平方根立方根基础练习题

合集下载

《平方根》《立方根》习题精选精练

《平方根》《立方根》习题精选精练

学习好帮手14A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个 C .5个 D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根 23.下列命题正确的是( ) A .49.0的平方根是0.7 B .0.7是49.0的平方根 C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( ) A .1917±=x B .1917=xC .1817=x D .1817±=x26.下列各式中,正确的是( )A.2)2(2-=- B. 9)3(2=-C. 39±=±D. 393-=- 27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 31.满足x 是 32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是a学习好帮手16(7(8(9(10)已知22b a ++|b 2-10|=0,求a +b 的值.(11)阅读下列材料,然后回答问题。

(完整)平方根立方根练习题

(完整)平方根立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7。

12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________. 7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2± D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517。

下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11。

118。

计算3825-的结果是( )。

A.3 B 。

7 C.-3 D.-719。

若a=23-,b=—∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ). A 。

a >b >c B 。

初二平方根立方根练习题100道

初二平方根立方根练习题100道

初二平方根立方根练习题100道1. 求下列数字的平方根:a) 25b) 64c) 100d) 144e) 2562. 求下列数字的立方根:a) 8b) 27c) 64d) 125e) 2163. 求下列数字的平方根和立方根:a) 81b) 121c) 169d) 729e) 10244. 求下列数字的平方根的结果保留两位小数:a) 5b) 15c) 23d) 36e) 485. 求下列数字的立方根的结果保留两位小数:a) 8b) 27c) 64d) 125e) 2166. 计算下列各式的值:a) √9 × √16b) ∛8 × √9c) √25 ÷ √5d) ∛64 ÷∛4e) ∛27 + ∛647. 当x = 16时,求以下各式的值:a) √xb) x^(1/3)c) ∛xd) x^(1/2)8. 当y = 0.04时,求以下各式的值:a) √yb) y^(2/3)c) ∛yd) y^(1/2)9. 已知a = √16 + ∛64,求a的值。

10. 如果x = √16,y = ∛27,z = √25,分别求x、y、z的平方根和立方根。

11. 如果a = √x,b = ∛y,c = √z,求a、b、c的平方根和立方根。

12. 判断下列各式是否成立:a) √16 + ∛27 = √9 + ∛64b) √25 - ∛8 = 5 - 2c) √100 + ∛125 = 12 + 5d) √36 - ∛64 = 6 - 4e) √81 + ∛125 = 9 + 513. 求下列式子的值:a) (√4 + ∛8)²b) (√9 - ∛27)³c) (√16 + ∛64)⁴d) (√25 - ∛125)⁵e) (√36 + ∛216)⁶14. 已知 x = 0.1,求 x²和 x³的值并保留三位小数。

15. 如果 a² + b² = 25,且 a = 3,b = 4,求 a³和 b³的值。

初中平方根立方根估算基础练习(含答案与解析)

初中平方根立方根估算基础练习(含答案与解析)

