025学年高一上学期9月检测数学试题

四川省南充市阆中中学校2024-2025学年高一上学期9月检测数学试题

四川省南充市阆中中学校2024-2025学年高一上学期9月检测数学试题一、单选题1.若集合{},,M a b c =中的元素是ABC V 的三边长,则ABC V 一定不是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.设集合{}{}|10,|P x x Q m y =-<<=∈=R R ,则下列关系中成立的是( ) A .P Q ⊆B .Q P ⊆C .P Q =D .P Q Q ⋂=3.定义{|1A B Z Z xy *==+,x A ∈,}y B ∈,设集合A ={0,1},集合B ={1,2,3},则A *B 集合的真子集的个数是( ) A .14B .15C .16D .174.满足{a ,b }⊆M ⫋{a ,b ,c ,d ,e }的集合M 的个数是( )个 A .2B .4C .7D .85.设全集{}2,1,0,1,2U =--,集合{}220A x x x =--=,{}220B x x x =+-=,则()U A B ⋃=ð( )A .{}2,1,1,2--B .{}2,1,0--C .{}0,1,2D .{}06.已知全集R U =,集合{}23A x x =-≤≤,{}04B x x =<<,则图中阴影部分表示的集合为( )A . 3,4B .()3,4C . 0,4D .(]0,37.设集合{}{}29,2A x x B x x a =≥=<,若B A ⊆,则a 的取值范围是( )A .(],6∞--B .(],2-∞-C .[)3,+∞D .[)6,+∞8.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其诗作《从军行》中的诗句“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”传诵至今.由此推断,其中最后一句“返回家乡”是“攻破楼兰”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件二、多选题9.下列各组对象可以组成集合的是( ) A .数学必修第一册课本中所有的难题 B .小于8的所有质数C .直角坐标平面内第一象限的一些点D .周长为10 cm 的三角形10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4. 下列结论正确的是( )A .2 022∈[2]B .-3∈[3]C .[][][][][]Z 01234=U U U UD .整数a ,b 属于同一个“类”的充要条件是[0]a b -∈11.非空集合A 具有如下性质:①若,x y A ∈,则xA y∈;②若,x y A ∈,则x y A +∈下列判断中,正确的有( )A .1A -∉B .20222023A ∈ C .若,x y A ∈,则xy A ∈D .若,x y A ∈,则x y A -∈12.设U 为全集,下面三个命题中为真命题的是( )A .若AB =∅I ,则()()U U A B U ⋃=痧; B .若A B U ⋃=,则()()U U A B ⋂=∅痧;C .若A B =∅I ,则A B ==∅;D .若A B =∅U ,则A B ==∅.三、填空题13.设{}{}2540,10A xx x B x ax =-+==-=∣∣,若A B A =U ,则实数a 的取值集合为. 14.已知集合P 中的元素x 满足:x N ∈,且2x a <<,又集合P 中恰有三个元素,则整数a =,集合P 中的元素是.15.由实数x ,-x ,|x |.16.已知集合{}2135A x a x a =+≤≤-,{0B x x =<或}19x >.若()A A B ⊆I ,则实数a 的取值范围是.四、解答题17.用描述法表示下列集合.(1)所有不在第一、三象限的点组成的集合; (2)所有被3除余1的整数组成的集合; (3)使216y x x =+-有意义的实数x 组成的集合.(4)方程()()22230x y -++=的解集.18.已知集合22{2,(1),33}A a a a a =++++,若1A ∈,求实数a 的取值集合. 19.已知集合A ={x |2≤x <4},B ={x |a +2≤x ≤3a }. (1)当a =2时,求A ∩B ;(2)若B ⊆A ,求实数a 的取值范围.20.已知集合{}|22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,全集合R . (1)当3a =时,求A B ⋂;(2)若0a >,()R A B A =I ð,求实数a 的取值范围.21.设{}2|220A x x ax =++=,{}2|320B x x x a =++=,且{}2A B =I .(1)求a 的值及集合A ,B ;(2)设全集U A B =⋃,求()()U U A B U 痧; (3)写出()()U U A B U 痧的所有子集.22.已知集合{}22|,,Z A x x m n m n ==-∈(1)判断8,9,10是否属于集合A ;(2)已知集合{}|21,Z B x x k k ==+∈,证明:“x A ∈”的充分条件是“x B ∈”;但“x B ∈”不是“x A ∈”的必要条件;(3)写出所有满足集合A 的偶数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阆中中学高中数学不等式测试题(理科)
命题:高二数学组
一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分)
1.已知a <0,-1<b <0,那么( )
A .2a ab ab >>
B .2ab ab a >>
C .2ab ab a >>
D .2
ab a ab >> 2.“0>>b a ”是“2
2
2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
3.不等式b ax >的解集不可能...
是( ) A .φ B .R
C .),(+∞a b
D .),(a b --∞ 4.不等式022>++bx ax 的解集是)31,21(-
,则b a -的值等于( ) A .-14 B .14 C .-10
D .10 5.不等式||x x x <的解集是( )
A .{|01}x x <<
B .{|11}x x -<<
C .{|01x x <<或1}x <-
D .{|10,1}x x x -<<> 6.若011<<b
a ,则下列结论不正确...的是( ) A .22
b a < B .2b ab < C .
2>+b
a a
b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( )
A .)()(x g x f >
B .)()(x g x f =
C .)()(x g x f <
D .随x 值变化而变化 8.下列各式中最小值是2的是( )
A .y x +x
y B .4522++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x
B .01
)2)(1(<-+-x x x 与02<+x C .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在函数1mx y n n =-
-的图像上,其中mn >0,则n
m 21+的最小值为( ) A .8 B .6 C .4 D .2
11.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式2(1)()0x f x -<的解集
是( )
A .{|10}x x -<<
B .{|2,12}x x x <-<<或
C .{|2112}x x x -<<<<或
D .{|210,12}x x x x <--<<<<或或
12.已知不等式()()25x ay x y xy ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( )
A .
16625 B .16 C .254 D .18
二、填空题(每小题4分,共16分)
13.不等式|21|1x x --<的解集是_____________.
14.函数1
21lg +-=x x y 的定义域是_____________. 15.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =___________吨.
16.已知0
()1,0x x f x x ≥⎧=⎨-<⎩
,,则不等式3)2(≤+x f 的解集____________.
三、解答题(共74分)
17.(本小题满分12分)解不等式122log 1815x x x ⎛⎫
≤- ⎪-+⎝⎭
18.已知a R ∈,解关于x 的不等式12>-x ax

19.(本小题满分12分)
设a 、b 、c 为△ABC 得三条边,求证:ab+bc+ac 222a b c ≤++<2(ab+bc+ac )
20.(本小题满分12分) 对任意[,]22
x ππ∈-,函数x x a a x f 2cos sin )4(221)(--+-=的值恒大于零,求a 的取值范围.
21.(本小题满分12分)(理)如图所示,校园内
计划修建一个矩形花坛并在花坛内装置两个相
同的喷水器.已知喷水器的喷水区域是半径为5m 的圆.问如何设计花坛的尺寸和两个喷水器的位
置,才能使花坛的面积最大且能全部喷到水?
∙∙喷水器 喷水器
22.(本小题满分14分)已知函数b ax x x f ++=2)(.
(1)若对任意的实数x ,都有a x x f +≥2)(,求b 的取值范围;
(2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;
(3)若)2
1,0(∈a ,求证:对于任意的]1,1[-∈x ,1|)(|≤x f 的充要条件是.142a b a -≤≤-。

相关文档
最新文档