初中平方根立方根估算基础练习(含答案与解析)平方根立方根估算基础练一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个2.36的平方根是()A.±XXX.±3.实数的平方根是()A.±4B.4C.2D.±24.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是(A.﹣3B.﹣1C.1D.﹣3或15.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是56.计算的结果是()A.﹣3B.3C.2D.7.下列各式化简后的结果为3的是()A.B.C.D.8.25的算术平方根是()A.5B.±5C.﹣5D.25 9.2的算术平方根是()XXX10.的值等于()A.4B.﹣4C.±2D.2 11.下列等式正确的是()A.B.C.D.12.的算术平方根是()第1页(共12页))A.﹣2B.213.C.﹣D.的算术平方根是()D.﹣A.B.﹣C.14.已知A.15.若+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1,则下列结论中正确的是()B.2016<a<A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<416.﹣A.1二.填空题(共8小题)17.的平方根是,﹣的立方根是.与B.2之间的整数个数是()C.3D.418.若x的立方根是﹣,则x=.19.实数﹣8的立方根是.20.计较:=.21.若一个正方体的体积是8,那末它的棱长是.22.的平方根是,(﹣5)2的算术平方根是,的立方根是﹣0.1.23.﹣的立方根为.24.立方根和算术平方根都等于它本身的数是.三.解答题(共3小题)25.比较与0.5的大小.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)按照上述结论,比力大小:2(3)根据(2)的结论,计算:|第2页(共12页)27.比力3与2的大小.一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π、故选:B.【点评】此题首要考查了在理数的定义,其中初中规模内研究的在理数有:π,2π等;开方开不尽的数;和像0.…,等有如许规律的数.2.36的平方根是()A.±XXX.±是无理数,【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(±6)2=36,∴36的平方根是±6.故选A.【点评】此题考查了平方根的定义.此题注意一个正数的平方根有两个,且它们互为相反数.3.实数的平方根是()C.2D.±2A.±4B.4【分析】直接利用算术平方根化简,进而利用平方根的定义分析得出答案.【解答】解:∵=4,第3页(共12页)∴的平方根是:±2.故选:D.【点评】此题主要考查了平方根,正确把握定义是解题关键.4.若2m﹣4与3m﹣1是统一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选;D.【点评】本题首要考查的是平方根的性质,明确2m﹣4与3m﹣1相称或互为相反数是解题的枢纽.5.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是5【分析】根据负数没有平方根,正数有两个平方根进行分析即可.【解答】解:A、﹣25的平方根是﹣5,说法错误;B、﹣5是25的平方根,说法精确;C、﹣25的平方根是5,说法错误;D、25的平方根是5,说法错误;故选:B.【点评】此题首要考查了平方根,枢纽是把握平方根的性质:正数a有两个平方根,它们互为相反数;的平方根是;负数没有平方根.6.计算A.﹣3B.3的成效是()C.2D.【分析】算术平方根,和有理数的平方的运算办法,求出计较几何便可.第4页(共12页)的成效是【解答】解:计较故选:B.的结果是3.【点评】此题主要考查了算术平方根,以及有理数的平方的运算方法,要熟练掌握.7.下列各式化简后的结果为3A.B.C.D.的是()【分析】按照二次根式的性质一一化简可得.【解答】解:A、B、C、D、=2=3不克不及化简;,此选项错误;,此选项精确;=6,此选项错误;故选:C.【点评】本题首要考查二次根式,闇练把握二次根式的性质是解题的枢纽.8.25的算术平方根是()A.5B.±5C.﹣5D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题首要考查的是算术平方根的定义,闇练把握算术平方根的定义是解题的枢纽.9.2的算术平方根是()XXX【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是故选B.第5页(共12页),【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.10.A.4的值等于()B.﹣4C.±2D.2透露表现16的算术平方根,需注意的是算术平方根必为非负数求【分析】按照出即可.【解答】解:按照算术平方根的意义,故选A.=4.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为11.下列等式正确的是()A.B.C.D..【分析】A、按照算术平方根的定义便可判定;B、按照负数没有平方根便可判定;C、按照立方根的定义便可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、D、故谜底选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.第6页(共12页),故选项C错误;,故选项正确.12.的算术平方根是()C.﹣D.的值,然后再利用算术平方根的定A.﹣2B.2【分析】首先根据算术平方根的定义求出义即可求出结果.【解答】解:∵∴=4,=2.的算术平方根是故选:B.【点评】此题首要考查了算术平方根的定义,注意要第一计较13.的算术平方根是()D.﹣=4.A.B.﹣C.【分析】首先化简【解答】解:故选:C.,然后根据算术平方根的定义即可求出结果..=,的算术平方根是【点评】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.14.A.+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1B.2016【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故选:D.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为时,则其中的每一项都必须等于是解题的关键.15.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4第7页(共12页)【分析】首先估算【解答】解:∵1又∵<a<,和的大小,再做选择.<4,<2,3∴1<a<4,故选B.【点评】本题首要考查了估算在理数的大小,第一估算题的关键.16.﹣A.1与B.2之间的整数个数是()C.3D.4<﹣1,2<<3,由此确定﹣与的取值范围,再和的大小是解答此【分析】由于﹣2<﹣根据取值范围找出整数即可求解.【解答】解:∵﹣2<﹣∴﹣与<﹣1,2<<3,之间的整数有﹣1,,1,2共4个.故选D.【点评】此题主要考查了无理数的估算的能力,解题时先确定﹣范围是解答本题的关键.二.填空题(共8小题)17.的平方根是±2,﹣、=4,的立方根是﹣2.与的取值【分析】先找出【解答】解:∵∴∵∴﹣的值,再按照平方根与立方根便可得出结论.的平方根是±2;=8,的立方根是﹣2.故答案为:±2;﹣2.【点评】本题考查了平方根以及立方根,解题的关键是熟练掌握平方根与立方根的求法.第8页(共12页)18.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣故答案为:﹣.,【点评】本题考查了立方根的应用,首要考查学生的计较本领.19.实数﹣8的立方根是﹣2.【分析】利用立方根的定义便可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故谜底﹣2.【点评】本题首要考查了立方根的观点.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那末这个数x就叫做a的立方根,也叫做三次方根.20.计较:=0.2.【分析】直接利用立方根的定义分析得出答案.【解答】解:故谜底为:0.2.【点评】此题主要考查了立方根,正确把握定义是解题关键.21.若一个正方体的体积是8,那末它的棱长是2.【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那末它的棱长是2;故答案为:2.【点评】本题考查了立方根的定义的应用,主要考查学生的计算能力.第9页(共12页)==0.2.22.的平方根是±,(﹣5)2的算术平方根是5,﹣0.001的立方根是﹣0.1.【分析】按照立方根和平方根和算术平方根的定义分别分析得出谜底便可.【解答】解:=3,3的平方根是±,(﹣5)2=25,25算术平方根是5,﹣0.001的立方根是﹣0.1.故答案为:±,5,﹣0.001.【点评】此题主要考查了立方根、平方根和算术平方根等定义,熟练掌握其定义是解题关键.23.﹣的立方根为﹣.的立方根.【分析】按照立方根的定义便可求出﹣【解答】解:﹣故答案为:﹣.的立方根为﹣.【点评】此题主要考查了立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.24.立方根和算术平方根都等于它本身的数是和1.【分析】首先设出这个数为x,根据立方根是它本身列式为x3=x,由算术平方根是它本身列式为=x,联立两式解得x.【解答】解:设这个数为x,根据题意可知,解得x=1或,故答案为:和1【点评】本题首要考查立方根宁静方根的知识点,注意一个正数有两个平方根,它们互为相反数,正数是它的算术平方根;的平方根是;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,的立方根第10页(共12页),式.三.解答题(共3小题)25.比较【分析】利用系.【解答】解:∵∴∴∴,>0.5.,,与0.5的大小.<得到2<,则﹣1>1,即可得到与0.5的大小关【点评】本题考查了实数的大小比较,运用算术平方根的性质估算无理数的大小是解答此题的关键.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)依据上述结论,比较大小:2(3)按照(2)的结论,计较:|【分析】(1)利用平方根的概念进行比较;(2)先比力2和3的大小,由3与的关系获得谜底;(3)按照绝对值的性质解答.【解答】解:(1)∵7<9,∴<3,∵1.52=2.25<3,∴1.5<(2)∵∴2∴2;>1.5,,>3,又3>>;第11页(共12页)(3)原式=﹣﹣2+=2﹣3.【点评】本题考查的是实数的大小比较,掌握有理数的乘方法则、绝对值的性质是解题的关键.27.比较3与2的大小.【分析】先把根号外边的数移到根号里面,再比较被开方数的大小即可.【解答】解:∵3∴>,即3=,2>2.=,18>12,。

平方根与立方根基础练习题

平方根与立方根基础练习题

平方根与立方根操练题之青柳念文创作一、填空题:1、216的算术平方根是,16的平方根是;2、327=,64-的立方根是;3、7的平方根为,21.1=;4、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是;5、平方数是它自己的数是;平方数是它的相反数的数是;6、当x=时,13-x 有意义;当x=时,325+x 有意义;7、若164=x ,则x=;若813=n ,则n=;8、若3x x =,则x=;若x x -=2,则x ;9、若0|2|1=-++y x ,则x+y=;10、计算:381264273292531+-+=; 二、选择题11、若a x =2,则( )A 、x>0B 、x ≥0C 、a>0D 、a ≥012、一个数若有两个分歧的平方根,则这两个平方根的和为( )A 、大于0B 、等于0C 、小于0D 、不克不及确定13、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =14、若a ≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |15、若正数a 的算术平方根比它自己大,则( )A 、0<a<1B 、a>0C 、a<1D 、a>116、若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+117、若a<0,则a a 22等于( )A 、21B 、21-C 、±21 D 、0 18、若x-5能开偶次方,则x 的取值范围是( )A 、x ≥0B 、x>5C 、x ≥5D 、x ≤5三、计算题19、2228-+ 20、49.0381003⨯-⨯ 21、914420045243⨯⨯⨯22、83122)10(973.0123+--⨯-四、解答题23、解方程:0324)1(2=--x 24、解方程:x x 1225)32(2-=-25、若312-a 和331b -互为相反数,求b a的值.。

平方根与立方根基础练习题

平方根与立方根基础练习题

平方根与立方根练习题之迟辟智美创作一、填空题:1、216的算术平方根是,16的平方根是;2、327=,64-的立方根是;3、7的平方根为,21.1=;4、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是;5、平方数是它自己的数是;平方数是它的相反数的数是;6、当x=时,13-x 有意义;当x=时,325+x 有意义;7、若164=x ,则x=;若813=n ,则n=;8、若3x x =,则x=;若x x -=2,则x ;9、若0|2|1=-++y x ,则x+y=;10、计算:381264273292531+-+=; 二、选择题11、若a x =2,则( )A 、x>0B 、x ≥0C 、a>0D 、a ≥012、一个数若有两个分歧的平方根,则这两个平方根的和为( )A 、年夜于0B 、即是0C 、小于0D 、不能确定13、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =14、若a ≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |15、若正数a 的算术平方根比它自己年夜,则( )A 、0<a<1B 、a>0C 、a<1D 、a>116、若n 为正整数,则121+-n 即是( )A 、-1B 、1C 、±1D 、2n+117、若a<0,则a a 22即是( ) A 、21 B 、21- C 、±21 D 、018、若x-5能开偶次方,则x 的取值范围是( )A 、x ≥0B 、x>5C 、x ≥5D 、x ≤5三、计算题19、2228-+ 20、49.0381003⨯-⨯21、914420045243⨯⨯⨯ 22、83122)10(973.0123+--⨯- 四、解答题23、解方程:0324)1(2=--x 24、解方程:x x 1225)32(2-=-25、若312-a 和331b -互为相反数,求b a 的值.。

平方根立方根练习带答案

平方根立方根练习带答案

【例1】(2011晋城)16的算术平方根为( )A、4 B 、4± C、2 D、2±【例2】(2012重庆)下列说法中,正确的个数是( )(1)-64的立方根是-4;(2)49的算术平方根是7±;(3)271的立方根为31;(4)41是161的平方根。

A 、1 B 、2 C 、3 D 、4【例3】(2012临汾)若m是169算术平方根,n 是121的负的平方根,则(m+n)2的平方根为( )A. 2 B . 4 C.±2 D. ±4【例4】(2011许昌)若2m -4与3m -1是同一个数两个平方根,则m为( )A. -3B. 1 C. -3或1 D. -1【例5】(2011周口)若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x≥ 37- C 、x >37 D 、x ≥37 【例6】(2012郑州)下列运算正确的是( ). A .3333--=- B.3333=- C.3333-=- D.3333-=- 【例7】(2011洛阳)若 a a -=2,则a______0。

【例8】(2012漯河)若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________.【例9】(2011平顶山)已知某数的平方根为1523-+a a 和,求这个数的是多少?【例10】解方程x 3-8=0。

(2)2523=+x【例11】(2011新密)计算:(1(3)22)74()73(+的算术平方根 +【课堂练习】1、下列说法中,正确的是( )A.+5是25的算术平方根 B.25的平方根是-5C.+8是16的平方根 D .16的平方根是±82、(2011宜阳)下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是03、(2012太康)若x ,y都是实数,且42112=+-+-y x x ,则xy的值( )。

(完整版)平方根与立方根典型题大全

(完整版)平方根与立方根典型题大全

1激发兴趣,教给方法,培养习惯,塑造品格乐学,让学习更快乐乐学教育平方根与立方根典型题大全一、 填空题1 .如果 x 9,那么x = _________ ;如果 X 9,那么x _____________ 2•若一个实数的算术平方根等于它的立方根,则这个数是 ____________ ;3. __________________________________ 算术平方根等于它本身的数有 ___ 立方根等于本身的数有 ________________________________ .4. 若 -,.x 3 x,贝Vx ______ ,若•- x 2x,贝Ux ______ 。

4.的平方根是 ____________ ,V4的算术平方根是 ________ ,10 2的算术平方根是 ___________ ; 5 .当m ______时,3 m 有意义;当m _________ 时,3 m 3有意义;6.若一个正数的平方根是2a 1和a 2,则a __________ ,这个正数是 _________ ;7. _______________________________ TTH 2的最小值是 ________ 此时a 的取值是.二、 选择题 8. 若x 2a ,则()A. x 0B.x 0C.a 0D.a 08. (3)2的值是().A.3 B .3C 9D .99. 设x 、y 为实数, 且 y 45 x . x 5,则x y 的值是()A 1B、9C、4D 、510 .如果 3x 5有意义, 则x 可以「 取的最小整数为().A. 0B.1C.2D.311. 一个等腰三角形的两边长分别为5 2和2 3,则这个三角形的周长是( )A 、10 .2 2 3B 、5 .2 4 3C 、10 2 2.3 或 5 2 4 3D 、无法确定12.若x 5能开偶次方,则x 的取值范围是( )A. x 0B.x 5C.x 5D.x 513.若n 为正整数,则姑'、1 1等于( )A. -1B.1C.± 1D. 2n 114.若正数a 的算术平方根比它本身大, 则()底」乐学教育2 激发兴趣,教给方法,培养习惯,塑造品格A. 0 a 1B. a 0C. a 1D. a 1三、解方程12. (2x 1)38 13 .4(x+1) 2=8 14. (2x 3)225 12x四、解答题15.已知:实数a、b满足条件a 1 (ab 2)20试求1 1 1 1的值ab (a 1)(b 1) (a 2)(b 2) (a 2004)(b 2004)乐学,让学习更快乐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根立方根练习题
一、填空题
1.如果9=x ,那么x =________;如果92=x ,那么=x ________
2.如果x 的一个平方根是7.12,那么另一个平方根是________.
3.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.
4.若一个实数的算术平方根等于它的立方根,则这个数是_________;
5.算术平方根等于它本身的数有________,立方根等于本身的数有________. 6.81的平方根是_______,4的算术平方根是_________,210-的算术平方根
是 ;
_______;9的立方根是_______;______的平方根是311±。

7.若一个数的平方根是8±,则这个数的立方根是 ;
8.当______m 时,m -3有意义;当______m 时,33-m 有意义;
9.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
10.已知0)3(122=++-b a ,则=33
2ab ; 11.21++a 的最小值是________,此时a 的取值是________;
12.12+x 的算术平方根是2,则x =________;
二、选择题
1.9的算术平方根是( )
A .-3
B .3
C .±3
D .81
2.下列计算不正确的是( )
A ±2
B ==0.4 D 3.下列说法中不正确的是( )
A .9的算术平方根是3
B 2
C .27的立方根是±3
D .立方根等于-1的实数是-1
4 )
A .±8
B .±4
C .±2 D
5.-18
的平方的立方根是( )
A .4
B .18
C .-14
D .14
6.下列说法错误的是( ) A.1)1(2=- B.()1133-=- C.2的平方根是2±
D.81-的平方根是9±
7.2)3(-的值是( ).
A .3-
B .3
C .9-
D .9
8.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( ) A. 1 B. 9 C. 4 D. 5
9.下列各数没有平方根的是( ).
A .-﹙-2﹚
B .3)3(-
C .
2)1(- D .11.1
10.计算3825-的结果是( ). A.3 B.7 C.-3 D.-7 11.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).
A.a >b >c
B.c >a >b
C.b >a >c
D.c >b >a
12.如果53-x 有意义,则x 可以取的最小整数为( ).
A .0
B .1
C .2
D .3
13.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )
A .x+1
B .x 2+1
C +1 D
14.若2m-4与3m-1是同一个数的平方根,则m 的值是( )
A .-3
B .1
C .-3或1
D .-1
15.已知x ,y +(y-3)2=0,则xy 的值是( )
A .4
B .-4
C .94
D .-94
三、计算、求值
1.求下列各数的平方根.
(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.
2.计算:
(1)(2 (3(4
三、解方程
0252=-x
8)12(3-=-x 4(x+1)2=8
(2x-1)2-169=0; 12(x+3)3=4.。

相关文档
最新文档